C8953 NMR strukturní analýza seminář NOESY

Jan Novotný 176003@is.muni.cz

March 29, 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

TOCSY (TOtal Correlation SpectroscopY)

spin lock - isotropic mixing

- series of short 180° pulses
- "lock-in" of spins in transversal plane
- higher power in case of TOCSY, offset set into the middle (on resonance)
- smaller power in case of ROESY, offset set into the edge (off resonance)
- crosstalk (ROE transfer in TOCSY, *J*-coupling in ROESY)

イロト 不得 トイヨト イヨト

-

TOCSY (TOtal Correlation SpectroscopY)

correlation based on J

mutual correlation of all protons in one spin system

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- *τ_{mix}* ≈ 20 120ms
- crosspeak intensity depends on \(\tau_{mix}\) and \(J\) value

 $\mathsf{H}_{A} \xleftarrow{J_{AB}} \mathsf{H}_{B} \xleftarrow{J_{BC}} \mathsf{H}_{C} \xleftarrow{J_{CD}} \mathsf{H}_{D}$

NAD⁺: TOCSY (40ms)

| ◆ □ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三 ● ○ ○ ○ ○

NAD+: TOCSY (40ms), detail of aromatics

NAD+: DQF-COSY, detail of aromatics

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 の々で

NAD⁺: TOCSY (40ms), detail of aromatics

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 のへで

NAD+: TOCSY (40ms), detail of aliphatics

▲ロ▶▲舂▶▲巻▶▲巻▶ 一巻 - 釣A(で)

NAD+: TOCSY (40ms), detail of aliphatics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 「臣」のへ(?)

NOESY - introduction

Nuclear Overhauser effect

- dipol-dipol interaction
- magnetisation transfer TROUGH SPACE as a consequence of cross-relaxation

NOESY

 correlates nuclei if their distance is smaller than 5 Å

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

NOE vs. size of a molecule

NOE enhancement $\frac{M_l^S - M_{0l}}{M_{0l}} \approx \frac{\sigma_{IS}}{\rho_l} = \frac{W_2 - W_0}{W_0 + 2W_1 + W_2}$, where M_l^S is magnetisation of I perturbed by saturation of S

Correlation time $\tau_{\rm c}$

- ω₀τ_c < 1 ⇔ ω₀ ¹/_f < 1 ⇔ ω₀ < f (small molecules ≪ 1 kDa)

 - fast molecular motion, ββ → αα dominates ⇒ W₂ > W₀
 - positive NOE
 - crosspeaks have opposite phase relative to diagonal
- $\omega_0 \tau_c > 1$ (large molecules $\gg 1$ kDa)
 - Slow molecular motion, αβ → βα dominates ⇒ W₀ > W₂
 - negative NOE
 - crosspeaks have the same phase
- $\omega_0 \tau_c \approx 1 \text{ (cca 1 kDa)}$
 - NOE≈0 no crosspeaks
 - ROESY is an alternative

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Application of NOESY

Mixing time $\tau_{\rm mix}$

- \blacktriangleright small molecules $au_{
 m mix} pprox 500 800\,
 m ms$
- biomolecules $\tau_{\rm mix} \approx 50-300\,{\rm ms}$

approximative determination of interatomic distatces (< 5 Å)

- ► at short \(\tau_{mix}\)
- ► r_{ij}≈A×I_{ij}

NOE differential experiment

PROBLEM 4

NOE-Difference Spectroscopy

Figure 4.1 shows the ¹H NMR and a ¹H NOE difference spectrum of a 3-indolylacetic acid derivative 13 bearing a methoxy group at the benzenoic ring.

What is the position of the methoxy group?

(400 MHz 1H)

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

= 900

Fig. 4.1. 400 MHz $^{1}\rm H$ NMR spectrum of 13 in a mixture of CDCl₃ and CD₃OD. a Full spectrum; b expanded section of the aromatic proton signals; c $^{1}\rm H$ NOE difference spectrum, same section as in b, irradiation position at δ = 3.64.

NOE differential experiment

PROBLEM 4

NOE-Difference Spectroscopy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへ(?)

NOESY - Palmatine

▲母▶▲臣▶▲臣▶ 臣 のへで

NOESY - Palmatine

Eserine ¹H

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

NOESY - Eserine in DMSO

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 の々で

NOESY - Eserine in DMSO

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

NOESY - Eserine

NOESY - Eserine

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 の々で

Colchicine - DQF-COSY

 $\mathcal{O} \land \mathcal{O}$

Colchicine - DQF-COSY

900

Colchicine - NOESY

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ(?)

Colchicine - NOESY

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Next session:

Heteronuclear correlations

