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Epifluorescence microscopy
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Total internal reflection fluorescence mic. (TIRF)

Total internal reflection leads to emergence of an evanescent field
(with exponential decay of intensity):
=> reduces the excitation volume to a depth of ca. 100 nm
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TIRF is suitable for investigating phenomena close to the glass slide
=> e.g. cell membranes 3



Confocal microscopy
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Additional features of confocal microscopy

* improved contrast / multiphoton microscopy 5\ —
 optical sectioning (z stacks) >

« multiple fluorescence measurements $:

can be performed in individual points 4’1:.::
(e.g. spectra, lifetime, FRET, FCS)
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Fluorescence lifetime measurements (FLIM)
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Advantages:
- Extremely low optical background
- independent of fluorophore concentration 6



Analyzing protein-protein interactions by FRET
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FRET microscopy: Experimental setup
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Single-molecule FRET
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Single-molecule FRET in vivo

- Protein-protein interactions are investigated in their natural environment

- Fusion with fluorescent proteins (e.g. GFP) are used

- The location of the interaction can be determined (=> super-resolution microscopy)
- Real-time imaging

- Heterogeneous and dynamic biological processes can be observed

Requires dedicated equipment:

= Strong background reduction (autofluorescence): confocal microscopy or TIRF
— Sensitive cameras or avalanche photodiodes

= Reduction of photobleaching (GFP is not very photostable)
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Fluorescence correlation spectroscopy
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Fluorescence correlation spectroscopy
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low fluorophore concentration
(~0.1 nM =100 M)
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Fluorescence correlation spectroscopy

Fluorescence
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Each time when a fluorescent molecule
passes through the confocal volume,
there is a burst of light

13



Data analysis: autocorrelation

Signal F(1)

Describes how strongly two data
points with a given time lag
correlate
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Fluorescence correlation spectroscopy

Calculation of increments:

6F(t) = F(t) —(F(t))

Calculation of G(r) for the time series of the increments:

(OF(t) *6(t + 1))

G(T) =
D= Foy
- brackets: averaging over time
- F(1): fluorescence signal at time ¢
- OF(1): deviation of the fluorescence signal at time ¢

from the average fluorescence signal
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Fluorescence correlation spectroscopy
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Investigating the mobilitiy of biomolecules

Proinsulin C-peptide (with fluorescent label)
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Investigating the mobilitiy of biomolecules

tetramethylindocarbocyanine

(DIL) in cell membrane

fluorescent protein
(EGFP) in cytoplasm
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Investigating the mobilitiy & emission fluctuation

74. diffusion time through
confocal volume
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Interaction analysis

The size of a molecular complex changes the diffusion time
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Cross correlation spectroscopy

Interaction analysis with two
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Interaction analysis with two fluorophores
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Both binding partners carry a fluorescent label
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Interaction analysis with two fluorophores

Binding of calmodulin to CaM-dependent protein
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Cross-correlation spectroscopy: immunoassay

The size of a molecular complex changes the diffusion time
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Limitations of fluorescence microscopy

2. Diffraction limit of light:
The image resolution was defined by Ernst Abbe (1873):

= ca. 200 nm

Numerical apperture (NA)
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Near-field optical microscopy (NSOM)
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Near-field scanning optical microscopy (NSOM)

Diffraction only occurs in far-field imaging, where spherical wave-fronts
leaving the aperture can be regarded locally as plane waves

=> “Simple” solution: avoid diffraction in the first place

diffracted

. light
coming close

to the sampl
A
Usually metal coating
to avoid stray light <)
near field
Coating T
_ not diffraction limited
Core Tip
27

=> Near field illumination (evanescent field)



Near-field scanning optical microscopy (NSOM)

various operation modes — purely near-field or combining near-/far-field
excitation/emission or vice versa

INlumination Mode Collection-Illumination Mode
(I-mode) (CI-mode)

excitation source 1
(illumination)

fiber tip emission excitation
(collection) ™ ||« (illumination)

V fiber tip

emission
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Near-field scanning optical microscopy (NSOM)

Scanning approach
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Near-field scanning optical microscopy (NSOM)
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I-V

LOCK-IN

piezo control

K argon laser
= collimater
glass fiber

SNOM tip Not diffraction limited:
d = 30 nm

Surface of sample
. -“
"3

v

X . .
Combination: NSOM and

shear force feedback (tuning fork):
Topography und optical information

piezo control

A

| 30

PC




Near-field scanning optical microscopy (NSOM)

Detection of single fluorescent molecules

Near-field fluorescence image (4.5 mm by 4.5 mm) of single oxazine 720 molecules
dispersed on the surface of a poly(methylmethacrylate) film. Each subdiffraction peak
(full width at half maximum, 100 nm) comes from a single molecule (X. S. Xie, Acc.
Chem. Res. 29, 598 (1996)).
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Near-field scanning optical microscopy (NSOM)

Advantages:

» resolution ~ 20 nm in lateral (depending on tip size)
and ~ 2-5 nm in axial direction

» optical and topological information
Limitations:
» only applicable to surfaces

» tip may break in contact with specimen (scanning)

> far-field microscopy has many advantages
(except the diffraction limit)
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Far-field optical microscopy

=> Using freely propagating light waves

33



Optical resolution of light microscopy

Ernst Abbe: Diffraction of waves at a cleft

light '-
intensity ' ‘

central bright
strip
- | '
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Optical resolution of light microscopy

Rayleigh criterion: when are two objects visible as separate points

Light from a point
source (e.g. a
fluorophore) is

diffracted by the ==
inner rim of the
objective and forms
an Airy disc.

Airy [ Airy
disc pattern

*Corresponding intensity profile

The size of the Airy disc
depends on A and NA of
the objective:
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=> 2 points are
resolvable if the
maximum of one
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coincides with the
first minimum of
the next Airy
pattern.
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Optical resolution of light microscopy

Resolution Limit Imposed by Wave Nature of Light

Point Source Point Source «— ¢.g. a fluorescent molecule

red waves:
positive interference

green waves:
negative interference

10 Units 18 Units
Imaged Spot Size Imaged Spot Size
(High NA) (Low NA)
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Source Nikon: http://www.microscopyu.com



Optical resolution of light microscopy

Diffraction limited spot: Point spread function
Point spread function:

Max. axial und

x )
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(Far-field) microscopy beyond the diffraction limit

Nobel prizce for Chemistry in 2014

Stefan Hell William Moerner Eric Betzig

STED - Detection of single - Near field microscopy
fluorescent molecules - STORM
- switchable fluorophores
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Microscopy beyond the diffraction limit

Using non-linear optical processes

X
11A A) Single molecule localisation (2006)
e.g. STORM (STochastic Optical
Reconconstruction Microscopy)
05
0
X

B) Structured illumination (1994/1999)
z.B. STED (STimulated Emission Depletion)3°




STochastic Optical
Reconconstruction Microscopy

STORM

=> based on wide-field microscopy
(frequently in combination with TIRF)
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STORM microscopy

Single Molecule Tracking
&

Imaging (STORM)

=> Rather than using a highly diluted solution of fluorophores,
individual fluorophores are switched on/off in a sequential manner
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STORM microscopy

Conventional fluorescent microscopy

x
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Excite all fluorophores Individual localization information cannot be detected

STORM processing
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=> Maximum of the point spread function of a single fluor. molecule can be determined precisely
But: 1000-10.000 images required to put together a high-resolution image 42
=> Need for high computational power / appropriate ,switchable® fluorophores



STORM microscopy

Pointillism in
modern art
Target structure Localizing activated subset of probes Super-resolution image
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STORM microscopy

Imagng | Detarmine
center of

brighiness

Microtubule

Clathrin-

coated pit
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STORM microscopy: images

Wide-field image

>
;

Fibrobalast
in the kidney

Enlarged
section

Mikrotubule
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STORM microscopy

photoswitchable

Variation: PALM
fluorophores are (Photoactivated Localization Microscopy)

=> based on FP

required:

Photoswitchable Activator-Reporter Fluorophore Pairs for STORM Imaging
o \e

LA R AR ARAhANl Actvaton "N_g7 ‘__(—
Pulses ) 5
0 5 0 15 20 (b)-p; : k(—j-
,. Cy3 Cy5 et
P i

AALA N . @<
Cy3 Cyb5.5

Cy3 Cy7

Fluorescence Intensity

0 5 10 15 20
Time (Seconds

Figure 5

_%
\W\W‘ﬁ

Alexa Fluor
647 H

”in “iN

Switching on to fluorescent state by supporting dye (e.g. Cy3)
Switching off to dark state: spontaneously Switching on by UV-Licht

Switching off by photobleaching
Yield: 6000 photons per activated fluorescent molecule Yield: ~500 photons 46



STORM microscopy

Resolution:
2 points that can just be distinguished

by using STORM:
A

d:2nsin@

N: Number of photons emitted by a single
fluorophore molecule that can be detected

In praxis, resolution of 10 - 20 nm:
> factor 10!

Other factors are limiting:
e.g. antibodies have a diameter of 15 nm

Different sizes of molecules




STimulated Emission Depletion Microscopy

STED

=> is based on Confocal Microscopy
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STED microscopy

Light can interact with matter:

1. Absorption

2. Spontaneous emission 3. Stimulated emission

Si
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STED microscopy: instrumental setup

Detector Y,

STED &
B beam
%z
phase
modulation Piezo
Stage

EXC

beam

EXC und STED are pulsed lasers with defined timing of pulses
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STED microscopy: improved lateral resolution

Excitation spot Depletion spot Remaining spot
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STED microscopy: improved lateral resolution

Excitation spot STED spot

-200 0 200 -200 0 200
nm
Effective Effective
fluorescence spot fluorescence profile
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STED microscopy: improved lateral resolution
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STED microscopy: STED pulse intensity

Intensity profile
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STED microscopy: STED pulse intensity

Intensity profile
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STED microscopy: STED pulse intensity

STED

Intensity profile
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STED microscopy: STED pulse intensity

Intensity profile

Y



STED microscopy: STED pulse intensity
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STED microscopy: STED pulse intensity

Depletion power:
low medium high

A\ I

Size of effective fluorescing spot

AV~ A
D)
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I Intensity of the STED laser
ls: Required intensity to completely deplete the excited state

In praxis, resolution of < 10 nm




STED microscopy: scanning

Conventional CLSM
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STED microscopy: scanning

Conventional CLSM
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STED microscopy: scanning

STED-CLSM (low power STED)

62



STED microscopy: scanning

STED-CLSM (high power STED)
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STED microscopy: scanning

STED-CLSM

=> A higher resolution requires more scanning steps

64



STED microscopy: images

Histone distribution in
the nucleus

Hela cells,

blue: microtubular network
(Oregon Green);

red: Histone H3 (ATTO 647N)

higher magnification

 D—

Confocal

Dr. Brian Bennett, Lake Placid
Biochemicals, NY, USA
Secondary antibody from
LakePlacid Biochemicals
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STED microscopy: images

Confocal

Vero cells,
clear separation of fiber
# bundles

3.5 x higher magnification
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STED microscopy: images

Confocal

Titin in muscles

Isolated myofibrils from rats,
doublet (distance ~170 nm)
resolved with STED

Dr. Elisabeth Ehler, Kings College
London, England
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STED microscopy: images

Distribution of Fts-Z
protein in bacillus
subtilis.

L. Harry, P. Peters and
G. Cox University of Sydney,
Australia
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STED microscopy: images

Membrane domains

confocal

confocal

Analyis of the spatial distribution of syntax-
in STED STED within the basal plasma
membrane of PC12 cells. STED microscopy
allowed the py investigation of cluster den-
sity and the determination of average clus-
ter sizes of 50 — 60 nm. [Science, Sieber
JJ., 2007]
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Light Sheet Microscopy

=> based on wide-field microscopy

70



Light sheet microscopy

objective lens

axis of .
rotation

=> Separate light paths for
excitation and emission light
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Light sheet microscopy: planar illumination

Light Sheet lllumination
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=> Separate light paths for excitation and emission light



Light sheet microscopy: advantages

Intrinsic optical sectioning
=> only the focal plane is illuminated
=> avoids photobleaching outside the sheet

Fast image acquisition
=> Whole image taken in a single exposure

(no scanning required, but scanning techniques also exist)
=> more than 100 full images can be taken per second

(depending on camera)

Applicable to larger biological samples
=> 3-D imaging

=> small living organisms

=> embryo development
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Light sheet microscopy: images

A sea horse: detection of autofluorescence for imaging




Light sheet microscopy: images

Formation of lymph vessels in a mouse embryo

pink: progenitor cells
green: aorta

blue: vein
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Light sheet microscopy: video

Heartbeat of
zebrafish

red.

(1) red blood cells
(2) myocard
(heart muscle)

endocard
(inner lining of heart)
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Expansion Microscopy

=> Blows up sample before imaging
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Expansion microscopy
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Expansion

microscopy: images

Different types of microtubles

Position (um)
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Expansion + light sheet microscopy: images

Brain of fruit fly Drosophila:
Mapping of more than 40 million synapses in 62 hours

& Expansion

‘ »

—_——»

4x expanded
=> 60 nm resolution
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Gao et al. (2019) Science 363, 245



Expansion + light sheet microscopy: video

Labeling of neuronal cells in the brain




