
E7441: Scientific computing in biology and
biomedicine

Non-linear equations and optimization

Vlad Popovici, Ph.D.

RECETOX

Outline

1 Nonlinear equations
Numerical methods in R
Systems of nonlinear equations

2 Fundamental concepts in numerical optimization
Problem setting
Optimization in R
Optimization in Rn

Unconstrained optimization in Rn

Important classes of optimization problems
Linear programming
Quadratic programming
Constrained nonlinear optimization

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 2 / 62

Nonlinear equations

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 3 / 62

Nonlinear equations

scalar problem: f : R→ R, find x ∈ R such that f(x) = 0

vectorial problem: f : Rn → Rn, find x ∈ Rn such that f(x) = 0

in any case, here we consider f to be continuously differentiable
everywhere in the neighborhood of the solution

an interval [a, b] is a bracket for the function f if f(a)f(b) < 0

f continuous→ f([a, b]) is an interval

Bolzano’s thm.: if [a, b] is a bracket for f than there exists at least one
x∗ ∈ [a, b] s.t. f(x∗) = 0

if f(x∗) = f ′(x∗) = · · · = f (m−1)(x∗) = 0 but f (m) , 0 then x∗ has
multiplicity m

note: in Rn things are much more complicated

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 4 / 62

Conditioning

for a scalar problem, the absolute condition number is 1/|f ′(x∗)|

the problem is is ill-conditioned around a multiple solution

for a vectorial problem, the absolute condition number is ∥J−1
f (x∗)∥,

where Jf is the Jacobian matrix of f ,

[Jf (x)]ij =
∂fi(x)
∂xj

if the Jacobian is nearly singular, the problem is ill-conditioned

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 5 / 62

Sensitivity and conditioning

possible interpretations of the approximate solution:
▶ ∥f(x̂) − f(x∗)∥ ≤ ϵ: small residual
▶ ∥x̂ − x∗∥ ≤ ϵ closeness to the true solution

the two criteria might not be satistfied simultaneously

if the problem is well-conditioned: small residual implies accurate
solution

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 6 / 62

Convergence rate

usually, the solution is found iteratively

let ek = xk − x∗ be the error at the k−th iteration, where xk is the
approximation and x∗ is the true solution

the method converges with rate r if

lim
k→∞

∥ek+1∥

∥ek ∥
r = C , for C > 0 finite

if the method is based on improving the bracketing, then ek = bk − ak

if
▶ r = 1 and C < 1, the convergence is linear and a constant number of

digits are "gained" per iteration
▶ r = 2 the convergence is quadratic, the number of exact digits doubles

at each iteration
▶ r > 1 the converges is superlinear, increasing number of digits are

gained (depends on r)

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 7 / 62

Bisection method

Idea: refine the bracketing of the solution until the length of the interval is
small enough. Assumption: there is only one solution in the interval.

Algorithm 1: Bisection

while (b − a) > ϵ do
m ← a + b−a

2
if sign(f(a)) = sign(f(m))
then

a ← m
else

b ← m

a bm

f(a)

f(b)

Implement the above procedure in Python.

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 8 / 62

Bisection, cont’d

convergence is certain, but slow

convergence rate is linear (r = 1 and C = 1/2)

after k iterations, the length of the interval is (b − a)/2k , so achieving
a tolerance ϵ requires ⌈

log2
b − a
ϵ

⌉
iterations, idependently of f .

the value of the function is not used, just the sign

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 9 / 62

Fixed-point methods

a fixed point for a function g : R→ R is a value x ∈ R such that
f(x) = x

the fixed-point iteration
xk+1 = g(xk)

is used to build a series of successive approximations to the solution

for a given equation f(x) = 0 there might be several equivalent
fixed-point problems x = g(x)

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 10 / 62

Example

The solutions of the equation

x2 − x − 2 = 0

are the fixed points of each of the
following functions:

g(x) = x2 − 2

g(x) =
√

x + 2

g(x) = 1 + 2/x

g(x) = x2+2
2x−1

2

3

1

1 2 3

g(x)=1+2/x

g(1) = 3

g(g(1)) = 1.(6)

g(g(g(1))) = 2.2

g(g(g(g(1)))) = 1.(90)

. . .

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 11 / 62

Conditions for convergence

a function g : S ⊂ R→ R is called Lipschitz-bounded if ∃α ∈ [0, 1] so
that |f(x1) − f(x0)| ≤ α|x1 − x0|, ∀x0, x1 ∈ S

in other words, if |g′(x∗)| < 1, then g is Lipschitz-bounded

for such functions, there exists an interval containing x∗ s.t. iteration

xk+1 = g(xk)

converges to x∗ if started within that interval

if |g′(x∗)| > 1 the iterations diverge

in general, convergence is linear

smoothed iterations:

xk+1 = λk xk + (1 − λk)f(xk)

with λk ∈ [0, 1] and limk→∞ λk = 0

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 12 / 62

Stopping criteria

If either
1 |xk+1 − xk | ≤ ϵ1|xk+1| (relative error)
2 |xk+1 − xk | ≤ ϵ2 (absolute iteration error)
3 |f(xk+1) − f(xk)| ≤ ϵ3 (absolute functional error)

stop the iterations.

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 13 / 62

Newton-Raphson method

from Taylor series:

f(x + h) ≈ f(x) + f ′(x)h

so in a small neighborhood around x
f(x) can be approximated by a linear
function of h with the root −f(x)/f ′(x)

Newton iteration:

xk+1 = xk −
f(xk)

f ′(xk)

x_kx_k+1

Implement the above procedure in Python.

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 14 / 62

Newton-Raphson method, cont’d

convergence for a simple root is quadratic

to converge, the procedure needs to start close enough to the
solution, where the function f is monotonic

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 15 / 62

Secant method (lat.: Regula falsi)

secant method approximates the derivative by finite differences:

xk+1 = xk − f(xk)
xk − xk−1

f(xk) − f(xk−1)

convergence is normally superlinear, with r ≈ 1.618

it must be started in a properly chosen neighborhood

x_k+1

x_k x_k−1

Implement the above procedure in Python.

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 16 / 62

Interpolation methods and other approaches

secant method uses linear interpolation

one can use higher-degree polynomial interpolation (e.g. quadratic)
and find the roots of the interpolating polynomial

inverse interpolation: xk+1 = p−1(yk) where p is an interpolating
polynomial

fractional interpolation

special methods for finding roots of the polynomials

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 17 / 62

Fractional interpolation

previous methods have difficulties with functions having horizontal or
vertical asymptotes

linear fractional interpolation uses

ϕ(x) =
x − u

vx − w

function, which has a vertical asymptote at x = w/v, a horizontal
asymptote at y = 1/v and a zero at x = u

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 18 / 62

Fractional interpolation, cont’d

let x0, x1, x2 be three points where the function is estimates, yielding
f0, f1, f2
find u, v ,w for ϕ by solving1 x0f0 −f0

1 x1f1 −f1
1 x2f2 −f2


uv
w

 =
x0

x1

x2


the iteration step swaps the values: x0 ← x1 and x1 ← x2

the new approximate solution is the zero of the linear fraction, x2 = u.
This can be implemented as

x2 ← x2 +
(x0 − x2)(x1 − x2)(f0 − f1)f2

(x0 − x2)(f2 − f1)f0 − (x1 − x2)(f2 − f0)f1

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 19 / 62

Systems of nonlinear equations

much more difficult than the scalar case

no simple way to ensure convergence

computational overhead increases rapidly with the dimension

difficult to determine the number of solutions

difficult to find a good starting approximation

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 20 / 62

Fixed-point methods in Rn

g : Rn → Rn, x = g(x) = [g1(x), . . . , gn(x)]

fixed-point iteration: xk+1 = g(xk)

denote ρ(Jg(x)) the spectral radius (maximum absolute eigenvalue)
of the Jacobian matrix of g evaluated at x

if ρ(Jg(x∗)) < 1, the fixed point iteration converges if started close
enough to the solution

the convergence is linear with C = ρ(Jg(x∗))

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 21 / 62

Newton-Raphson method in Rn

xk+1 = xk − J−1
f (xk)f(xk)

no need for inversion; solve the system

Jf (xk)sk = −f(xk)

for Newton step sk and iterate

xk+1 = xk + sk

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 22 / 62

Broyden’s method

uses approximations of the Jacobian

the initial approximation of J can be the actual Jacobian (if available)
or even I

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 23 / 62

Algorithm 2: Broyden’s method

for k = 0, 1, 2, . . . do
solve Bk sk = −f(xk) for sk

xk+1 = xk + sk

yk = f(xk+1) − f(xk)
Bk+1 = Bk + ((yk − Bk sk)sT

k)/(s
T
k sk)

if ∥xk+1 − xk ∥ ≥ ϵ1(1 + ∥xk+1∥) then
continue

if ∥f(xk+1)∥ < ϵ2 then
x∗ = xk+1

break
else

algorithm failed

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 24 / 62

Further topics

secant method is also extended to Rn (see Broyden’s method)

robust Newton-like methods: enlarge the region of convergence,
introduce a scalar parameter to ensure progression toward solution

in Python: scipy.optimize.root_scalar(),
scipy.optimize.root(), scipy.optimize.fsolve(), etc.

See Python notebook for examples.

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 25 / 62

Numerical optimization

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 26 / 62

Problem setting

minimization problem: f : Rn → R, S ⊆ Rn, find x∗ ∈ S:
f(x) ≤ f(y),∀y ∈ S \ {x}

x∗ is called minimizer (minimum, extremum) of f

maximization is equivalent to minimizing −f

f is called objective function and considered, here, differentiable with
continuous second derivative

constraint set S (or feasible region) is defined by a system of
equations and/or inequations

y ∈ S is called a feasible point

if S = Rn the optimization is unconstrained

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 27 / 62

Optimization problem

min
x

f(x)

subject to

g(x) = 0

hk (x) ≤ 0

where f : Rn → R, g : Rn → Rm, hk : Rn → R.

If f , g and hk functions are linear: linear programming.

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 28 / 62

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 29 / 62

Some theory

Rolle’s thm: f cont. on [a, b] and differentiable on (a, b) with
f(a) = f(b), then ∃c ∈ (a, b) : f ′(c) = 0

Weierstrass’ thm: f cont. on a compact set with values in a subset of
R attains its extrema

Fermat’s thm: f : (a, b)→ R then in a stationary point x0 ∈ (a, b),
f ′(x0) = 0. Generalization: ∇f(x0) = 0.

convex function: f ′′(x) > 0; concave function: f ′′(x) < 0

if f ′(x0) = 0 and f ′′(x0) < 0 then x0 is a minimizer

if f ′(x0) = 0 and f ′′(x0) > 0 then x0 is a maximizer

if f ′(x0) = f ′′(x0) = 0, then x0 is an inflection point

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 30 / 62

Set convexity

Formally: a set S is convex if αx1 + (1 − αx2) ∈ S for all x1, x2 ∈ S and
α ∈ [0, 1].

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 31 / 62

Function convexity

Formally: f is said to be convex on a convex set S if
f(αx1 + (1 − α)x2) ≤ αf(x1) + (1 − α)f(x2) for all x1, x2 ∈ S and α ∈ [0, 1].

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 32 / 62

Uniqueness of the solution

any local minimum of a convex function f on a convex set S ⊆ Rn is
global minimum of f on S

any local minimum of a strictly convex function f on a convex set
S ⊆ Rn is unique global minimum of f on S

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 33 / 62

Optimality criteria

For x∗ ∈ S to be an extremum of f : S ⊆ Rn → R

first order condition: x∗ must be a critical point:

∇f(x∗) = 0

second order condition: the Hessian matrix Hf (x∗) must be positive or
negative definite

[Hf (x)]ij =
∂f(x)
∂xi∂xj

If the Hessian is
▶ positive definite, then x∗ is a minimum of f
▶ negative definite, then x∗ is a maximum of f
▶ indefinite, then x∗ is a saddle point of f
▶ singular, then different degenerated cases are possible...

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 34 / 62

Saddle point

source: Wikipedia

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 35 / 62

Unimodality

Unimodality allows discarding safely parts of the interval, without loosing
the solution (like in the case of interval bisection).

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 36 / 62

Golden section search

evaluate the function at 3 points and
decide which part to discard

ensure that the sampling space
remains proportional:

c
a
=

a
b
⇒

b
a
=

1 +
√

5
2

= 1.618 . . .

convergence is linear, with C ≈ 0.618

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 37 / 62

Successive parabolic interpolations

Convergence is superlinear, with r ≈ 1.32.

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 38 / 62

Newton’s method

From Taylor’s series:

f(x + h) ≈ f(x) + f ′(x)h +
f ′′(x)

2
h2

whose minimum is at h = −f ′(x)/f ′′(x).
Iteration scheme:

xk+1 = xk − f ′(x)/f ′′(x)

(That’s Newton’s method for finding the zero of f ′(x) = 0.)
Quadratic convergences, but needs to start close to the solution.

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 39 / 62

Hybrid methods

idea: combine "slow-but-sure" methods with "fast-but-risky"

most library routines are using such approach

popular combination: golden search and successive parabolic
interpolation

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 40 / 62

Python functions for optimization in R

many packages, check scipy.optimize module

an interesting project: PyOMO

scipy.optimize.fminbound(): bounded function minimization

you can use functions for multivariate case as well

Exercise in Python...

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 41 / 62

Nelder-Mead (simplex) method

direct search methods simply compare the function values at different
points in S

Nelder-Mead selects n + 1 points (in Rn) forming a simplex (i.e. a
segment in R, a triangle in R2, a tetrahedron in R3, etc)

along the line from the point with highest function value through the
centroid of the rest, select a new vertex

the new vertex replaces the worst previous point

repeat until convergence

useful procedure for non-smooth functions, but expensive for large n

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 42 / 62

Nelder-Mead in Python

Use the function scipy.optimize.fmin()
to find the minimum of the function

f(x) = sin(∥x∥2).

Try different initial conditions.

−3

−2

−1

0

1

2

3

−3

−2

−1

0

1

2

3

−1

0

1

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 43 / 62

Steepest descent (gradient descent)

f : Rn → R: the negative gradient, −∇f(x) is locally the steepest
descent towards a (local) minimum

xk+1 = xk − αk∇f(xk) where αk is line search parameter

x0

x1

x2

x3

x4

*

*

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 44 / 62

αk = argminα f(xk − ∇f(xk))

the method always progresses towards minimum, as long as the
gradient is non-zero

the convergence is slow, the search direction may zig-zag

the method is "myopic" in its choices

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 45 / 62

Newton’s method

exploit the 1st and 2nd derivative

Newton iteration
xk+1 = xk − H−1

f (xk)∇f(xk)

no need to invert the Hessian; solve the system

Hf (xk)sk = −∇f(xk)

and then
xk+1 = xk + sk

variation: damped Newton method uses a line search along the
direction of sk to make the method more robust

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 46 / 62

Newton’s method, cont’d

close to minimum, the Hessian is symmetric positive definite, so you
can use Cholesky decomposition

if initialized far from minimum, the Newton step may not be in the
direction of steepest descent:

(∇f(xk))
T sk < 0

choose a different direction based on negative gradient, negative
curvature, etc

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 47 / 62

Quasi-Newton methods

improve reliability and reduce overhead

general form
xk+1 = xk − αk B−1

k ∇f(xk)

where αk is a line search parameter and Bk is an approximation to
the Hessian

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 48 / 62

BFGS (Broyden-Fletcher-Goldfarb-Shanno) method

Algorithm 3: BFGS method

x0 = some initial value
B0 = initial approximation of the Hessian
for k = 0, 1, 2, . . . do

solve Bk sk = −∇f(xk) for sk

xk+1 = xk + sk

yk = ∇f(xk+1) − ∇f(xk)
Bk+1 = Bk + (yk yT

k)/(y
T
k sk) − (Bk sk sT

k Bk)/(sT
k Bk sk)

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 49 / 62

BFGS, cont’d

update only the factorization of Bk rather than factorizing it at each
iteration

no 2nd derivative is needed

can start with B0 = I

Bk does not necessarily converge to true Hessian

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 50 / 62

Conjugate gradient (CG)

does not need 2nd derivative, does not construct an approximation of
the Hessian

searches on conjugate directions, implicitly accumulating information
about the Hessian

for quadratic problems, it converges in n steps to exact solution
(theoretically)

two vectors x, y are conjugate with respect to a matrix A is xT Ay = 0

idea: start with an initial guess x0 (could be 0); go along the negative
gradient at the current point; compute the new direction as a
combination of previous and new gradients

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 51 / 62

Algorithm 4: CG method

x0 = some initial value
g0 = ∇f(x0)
s0 = −g0

for k = 0, 1, 2, . . . do
αk = argminα f(xk + αsk)
xk+1 = xk + αk sk

gk+1 = ∇f(xk+1)
βk+1 = (gT

k+1gk+1)/(gT
k gk)

sk+1 = −gk+1 + βk+1sk
x0

x

source: Wikipedia

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 52 / 62

Other methods

we barely scratched the surface!

heuristic methods

genetic algorithms

stochastic methods

hybrid methods

etc etc etc

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 53 / 62

Some Python functions in scipy.optimize

linear and quadratic optimization: linprog()

linear least squares: nnls(), lsq_linear()
nonlinear minimization:

▶ fminbound() - scalar bounded problem;
▶ fmin_bfgs(), etc. - multidimensional nonlinear minimization
▶ fmin() - Nelder-Mead unconstrained nonlinear minimization
▶ fmin_l_bfgs_b(), etc. - multidimensional constrained nonlinear

minimization
▶ ...

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 54 / 62

Linear programming (LP)

General form:

minimize fT x

subject to

Aeqx = beq

Ax ≤ b

lb ≤ x ≤ ub

Python:

X = linprog(f,A,b,Aeq,beq,bounds=(lb,ub),x0=...)

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 55 / 62

LP - Example

Solve the LP:
maximize 2x1 + 3x2

such that

x1 + 2x2 ≤ 8

2x1 + x2 ≤ 10

x2 ≤ 3

See the Python notebook.

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 56 / 62

LP - A “practical” example
A company produces two types of microchips: C1 (1g silicon, 1g plastic,
4g copper) and C2 (1g germanium, 1g plastic, 2g copper). C1 brings a
profif of 12 EUR, C2 a profit of 9 EUR. The stock of raw materials: 1000g
silicon, 1500g germanium, 1750g plastic, 4800g copper. How many C1
and C2 should be produced to maximize profit while respecting the
availability of raw material stock?

Let x denote the quantity of C1, and y the quantity of C2. The problem is

max
x,y

12x + 9y

s.t. x ≤ 1000

y ≤ 1500

x + y ≤ 1750

4x + 2y ≤ 4800

x, y ≥ 0

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 57 / 62

LP - A “practical” example
A company produces two types of microchips: C1 (1g silicon, 1g plastic,
4g copper) and C2 (1g germanium, 1g plastic, 2g copper). C1 brings a
profif of 12 EUR, C2 a profit of 9 EUR. The stock of raw materials: 1000g
silicon, 1500g germanium, 1750g plastic, 4800g copper. How many C1
and C2 should be produced to maximize profit while respecting the
availability of raw material stock?
Let x denote the quantity of C1, and y the quantity of C2. The problem is

max
x,y

12x + 9y

s.t. x ≤ 1000

y ≤ 1500

x + y ≤ 1750

4x + 2y ≤ 4800

x, y ≥ 0

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 57 / 62

The problem can be written as

max
x

cT x

s.t. Ax ≤ b

x ∈ R2
+

where

x =

[
x
y

]
, c =

[
12
9

]
, A =


1 0
0 1
1 1
4 2

 , and b =


1000
1500
1750
4800


See Python notebook for a possible approach.

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 58 / 62

Quadratic programming (QP)

General form:
minimize

1
2

xT Hx + fT x

subject to

Ax ≤ b

Aeqx = beq

lb ≤ x ≤ ub

with H ∈ Rn×s symmetric.
Python: you need to install some extra packages e.g., qpsolvers

X = qpsolvers . solve_qp (H, f , A , b , A_eq , b_eq ,
lb , ub ,
so l ve r =" proxqp ") # o ther so lve rs are a v a i l a b l e

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 59 / 62

QP - Example

Solve:
minimize x2

1 + x1x2 + 2x2
2 + 2x2

3 + 2x2x3 + 4x1 + 6x2 + 12x3 subject to

x1 + x2 + x3 ≥ 6

−x1 − x2 + 2x3 ≥ 2

x1, x2, x3 ≥ 0

See Python notebook.

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 60 / 62

Constrained nonlinear optimization

Problem:
minimize f(x)

subject to

c(x) ≤ 0

ceq(x) = 0

Ax ≤ b

Aeqx = beq

lb ≤ x ≤ ub

Python: various functions - see, for example,
scipy.optimize.minimize()

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 61 / 62

Questions?

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 62 / 62

	Nonlinear equations
	Numerical methods in R
	Systems of nonlinear equations

	Fundamental concepts in numerical optimization
	Problem setting
	Optimization in R
	Optimization in Rn
	Important classes of optimization problems

