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The systems of linear equations

General form:
Ax = b

a11 . . . a1n
. . .

am1 . . . amn



x1
...

xn

 =


b1
...

bm


if m < n: underdetermined case; find a minimum-norm solution

if m > n: overdetermined case; minimize the squared error

if m = n: determined case; already discussed
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Reminder

two vectors y, z are orthogonal if yT z = 0

the span of a set of n independent vectors is span({v1, . . . , vn}) ={∑n
i=1 αivi | αi ∈ R

}
the row (column) space of a matrix A is the linear subspace
generated (or spanned) by the rows (colums) of A. Its dimension is
equal to rank(A) ≤ min(m, n).

by definition, span(A) is the column space of A and can be written as

C(A) = {v ∈ Rm : v = Ax, x ∈ Rn},

so it is the space of transformed vectors by the action of multiplication
by the matrix.
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Underdetermined case

m < n there are more variables than equations, hence the solution is
not unique

consider the rows to be linearly independent

then, any n-dimensional vector x ∈ Rn can be decomposed into

x = x+ + x−

where x+ is in the row space of A and x− is in the null space of A
(orthogonal to the previous space):

x+ = ATα Ax− = 0
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this leads to

A(x+ + x−) = AATα+ Ax− = AATα = b

AAT is a m ×m nonsingular matrix, so AATα = b has a unique
solution α0 = (AAT )−1b

the corresponding minimal norm solution to original system is

x+
0 = AT (AAT )−1b

note, however, that the orthogonal component x− remains unspecified

the matrix AT (AAT )−1 is called the right pseudo-inverse of A (right:
A · AT (AAT )−1 = I)

Python: scipy.linalg.pinv() or numpy.linalg.pinv()
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Example: let A = [1 2] and b = [3] (hence m = 1).

solution space:

x2 = −
1
2

x1 +
3
2

is a solution, for any x1 ∈ R.

x+ = ATα =

[
1
2

]
α (row space)

Ax− = 0⇒ [1 2][x−1 x−2 ]
T = 0.

⇒ x−2 = −1
2x−1 (null space)

The minimal norm solution is the intersection of solution space with the
row space and is the closest vector to the origin, among all vectors in the
solution space:

x+
0 = [0.6 1.2]T
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Overdetermined case

if the rows of A are independent, there is no perfect solution to the
system (b < span(A))

one needs some other criterion to call a solution acceptable

least squares solution x0 minimizes the square Euclidean norm of the
residual vector:

x0 = argmin
x
∥r∥22 = argmin

x
∥b − Ax∥22
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Solution to the LS problem

From a linear system problem, we arrived at solving an optimization
problem with objective function

J =
1
2
∥b − Ax∥22 =

1
2
(b − Ax)T (b − Ax)

Set the derivative wrt x to zero:

∂

∂x
J = AT b − AT Ax = 0

which leads to normal equations AT Ax = AT b, with the solution

x0 = (AT A)−1AT b

A† = (AT A)−1AT is the left pseudo-inverse of A.
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Solution to the LS problem - geometric interpretation

let y = Ax, where x is the LS solution

the residual r = b − y is orthogonal to span(A),
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LS data approximation

Model: y = c3x2 + c2x + c1. Problem: ci =? when (xi , yi) are given.
See Example 1 in Jupyter notebook.
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Condition number

if rank(A) = n (columns are independent), the condition number is

cond(A) = ∥A∥2∥A†∥2

by convention, if rank(A) < n, cond(A) = ∞

for non-square matrices, the condition number measures the
closeness to rank deficiency
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Numerical methods for LS problem

the LS solution can be obtained using the pseudo-inverse
A† = (AT A)−1AT or by solving the normal equations

AT Ax = AT b

which is a system of n equations

AT A is symmetric positive definite, so it admits a Cholesky
decomposition,

AT A = LLT
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Issues with normal equations method

floating-point computations in AT A and AT b may lead to information
loss

sensitivity of the solution is worsen, since cond(AT A) = [cond(A)]2

Example:

Let A =

1 1
ϵ 0
0 ϵ

 with ϵ ∈ R+ and ϵ <
√
ϵmach. Then, in floating-point

arithmetic, AT A =

[
1 + ϵ2 1

1 1 + ϵ2

]
=

[
1 1
1 1

]
which is singular!
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Augmented systems

idea: find the solution and the residual as a solution of an extended
system, under the orthogonality requirement

the new system is [
I A

AT 0

] [
r
x

]
=

[
b
0

]
despite requiring more storage and not being positive definite, it
allows more freedom in choosing pivots for LU decomposition

in some cases it is useful, but not much used in practice

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 15 / 57



Orthogonal transformations

a matrix Q is orthogonal if QT Q = I

multiplication of a vector by an orthogonal matrix does not change its
Euclidean norm:

∥Qv∥22 = (Qv)T Qv = vT QT Qv = vT v = ∥v∥22

so, multiplying the two sides of the system by Q does not change the
solution

again: try to transform the system so it’s easy to solve e.g. triangular
system
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an upper triangular overdetermined (m > n) LS problem has the form[
R
0

]
x ≈

[
b1

b2

]
where R is an n × n upper triangular matrix and b is partitioned
accordingly

the residual becomes

∥r∥22 = ∥b1 − Rx∥22 + ∥b2∥
2
2

to minimize the residual, one has to minimize ∥b1 − Rx∥22 (since ∥b2∥
2
2

is fixed) and this leads to the system

Rx = b1

which can be solved by back-substitution

the residual becomes ∥r∥22 = ∥b2∥
2
2 and x is the LS solution
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QR factorization

problem: find an m ×m orthogonal matrix Q such that an m × n matrix
A can be written as

A = Q
[
R
0

]
where R is n × n upper triangular

the new problem to solve is

QT Ax =

[
R
0

]
x ≈

[
b1

b2

]
= QT b
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if Q is partitioned as Q = [Q1Q2] with Q1 having n columns, then

A = Q
[
R
0

]
= Q1R

is called reduced QR factorization of A (Python:
scipy.linalg.qr())

columns of Q1 form an orthonormal basis of span(A), and the
columns of Q2 form an orthonormal basis of span(A)⊥

Q1QT
1 is orthogonal projector onto span(A)

the solution to the initial problem is given by the solution to the square
system

QT
1 Ax = QT

1 b
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QR factorization
In general, for an m × n matrix A , with m > n, the factorization is

A = QR

and

Q is an orthogonal matrix: QT Q = I⇔ Q−1 = QT

R is an upper triangular matrix

solving the normal equations (for LS solution) AT Ax = AT b comes to
solving

Rx = QT b
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Example

See Example 2 in Jupyter notebook.
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A statistical perspective

Changing a bit the notation, the linear model is

E[y] = Xβ, Cov(y) = σ2I

It can be shown that the best linear unbiased estimator is

β̂ = (XT X)−1XT y = R−1QT y

for a decomposition X = QR. Then ŷ = QQT y. (Gauss-Markov thm.: LS
estimator has the lowest variance among all unbiased linear estimators.)
Also,

Var(β̂) = (XT X)−1σ2 = (RT R)−1σ2

where σ2 = ∥y − ŷ∥2/(m − n − 1).
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Computing the QR factorization

similarly to LU factorization, we nullify entries under the diagonal,
column by column
now, use orthogonal transformations:

▶ Householder transformations
▶ Givens rotations
▶ Gram-Schmidt orthogonalization

Python:scipy.linalg.qr()
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Householder transformations

H = I − 2
vvT

vT v
, v , 0

H is orthogonal and symmetric: H = HT = H−1

v are chosen such that for a vector a:

Ha =


α

0
...

0

 = α

1
0
...

0

 = αe1

this leads to v = a − αe1 with α = ±∥a∥2, where the sign is chosen to
avoid cancellation
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Householder QR factorization

apply, the Householder transformation to nuliffy the entries below
diagonal

the process is applied to each column (of the n) and produces a
transformation of the form

Hn . . .H1A =

[
R
0

]
where R is n × n upper triangular

then take Q = H1 . . .Hn

note that the multiplication of H with a vector u is much cheaper than
a general matrix-vector multiplication:

Hu =

(
I − 2

vvT

vT v

)
u = u − 2

vT u
vT v

v
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Gram-Schmidt orthogonalization

idea: given two vectors a1 and a2, we seek orthonormal vectors q1

and q2 having the same span

method: subtract from a2 its projection on a1 and normalize the
resulting vectors

apply this method to each column of A to obtain the classical
Gram-Schmidt procedure
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Algorithm: Classical Gram-Schmidt

for k = 1 to n do
qk ← ak ;
for j = 1 to k − 1 do

rjk ← qT
j ak ;

qk ← qk − rjk qj ;

rkk ← ∥qk ∥2;
qk ← qk/rkk ;

The resulting matrices Q (with qk as columns) and R (with elements rjk )
form the reduced QR factorization of A.
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Further topics on QR factorization

if rank(A) < n then R is singular and there are multiple solutions x;
choose the x with the smallest norm

in limited precision, the rank can be lower than the theoretical one,
leading to highly sensitive solutions→ an alternative could be the
SVD method (next)

there exists a version, QR with pivoting, that chooses everytime the
column with largest Euclidean norm for reduction→ improves stability
in rank deficient scenarios

another method of factorization: Givens rotations - makes one 0 at a
time
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Singular Value Decomposition - SVD

SVD of an m × n matrix A has the form

A = UΣVT

where U is m ×m orthogonal matrix, V is n × n orthogonal matrix, and
Σ is m × n diagonal matrix, with

σii =

0 if i , j

σi ≥ 0 if i = j

σi are usually ordered such that σ1 ≥ · · · ≥ σn and are called singular
values of A

the columns ui and vi are called left and right singular vectors of A,
respectively
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minimum norm solution to Ax ≈ b is

x =
∑
σi,0

uT
i b

σi
vi

for ill-conditioned or rank-deficient problems, the sum should be taken
over "large enough" σ’s:

∑
σi≥ϵ . . .

Euclidean norm: ∥A∥2 = maxi{σi}

Euclidean condition number: cond(A) = maxi {σi }

mini {σi }

Rank of A : rank(A) = #{σi > 0}
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Pseudoinverse (again)

the pseudoinverse of an m × n matrix A with SVD decomposition
A = UΣVT is

A+ = VΣ−1UT

where

[Σ−1]ii =

1/σi for σi > 0

0 otherwise

pseudoinverse always exists and minimum norm solution to Ax ≈ b is
x = A+b

if A is square and nonsingular, A−1 = A+
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SVD and subspaces relevant to A

ui for which σi > 0 form the orthonormal basis of span(A)

ui for which σi = 0 form the orthonormal basis of the orthogonal
complement of span(A)

vi for which σi = 0 form the orthonormal basis of the null space of A

vi for which σi > 0 form the orthonormal basis of the orthogonal
complement of the null space of A
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SVD and matrix approximation

A can be re-written as

A = UΣVT = σ1u1vT
1 + · · ·+ σnunvT

n

let Ei = uivT
i ; Ei has rank 1 and requires only m + n storage locations

Eix multiplication requires only m + n multiplications

assuming σ1 ≥ σ2 ≥ . . . σn then by using the largest k singular
values, one obtains the closes approximation of A of rank k :

A ≈
k∑

i=1

σiEi

many applications to image processing, data compression,
cryptography, etc.

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 33 / 57



Example - image compression

Python: scipy.linalg.svd()
Original image and its approximations using 1,2,3,4,5 and 10 terms:
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Total least squares

Ax ≊ b

ordinary least squares applies when the error affects only b

what if there is error (uncertainty) in A as well?

total least squares minimizes the orthogonal distances, rather than
vertical distances, between model and data

can be computed using SVD of [A,b]
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Comparison: work effort

computing AT A requires about n2m/2 multiplications and solving the
resulting symmetric system, about n3/6 multiplications

LS problem solution by Householder QR requires about mn2 − n3/3
multiplications

if m ≫ n, Householder method requires about twice as much work
normal eqs.

cost of SVD is ≈ (4 . . . 10)× (mn2 + n3) depending on implementation
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Comparison: precision

relative error for normal eqs. is ∼ [cond(A)]2; if cond(A) ≈ 1/
√
ϵmach,

Cholesky factorization will break

Householder method has a relative error

∼ cond(A) + ∥r∥2[cond(A)]2

which is the best achievable for LS problems

Householder method breaks (in back-substitution step) for
cond(A) ⪅ 1/ϵmach

while Householder method is more general and more accurate than
normal equations, it may not always be worth the additional cost
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Comparison: precision, cont’d

for (nearly) rank-deficient problems, the pivoting Householder method
produces useful solution, while normal equations method fails

SVD is more precise and more robust than Householder method, but
much more expensive computationally
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Eigenvalue problems

Standard eigenvalue problem
Given a square matrix A ∈ Mn×n(R), find a scalar λ and a vector
x ∈ Rn, x , 0, such that

Ax = λx.

λ is called eigenvalue and x is called eigenvector

a similar "left" eigenvector can be defined as yT A = λyT , but this
would be equivalent to a "right" eigenvalue problem (as above) with
AT as matrix

the definition can be extended to complex-valued matrices

λ can be complex, even if A ∈ Mn×n(R)
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Characteristic polynomial

previous eq. is equivalent to (A − λI)x = 0 which admits nonzero
solutions if and only if (A − λI) is singular, i.e.

det(A − λI) = 0

det(. . . ) is the characteristic polynomial of matrix A and its roots λi

are the eigenvalues of A

(from Fundamental Theorem of Algebra) for an n × n matrix there are
n eigenvalues (may not all be real or distinct)
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reciprocal: a polynomial p(λ) = c0 + c1λ+ cn−1λ
n−1 + λn has a

companion matrix 
0 0 . . . 0 −c0

1 0 . . . 0 −c1
...
...
. . .

...
...

0 0 . . . 1 −cn−1


the characteristic polynomial is not used in numerical computation,
because:

▶ finding its roots may imply an infinite number of steps
▶ of the sensitivity of the coefficients
▶ too much work to compute the coefficients and find the roots
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Example

Let A =

[
0 1
0 −1

]
. The characteristic equation is

det(A − λI) = 0⇔

λ2 + λ = 0

with solutions λ1 = 0 and λ2 = −1. For eigenvectors v1, v2 (non-null!):

(A − λ1I)v1 =

[
0 1
0 −1

] [
v11

v21

]
=

[
v21

−v21

]
:=

[
0
0

]
so v21 = 0. We choose v11 such that ∥v1∥ = 1, so v11 = 1. Similarly, for

λ2 = −1 we get v2 =

[
1/
√

2
−1/
√

2

]
.
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See Example 4.

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 43 / 57



Sensitivity of the characteristic polynomial

let A =

[
1 ϵ

ϵ 1

]
with ϵ > 0 and slightly smaller than ϵmach

the exact eigenvalues are 1 + ϵ and 1 − ϵ

in floating-point arithmetic,

det(A − λI) = λ2 − 2λ+ (1 − ϵ2) = λ2 − 2λ+ 1

with the solution 1 (double root)
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a simple eigenvalue is a simple solution of the characteristic
polynomial (multiplicity of the root is 1)

a defective matrix has eigenvalues with multiplicity larger than 1,
meaning less than n independent eigenvectors

a nondefective matrix has exactly n linearly independent eigenvectors
and can be diagonalized

Q−1AQ = Λ

where Q is a nonsingular matrix of eigenvectors
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Eigen-decomposition

it follows that if A admits n independent eigenvectors, it can be
decomposed (factorized) as

A = QΛQ−1

with Q having the eigenvectors of A as columns, and Λ a diagonal
matrix with eigenvalues on the diagonal

theoretically, A−1 = QΛ−1Q−1 (if λi , 0 and all eigenvalues are
distinct)

if A is normal (AHA = AHA) then Q becomes unitary

if A is real symmetric, then Q is orthogonal
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Eigenvectors

the eigenvectors can be arbitrarily scaled

usually, the eigenvectors are normalized, ∥x∥ = 1

the eigenspace is Sλ = {x|Ax = λx}

a subspace S ⊂ Rn is invariant if AS ⊆ S

for xi eigenvectors, span({xi}) is an invariant subspace
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Some useful properties

det(A) =
∏N

i=1 λ
ni
i , where ni is the multiplicity of eigenvalue λi

tr(A) =
∑N

i=1 niλi

the eigenvalues of A−1 are λ−1
i (for λi , 0)

the eigenvectors of A−1 are the same as those of A

A admits an eigen-decomposition if all eigenvalues are distinct

if A is invertible it does not imply that it can be eigen-decomposed;
reciprocally, if A admits an eigen-decomposition, it does not imply it
can be inverted

A can be inverted if and only if λi , 0,∀i
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Before solving an eigenvalue problem...

do I need all the eigenvalues?

do I need the eigenvectors as well?

is A real or complex?

is A small, dense or large and sparse?

is there anything special about A? e.g.: symmetric, diagonal,
orthogonal, Hermitian, etc etc
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Conditioning of EV problems

conditioning of EV problem is different than conditioning of linear
systems for the same matrix

sensitivity is "not uniform" among eigenvectors/eigenvalues

for a simple eigenvalue λ, the condition is 1/∥yHx|, where x and y are
the corresponding right and left normalized eigenvectors (and yH is
the conjugate transpose)

so the condition is 1/ cos(x̂, y)

a perturbation of order ϵ in A may perturb the eigenvalue λ by as
much as ϵ/ cos(x̂, y)

for special cases of A, special forms of conditioning can be derived
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Computation - general ideas

a matrix B is similar to A if there exists a nonsingular matrix T such
that B = T−1AT

if y is an eigenvector of B then x = Ty is an eigenvector of A and
HOMEWORK: prove that A and B have the same eigenvalues

transformations:
▶ shift: A← A − σI
▶ inversion: A← A−1 (if A is nonsingular)
▶ power: A← Ak

▶ polynomial: let p be a polynomial, then A← p(A)
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Forms attainable by similarity

For a matrix A with given property, the matrices T and B exist such that
B = T−1AT has the desired property:

A T B
distinct eigenvalues nonsingular diagonal

real symmetric orthogonal real diagonal
complex Hermitian unitary real diagonal

normal unitary diagonal
arbitrary real orthogonal real block triangular (Schur)

arbitrary unitary upper triangular (Schur)
arbitrary nonsingular almost diagonal
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If A is diagonal...

the eigenvalues are the diagonal entries

the eigenvectors are the columns of the identity matrix

If a matrix is not diagonalizable, one can obtain a Jordan form:

λ1 1
λ1 1
λ1

λ2 1
λ2

λ3
. . .

λk 1
λk


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If A is triangular (Schur form, in general)...

eigenvalues are the elements on the diagonal

eigenvectors are obtained as follows:
If

A − λI =

U11 u U13

0 0 vT

0 0 U33


is triangular, then U11y = u can be solved for y, so that

x =

 y
−1
0


is the corresponding eigenvector

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 54 / 57



Symmetric matrices - Jacobi method

idea: start with a symetric matrix A0 and iteratively form
Ak+1 = JT

k Ak Jk , where Jk is a plane rotation chosen to annihilate a
symmetric pair of entries in Ak with the goal of diagonalizing A

a rotation matrix has the form[
cos θ sin θ
− sin θ cos θ

]
the problem is to find θ

for A =

[
a b
b c

]
and requiring that JT AJ is diagonal, we obtain

1 + tan θ
a − c

b
− tan2 θ = 0

from which we use the root with the smallest magnitude
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for more general matrices, there are other methods like Power
iterations, with or without deflation, etc.

a generalized eigenvalue problem,

Ax = λBx,

can be solved using the QZ algorithm
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Singular Value Decomposition - again

we saw that SVD of a m × n matrix A has the form

A = UΣVT

where U is m ×m orthogonal matrix and V is n × n orthogonal matrix
and Σ is m × n diagonal matrix with non-negative elements on the
diagonal

this is a eigenvalue-like problem

the columns of U and V are the left and right singular vectors,
respectively and σii are the singular values
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The relation between SVD and the eigen-decomposition

SVD can be applied to any m × n matrix, while the
eigen-decomposition is applied only to square matrices

the singular values are non-negative while the eigenvalues can be
negative

let A = UΣVT be SVD of A⇒ AT A = (VΣT UT )(UΣVT ) = VΣTΣVT

also, AT A is symmetric real matrix, so it has a eigendecomposition
AT A = QΛQT , with Q orthogonal. By unicity of decompositions, it
follows that

ΣTΣ = Λ

V = Q

so σi =
√
λi
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Questions?
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