E0410 Fundamentals of Statistics for Scientific Data Using R

by Daria Sapunova, PhD student, RECETOX

daria.sapunova@recetox.muni.cz

Bohunice, D29, room 123

Theoretical part

We are approaching the end of the course

Date	Content
25/04	Correlation
02/05	Linear regression
09/05	Linear + multiple regression
16/05	Dean's holiday
23/05	Wrap up or linear regression if we didn't cover it up, questions

Final assignment

Working on a dataset provided by a student or the teacher.

The results should be presented as a **pdf file** consisting of:

Context	Words
a title	-
a short introduction regarding the topic with references	approx. 200 words
data description	approx. 100 words
statistical method description	approx. 200 words
results with data visualization and interpretation of the results	approx. 200 words
a short conclusion	approx. 100 words
Appendix with the R script	_

Final assignment

- ✓ The examination period is from 27.05.24 to 04.07.24
- ✓ Please, upload pdf files with your assignment till 01.07.24 included
- The instruction with the example will be uploaded
 18.05.-19.05.24, prepare your questions by 23.05. if
 you will have any
- ✓ The generated data will be sent 18.05.-19.05.24

Who needs data?

✓ Till 03.05.24 included fill up the table

Study materials -> Learning materials -> Final Assignment -> data_generate.xlsx

~	NAME -	POSTED BY	UPLOA	RIGHTS
Ł	Final Assignment final_assignment /3	Sapunova, D.	Today	•°°
	Instructions instructions /0	Sapunova, D.	Today	•°°
\bigcirc	Assignments assignments /0	Sapunova, D.	Today	•°°
\bigcirc	X data_generate.xlsx	Sapunova, D.	Today	•°°

Check list

Deadline	Action
03/05	Fill up data_generate.xlsx
18/05-19/05	The instruction with the example and the generated data will be uploaded by the teacher
23/05	Questions regarding the instruction and data
01/07	Upload the final assignment

If you have questions - <u>daria.sapunova@recetox.muni.cz</u>

Repetition

Parametric and non-parametric: association between two numerical variables

We have: two numerical continuous variables

is a measure of **the strength** of the **linear association**, and it **indicates the direction of the linear association**.

✓ Strength correlation coefficient (r/ρ) from -1 to 1

✓ **Direction** Positive or negative

✓ **Direction** Positive or negative

✓ Strength (r) from -1 to 1

✓ Direction

Positive or negative

✓ Strength(r) from -1 to 1

Correlation Coefficient (r)	Description (Rough Guideline)
+1.0	Perfect positive + association
+0.8 to 1.0	Very strong + association
+0.6 to 0.8	Strong + association
+0.4 to 0.6	Moderate + association
+0.2 to 0.4	Weak + association
0.0 to +0.2	Verv weak + or no association
0.0 to -0.2	Very weak - or no association
-0.2 to – 0.4	Weak - association
-0.4 to -0.6	Moderate - association
-0.6 to -0.8	Strong - association
-0.8 to -1.0	Very strong - association
-1.0	Perfect negative association

https://sphweb.bumc.bu.edu/otlt/MPH-Modules/PH717-QuantCore/PH717-Module9-Correlation-Regression/PH717-

✓ **Direction** Positive or negative

✓ **Strength** (r) from -1 to 1

CORRELATION IS NOT CAUSATION!

Both ice cream sales and shark attacks increase when the weather is hot and sunny, but they are not caused by each other (they are caused by good weather, with lots of people at the beach, both eating ice cream and having a swim in the sea)

https://www.simplypsychology.org/correlation.html

is a measure of the strength of the linear association

https://www.coursera.org/learn/linear-regression-r-public-health

Parametric and non-parametric: association between two numerical variables

We have: two numerical continuous variables

Parametric Nonparametric ✓ Pearson correlation ✓ Spearman correlation

! extremely sensitive to sample size, approx.< 30

Nonparametric

✓ Pearson correlation

✓ Spearman correlation

Assumptions: The observations within each group **must be independent** of each other. Linearity Monotonic relationship between the two variables

Normal distribution

Monotonic relationship between the two variables

Monotonicity means that as the value of **one variable increases**, the value of the **other variable either consistently increases or consistently decreases** (but not necessarily at a constant rate). This assumption means that the relationship between the variables **doesn't have to be strictly linear.**

https://www.coursera.org/learn/linear-regression-r-public-health

Task!

Practical part