1)

We can, in fact, write four processes, where one produces an atom, another produces a radical and the others both produce molecules. These can be represented as follows:

2)

- (a) m/z 46 (molecular ion)
 - (b) m/z 31 (base peak)

(c)
$$CH_3CH_2OH^{+\bullet} \longrightarrow CH_2OH^+ + CH_3^{\bullet}$$

The base peak has the same formula as that in the methanol spectrum. It is formed by C—C bond cleavage in the case of ethanol.

(d) In methanol, m/z 29 was formulated as CHO+, which arose from the fragmentation:

$$CH_2OH^+ \longrightarrow CHO^+ + H_2$$

This may also happen with ethanol, but the m/z 29 ion may also be formulated as $C_2H_2^{\ddagger}$, which may be formed from the fragmentation:

$$C_2H_5OH^{+\bullet} \longrightarrow C_2H_5^+ + OH^{\bullet}$$

This second process is analogous to:

$$CH_3OH^{+\bullet} \longrightarrow CH_3^+ + OH^{\bullet}$$

in methanol.

(e) The steps are the loss of a hydrogen atom from the molecular ion (m/z 46) to give m/z 45, followed by further loss of a hydrogen molecule from m/z 45 to give m/z 43.

This can be represented as

$$CH_3CH_2OH^{+\bullet} \longrightarrow CH_3CHOH^+ + H^{\bullet}$$

$$CH_3CO^+ + H_2$$

The fragmentations exactly parallel those of methanol.

(f) m/z 18 is $H_2O^{+\bullet}$, i.e.

$$C_2H_5OH^{+\bullet} \longrightarrow H_2O^{+\bullet} + C_2H_4$$

(g) The fragmentation pattern is as follows:

