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There is nothing more practical than a good theory.
Kurt Lewin (1890–1947)
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Computing environments for the course:

Python 3, https://www.python.org - with NumPy and SciPy packages

recommended: JupyterLab for exercises

suggestion: install Python and related packages using a distribution
like Anaconda or Mamba for easier integration of dependencies

R, http://www.r-project.org - "environment for statistical computing
and graphics"

WARNING: Some pieces of code shown during the course may not
represent the optimal implementation in the given language. They are
merely a device for demonstrating some principles.
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Scientific computing

Wikipedia:
"Computational science (also scientific computing or scientific
computation) is concerned with constructing mathematical models and
quantitative analysis techniques and using computers to analyze and solve
scientific problems."

Basically: find numerical solutions to mathematically-formulated problems.
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(J. Hadamard) A problem is well posed if its solution

exists

is unique

has a behavior that changes continuously with the initial conditions;

otherwise, it is ill posed.
Inverse problems are often ill posed.
Example: 3D to 2D projection.
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continuous domain→ discrete domain

well-posed but ill-conditioned problems: small errors in input lead to
large variations in the solution

improve conditioning by regularization
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General computational approach

continuous domain→ discrete domain

infinite→ finite

differential→ algebraic

nonlinear→ (combination of) linear

accept approximate solutions, but control for the error
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Approximations

Modeling approximations:
▶ "model" = approximation of the nature
▶ data - inexact measurements or previous results

Implementation/computational approximations:
▶ discretization of the continuous domain; truncation
▶ rounding

errors in input data

errors propagated by the algorithm

accuracy of the final result
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Example: area of the Earth

model: sphere

A = 4πr2

r =?

π = 3.14159 . . .

rounded arithmetic
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Errors

Absolute error: approximate value (x̂) - true value (x)

Relative error:
absolute error

true value
→ approximate value = (1 + relative error) × (true value)

if the relative error is ∼ 10−d , it means that x̂ has about d exact digits:
there exists τ = ±(0.0 . . . 0nd+1nd+2 . . . ) such that x̂ = x + τ

true value is usually not known→ use estimates or bounds on the
error

relative error can be taken relative to the approximate value
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Example/exercise - Homework!
Stirling’s approximation for factorials:

Sn =
√

2πn
(n
e

)n
≈ n!, n = 1, 2, . . .

where e = exp(1).
Relative error (Sn − n!)/n!:
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Errors: data and computational

compute f(x) for f : R→ R
▶ x ∈ R is the true value
▶ f(x) true/desired result
▶ x̂ approximate input
▶ f̂ approximate result

total error:

f̂(x̂) − f(x) = (̂f(x̂) − f(x̂)) + (f(x̂) − f(x))

= computational error + propagated data error

the algorithm has no effect on propagated error
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Computational error

is sum of:

truncation error = (true result) - (result of the algorithm using exact
arithmetic)
Example: considering only the first terms of an infinite Taylor series;
stopping before convergence

rounding error = (result of the algorithm using exact arithmetic) -
(result of the algorithm using limited precision arithmetic)
Example: π ≈ 3.14 or π ≈ 3.141593
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Finite difference approximation

f ′(x) = lim
h→0

f(x + h) − f(x)
h

≈
f(x + h) − f(x)

h
, for some small h > 0

truncation error: f ′(x) − f(x+h)−f(x)
h ≤ Mh/2 where |f ′′(t)| ≤ M for t in a

small neighborhood of x (HOMEWORK)

rounding error: 2ϵ/h, for ϵ being the precision

total error is minimized for h ≈ 2
√
ϵ/M
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Figure: Total computational error as a tradeoff between truncation and rounding
error (from Heath - Scientific computing)
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Error analysis

For y = f(x), for f : R→ R an approximate ŷ result is obtained.

forward error: ∆y = ŷ − y

backward error: ∆x = x̂ − x, for f(x̂) = ŷ

x f //
OO

backward error
��

f̂

��

yOO
forward error
��

= f(x)

x̂ f // ŷ = f̂(x) = f(x̂)
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Compute f(x) = ex for x = 1. Use the first 4 terms from Taylor expansion:

f̂(x) = 1 + x +
x2

2
+

x3

6

take "true" value: f(x) = 2.716262 and compute f̂(x) = 2.666667,
then

forward error: |∆y | = 0.051615, or a relative f. error of about 2%

backward error: x̂ = ln f̂(x) = 0.989829⇒ |∆x | = 0.019171, or a
relative b. error of 2%

these are two perspectives on assessing the accuracy
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Exercise

Consider the general Taylor series with limit e:

∞∑
n=0

1
n!

= e

How many terms are needed for an approximation of e to three decimal
places?
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Backward error analysis

idea: approximate result is the exact solution of a modified problem

how far from the original problem is the modified version?

how much error in the input data would explain all the error in the
result?

an approximate solution is good if it is an exact solution for a nearby
problem

backward analysis is usually easier
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Sensitivity and conditioning

insensitive (well-conditioned) problem: relative changes in input data
causes similar relative change in the result

large changes in solution for small changes in input data indicate a
sensitive (ill-conditioned) problem;

condition number:

cond =
absolute relative change in solution

absolute relative change in input
=
|∆y/y |
|∆x/x |

if cond >> 1 the problem is sensitive
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condition number is a scale factor for the error:
relative forward err = cond × relative backward err

usually, only upper bounds of the cond. number can be estimated,
cond ≤ C , hence

relative forward err ≤ C × relative backward err
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x̂ = x +∆x

forward error: f(x +∆x) − f(x) ≈ f ′(x)∆x, for small enough ∆x

relative forward error: ≈ f ′(x)∆x
f(x)

⇒ cond ≈
∣∣∣∣ xf ′(x)

f(x)

∣∣∣∣

Example: tangent function is sensitive in neighborhood of π/2

tan(1.57079) ≈ 1.58058 × 105; tan(1.57078) ≈ 6.12490 × 104

for x = 1.57079, cond ≈ 2.48275 × 105
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Stability

an algorithm is stable if is relatively insensitive to perturbations during
computation

stability of algorithms is analogous to conditioning of problems

backward analysis: an algorithm is stable if the result produced is the
exact solution of a nearby problem

stable algorithm: the effect of computational error is no worse than
the effect of small error in input data
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Accuracy

accuracy: closeness of the result to the true solution of the problem

depends on the conditioning of the problem AND on the stability of
the algorithm

stable algorithm + well-conditioned problem = accurate results
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CPUs
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Number representation

internally, all data are represented in binary format (each digit can be
either 0 or 1, e.g. 1011001...)

bit, nybble, byte

word→ specific to architecture: 1, 2, 4, or 8 bytes
integers:

▶ unsigned (≥ 0): on n bits: 0, . . . , 2n − 1. The stored representation (for
1 byte) is b7b6b5b4b3b2b1b0 for a value x =

∑7
i=0 bi2i .

▶ signed: 1 bit for sign, rest for the absolute value;
−2n−1, . . . , 0, . . . , 2n−1 − 1. The stored representation (for 1 byte) is
b7b6b5b4b3b2b1b0 for a value x = b7(−27) +

∑6
i=0 bi2i .
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Floating-point numbers

like in scientific notation: mantissa × radixexponent, e.g. 2.35 × 103

formally

x = ±

(
b0 +

b1

β
+

b2

β2
+ · · ·+

bp−1

βp−1

)
× βE

where
β is the radix (or base)
p is the precision
L ≤ E ≤ U are the limits of the exponent
0 ≤ bk ≤ β

mantissa: m = b0b1 . . . bp−1; fraction: b1b2 . . . bp−1

the sign, mantissa and exponent are stored in fixed-sized fields (the
radix is implicit for a given system, β = 2 usually)
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Normalization:

b0 , 0 for all x , 0

mantissa m satisfies 1 ≤ m < β

ensures unique representation, optimal use of available bits

Internal representation (on 64 bits - "double precision", binary
representation):

x = sign | exponent | fraction = b63 b62 . . . b52 b51 . . . b0
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Properties:

only a finite number of discrete values can be represented

total number of floating point numbers representable in normalized
format is

2(β − 1)βp−1(U − L + 1) + 1

undeflow level (smallest number): UFL = βL

overflow level (largest number): OFL = βU+1(1 − β−p)

not all real numbers can be represented exactly:
▶ machine numbers
▶ rounding→ rounding error
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Example: let β = 2, p = 3, L = −1,U = 1, there are 25 distinct numbers
that can be represented:

UFL = 0.510;OFL = 3.510

note the non-uniform coverage

∀x ∈ R, fl(x) is the floating point representation; x − fl(x) is the
rounding error
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Rounding rules

chop = round toward zero: truncate the base−β representation after
p − 1st digit

round to nearest: fl(x) is the closest machine number to x
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Machine precision

machine precision, ϵmach
▶ with chopping: ϵmach = β1−p

▶ with rounding to nearest: ϵmach = 1
2β

1−p

called also unit roundoff: the smallest number ϵ such that fl(1+ ϵ) > 1

maximum relative error of representation∣∣∣∣∣∣fl(x) − x
x

∣∣∣∣∣∣ ≤ ϵmach

usually 0 < UFL < ϵmach < OFL
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Machine precision - example

For β = 2, p = 3, L = −1,U = 1,

ϵmach = (0.01)2 = (0.25)10 with chopping

ϵmach = (0.001)2 = (0.125)10 with rounding to nearest

The usual case (IEEE fp systems):

ϵmach = 2−24 ≈ 10−7 in single precision

ϵmach = 2−53 ≈ 10−16 in double precision

→ about 7 and 16 decimals of precision, respectively

(in R: p-value < 2.2e − 16)
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Gradual underflow

to improve representation of numbers around 0 - use subnormal (or
denormalized) numbers

when exponent is at minimum, alow leading digits to be 0

subnormals are less precise

→ gradual underflow
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Special values

IEEE standard:

Inf: infinity; the result of 1/0

NaN: the result of 0/0 or Inf/Inf

special representation of the exponent field
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Floating-point arithmetic

addition/subtraction: denormalization might be required:
3.52 × 103 + 1.97 × 105 = 0.0352 × 105 + 1.97 × 105 = 2.0052 × 105

→ might cause loss of some digits

multiplication/division: the result may not be representable

overflow is more serious than underflow: how to approximate large
numbers?

for underflow, the result may be approximated by 0

in FP arithm. addition and multiplication are commutative but not
associative: if ϵ is slightly smaller than ϵmach, then (1 + ϵ) + ϵ = 1, but
1 + (ϵ + ϵ) > 1

ideally, x flop y = fl(x op y); IEEE standard ensures this for within
range results
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Example: divergent series
∞∑

n=1

1
n

in FP arithm, the sum of the series is finite;
depending on the system, this is because:

▶ after a while, the sum overflows
▶ 1/n underflows
▶ for all n such that

1
n
< ϵmach

n−1∑
k=1

1
k

the sum does not change anymore
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Cancellation

subtracting 2 numbers of the same magnitude usually cancels the
most significant digits:
1.92403 × 102 − 1.92275 × 102 = 1.28000 × 10−1 → only 3 significant
digits

let ϵ > 0 be slightly smaller than ϵmach, then (1 + ϵ) − (1 − ϵ) yields 0
in FP arithmetic, instead of 2ϵ.
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Cancellation - example

For the quadratic equation, ax2 + bx + c = 0, the two solutions are given
by

x1,2 =
−b ±

√
b2 − 4ac

2a
Problems:

for very large/small coefficients, the terms b2 or 4ac may
over-/underflow→ rescale coeficients by max{a, b , c}.

cancellation between −b and
√
· can be avoided by computing one

root using x = 2c
−b∓

√
b2−4ac

Exercise: let x1 = 2000, x2 = 0.05 be the roots of a quadratic equation.
Compute the coefficients and then use the above formulas to retrieve the
roots. Try numpy.roots() function in Python.
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Cancellation - another example
P(X) = (X − 1)6 = X6 − 6X5 + 15X4 − 20X3 + 15X2 − 6X + 1.What
happens around X = 1?

import matplotlib.pyplot as plt
import numpy as np

epsilon = [0.01, 0.005, 0.001]
for k in range(3):

x = np.linspace(1 - epsilon[k], 1 + epsilon[k], 100)
px = x**6 - 6*x**5 + 15*x**4 - 20*x**3 + 15*x**2 - 6*x + 1
px0 = (x - 1)**6
plt.subplot(2, 3, k+1)
plt.plot(x, px, ’-b’, x, np.zeros(100), ’-r’)
plt.axis([1 - epsilon[k], 1 + epsilon[k], -max(abs(px)),

max(abs(px))])
plt.subplot(2, 3, k+4)
plt.plot(x, px0, ’-b’, x, np.zeros(100), ’-r’)
plt.axis([1 - epsilon[k], 1 + epsilon[k], -max(abs(px0)),

max(abs(px0))])

plt.show()
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...mathematically equivalent, but numerically different...
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(very small) Project
Study the paper
Moler, C., Morisson, D., Replacing square roots by Pythagorean sums.
IBM J. Res. Develop. 27(6), 1983
Then, implement the proposed method and compare it with the naive
sqrt()-based approach.
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In Python...

basic (and not only) numerical functions are in numpy package
ϵmach is returned by

▶ single precision: np.finfo(np.float32).eps gives
1.1920929e − 07 = 2−23

▶ double precision: np.finfo(np.float64).eps gives
2.220446049250313e − 16 = 2−52

to obtain the smallest or largest single/double precision numbers, use
np.finfo(np.float32).min, np.finfo(np.float32).max, np.
finfo(np.float64).min, np.finfo(np.float64).max

you have the special constants np.Inf and np.NaN
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Questions?
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