E7441: Scientific computing in biology and
biomedicine
Parallel programming in PyTHoN

Vlad Popovici, Ph.D.

RECETOX



Modes of parallelism

Main modes

@ embarrassingly parallel: code that can run independently and the
results combined at the end (e.g. apply a function to each element of
an array)

@ multithreading: parallel threads of execution that needs to
communicate via shared memory (variables, etc)

@ multiprocessing: different processes that manage their own memory
and share data via message passing

Vlad Popovici, Ph.D. (RECETOX)

2/7



GIL

PyTHON

@ interpreted language: source code is compiled into bytecode which is
interpreted by the interpreter

@ there are optimizing implementations (e.g. PyPy) that interpret and
compile into optimized machine code

@ the standard interpreter (CPython) executes only one thread at a time

@ only the thread which acquired the Global interpreter Lock (GIL) (a
mutex) can execute

@ on multi-threaded systems this is a performance-bounding design
@ GIL protects the reference count - helps with memory management

@ GIL allows integration of non-thread-safe modules written in other
languages
@ GIL is released at I/O or forced-released at specific intervals

Vlad Popovici, Ph.D. (RECETOX) 3/7



I/O-bound applications

Wzlili(tjing Request 1 Request 2 Request 3

A ' A

2 2

CPU
Processing
Time:
Request 1 |
Wla/iﬁn ‘.‘ Request 2 |
’ ‘,‘ Request 3 |
! ' A ' : h
Thread 1 5 i : :
CPU H i :
Processing libicadte '

Viad Popovici, Ph.D. (RECETOX)

Time:

417



Multiprocessing and multithreading

Example 1 - see the Jupyter notebook.
@ not much gain from distributing the computation
@ the two threads fight to acquire the GIL
@ possible solution: multiprocessing: each process has its own
interpreter
@ external libraries (written in C, etc.) can release the lock and run
multi-threaded (e.g. NumPy, SciPy, etc.)

@ non-standard implementations of PytHon do not necessarily use GIL:

JyTHON, IRONPYTHON, and PYPY - they have their own limitations

@ checkout “joblib™ library for a lightweight implementation of parallel
processing

Vlad Popovici, Ph.D. (RECETOX)

5/7



MPI - message passing interface

tasks (cores) have a rank and are numbered 0, 1, 2, 3, etc.
each task (core) manages its own memory
tasks communicate and share data by sending messages

high-level API for distributing and gathering information to/from other
tasks

@ all tasks typically run the entire code: needs care to avoid doing the
same thing

Example 2 - see the Jupyter notebook.

Vlad Popovici, Ph.D. (RECETOX)

6/7



Dask

@ scale arrays (numpy .array) and data frames (pandas.Dataframe)
across computing resources

@ Dask extension to scikit-learn: Dask-ML
@ transparently manages larger-than-memory arrays and data frames
@ transparently scales from desktop to cloud resources

See Example 3 in the Jupyter notebook.

Vlad Popovici, Ph.D. (RECETOX)

717



Viad Popovici, Ph.D. (RECETOX)

Questions?

8/7



