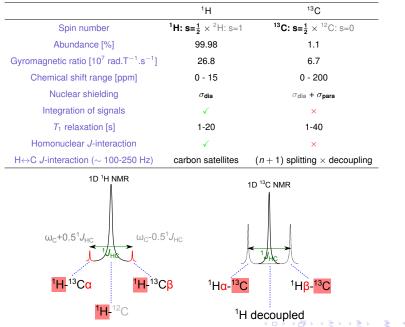
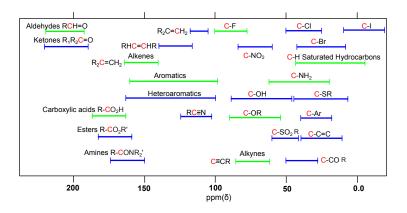
C8953 NMR structural analysis - seminar 1D ¹³C-NMR

Jan Novotny 176003@mail.muni.cz


February 28, 2024

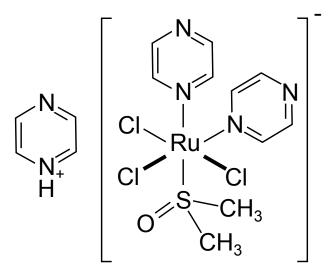
▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで


¹H vs ¹³C NMR

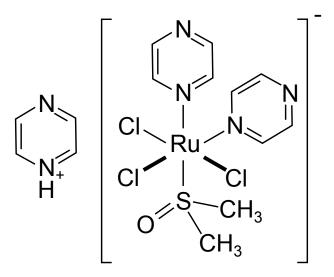
	¹ H	¹³ C
Spin number	¹ H: s= ¹ / ₂ × ² H: s=1	¹³ C: $s=\frac{1}{2} \times {}^{12}C$: $s=0$
Abundance [%]	99.98	1.1
Gyromagnetic ratio [10 ⁷ rad.T ⁻¹ .s ⁻¹]	26.8	6.7
Chemical shift range [ppm]	0 - 15	0 - 200
Nuclear shielding	$\sigma_{\sf dia}$	$\sigma_{\sf dia}$ + $\sigma_{\sf para}$
Integration of signals	\checkmark	×
T_1 relaxation [s]	1-20	1-40
Homonuclear J-interaction	\checkmark	×
H \leftrightarrow C J-interaction (\sim 100-250 Hz)	carbon satellites	(n+1) splitting $ imes$ decoupling
σ_{DIA} σ_{PARA} σ_{PARA} σ_{PARA} σ_{PARA} σ_{PARA} σ_{PARA} σ_{PARA}		

¹H vs ¹³C NMR

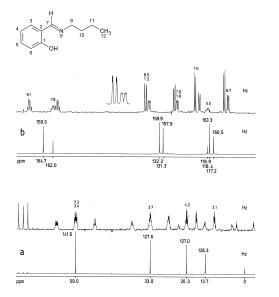
Important regions of ¹³C chemical shifts


 ${}^{1}J_{CH}$ depends on the bond order (hybridization \Leftrightarrow *s*-character)

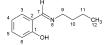
- -C-H ¹J_{CH} ≈ 125 Hz
 =C-H ¹J_{CH} ≈ 160 Hz
 ≡C-H ¹J_{CH} ≈ 250 Hz
 X-C-H
 X = N, O, S, F, CI, ... ¹J_{CH} ↑
 - ► X = Li, Mg, \dots ¹ $J_{CH} \Downarrow$
- $^{2}J_{CH}$ < 0 or close to zero (<3 Hz)
 - often not observable

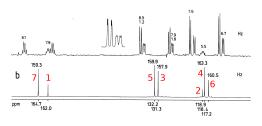

in 1D ¹³C H-C interaction suppressed by DECOUPLING \Rightarrow simplification of spectra (splitting removed, sensitivity)

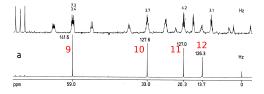
saturation of ¹H energy levels during decoupling enhances relatively intensity of ¹³C signals because of heteronuclear nOe ⇒ quaternary carbons usually less intensive.


How many ¹³C signal would you expect in the NMR spectrum?

How many ¹³C signal would you expect in the NMR spectrum? **6**

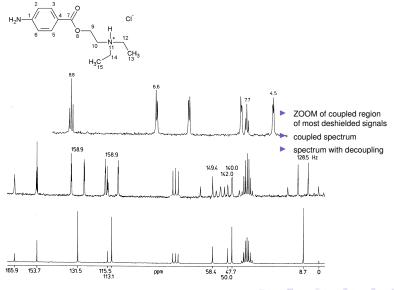



1D ¹³C-NMR 1, bottom without CPD



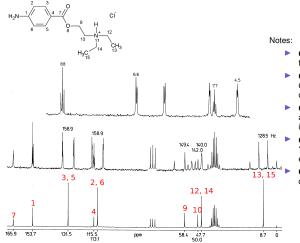
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣・のへで

1D ¹³C-NMR 1, bottom without CPD


Notes:

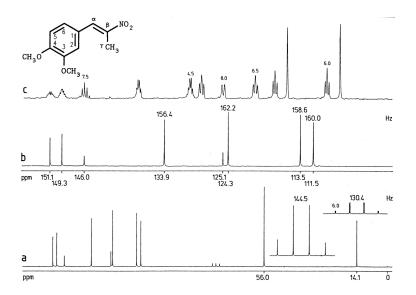
- numbers at top of peaks refers to values J_{HC} constants
- C1+C7 connected to electronegative groups (C1 quaternary)
- C2 ipso aromatic, C4+C6 shielded by M+ of OH
- C5+C4 NOE-enhanced in bit larger extend by close H
- C9→C12: decaying effect of N8

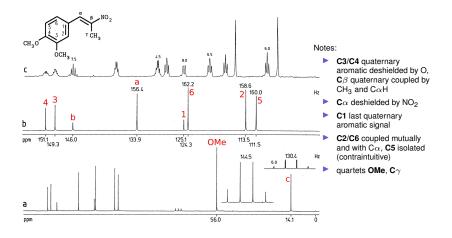
ъ


・ロット (雪) (日) (日)

1D ¹³C-NMR 2

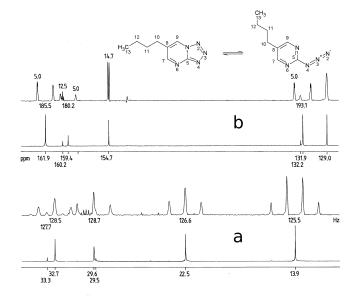
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ(で)


1D ¹³C-NMR 2


- C7 carbonyl, C1 attached to N
- C3/5 deshielded by M-CO, C2/6 shielded by M+ of NH₂
- C4 last quaternary aromatic signal (most isolated from H nuclei)
- C9 effect of esteric group,
 C10 affected by NH exchange

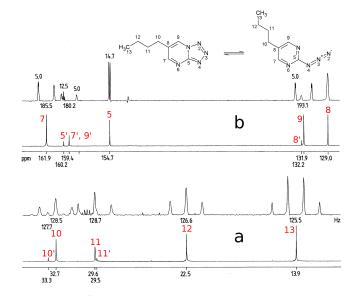
C12/C14 + C13/C15 decaying effect of N+

1D ¹³C-NMR 3, *b* - zoom of right region, *a* - full decoupled spectrum



1D ¹³C-NMR 3, *b* - zoom of right region, *a* - full decoupled spectrum

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●


1D ¹³C-NMR 4, consider equilibrium minor-major form

Which form dominates and why?

▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三理 - 釣A@

1D ¹³C-NMR 4, consider equilibrium minor-major form

Which form dominates and why?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Next topic

Vector Model + ¹³C APT experiment

