1. Upload the "mortality_data_ver2.csv" data set.

2. Build the plot to look at the relationship between numerical variables.

What will be the dependent variable (outcome), what will be the independent variable (predictor)?

3. Perform multiple linear regression analysis with three independent variables (predictors).

Draw the best-fit regression line between the numerical variables.

4. Check the main assumptions of the model, use the four main plots for checking:

Plot 1.Linearity of the data, independence of residuals

Plot 2.Normality of residuals using Q-Q plot

Plot 3.Constant variance of residuals

Plot 4. No influential outliers

5. The assumption "Normality of residuals" is already checked, normally distributed.

6. After checking all the assumptions, what conclusion can you make? Are they met?

Yes.

7. Obtain parameters of the regression (α , β 1, β 2, β 3); check significance. Fill it in the check list.

8. Obtain criteria for the model evaluation (Adjusted R-squared, RSE, the 95% confidence intervals). Fill it in the check list.

9. Fill up the check list.

Check list	Model
Assumptions after Linear regression:	
Plot 1: Linearity of the data, independence of residuals	
Plot 2: Normality of residuals +histogram + normality tests	Met
Zero mean of residuals	Met
Plot 3: Constant variance of residuals Plot 4: No influential outliers	
Results interpretation and model evaluation:	
Parameters of the regression: - intercept (α) - β1, β2, β3	
Significance of β 1, β 2, β 3 and the model	
Build the multiple regression formula	
Criteria for the model evaluation: Adjusted R ² ; RSE; 95% CI	
Calculate mortality of a 70 y.o. smoking man.	
Calculate mortality of 10 y.o. non-smoking girl.	
Calculate mortality of 30 y.o. non-smoking man.	
Calculate mortality of 17 y.o. smoking girl.	

Check list	Model
Assumptions after Linear regression:	
Plot 1: Linearity of the data, independence of residuals	Met
Plot 2: Normality of residuals +histogram + normality tests	Met
Zero mean of residuals	Met
Plot 3: Constant variance of residuals	Met
Plot 4: No influential outliers	Met
Results interpretation and model evaluation:	
Parameters of the regression: - intercept (α) - β1, β2, β3	α= 50.21, β1= 0.20, β2= 9.85, β3= 4.78
Significance of β 1, β 2, β 3 and the model	All p-values <0.001
Build the multiple regression formula	Y(mortality)=50.21+0.20*Age+9.85*Smoker+4.78*Gender
Criteria for the model evaluation: Adjusted R ² ; RSE; 95% Cl	R ² _{adj.} = 0.63, RSE=5.01, 95% CI: β1 [0.18; 0.22], β2[9.23; 10.47], β3[4.16; 5.40]
Calculate mortality of a 70 y.o. smoking man.	Y(mortality)=50.21+0.20*70+9.85*1+4.78*1=78.84
Calculate mortality of 10 y.o. non-smoking girl.	Y(mortality)=50.21+0.20*10+9.85*0+4.78*0=52.21
Calculate mortality of 30 y.o. non-smoking man.	Y(mortality)=50.21+0.20*30+9.85*0+4.78*1=60.99
Calculate mortality of 17 y.o. smoking girl.	Y(mortality)=50.21+0.20*17+9.85*1+4.78*0=63.46