

Amplicon quantification

Using QuantiFLuor dsDNA system from Promega on Qubit or Roche LightCycler 480II

Prep:

- \Box 01 Thaw the QuantiFluor dye. Quick vortex and quick spin. Keep it in the dark.
- $\hfill\square$ 02 Quick vortex and quick spin the Standard DNA.
- \Box 03 Prepare standards for quantification from the concentrated DNA standard. You will need just 2 µL per standard. Don't waste it. Use a two-fold serial dilution.

100 ng/µL \rightarrow 50 ng/µL \rightarrow 25 ng/µL \rightarrow 12.5 ng/µL \rightarrow 6.25 ng/µL \rightarrow 3.125 ng/µL \rightarrow 0 ng/µL

- □ 04 Calculate how much of the working solution you need for your samples. Don't forget to include the five standards.
 - \Box For **Qubit**, you need **200** µL total per sample or standard.
 - \Box For LightCycler, you need 50 μ L total per sample or standard.
- O5 Prepare the working solution QuantiFluor Dye 1:400 in 1× TE buffer.
 e.g. To measure 10 samples and 5 standards on LightCycler, you will need 15×50=750 μL total, meaning you need 2 μL of the QF Dye, 40 μL of TE and 758 μL of water.
- □ 06 Mix the working solution properly. Vortex and quick spin.
- □ 07 Combine the working solution and samples/standards.
 - For Qubit, you need 198 μL of working solution and 2 μL of sample/standard.
 You must use the optical grade 0.5 mL tubes.
 - For LightCycler, you need 48 μL working solution and 2 μL of sample/standard.
 You must use white plates or white strips and optical grade foils or caps.
- \Box 08 Vortex the samples. Do a quick spin.
- □ 09 Incubate at RT for **3 minutes**. Should be kept in dark.
- □ 10 Measure the samples and standards. Write down the relative fluorescence.
- \Box 11 Construct the calibration curve in Excel and calculate the concentration of samples.