module MakeGraph using OrderedCollections export ladder, loopNN, loopNNN, square2D #graph=Vector{Vector{Tuple{Int64,Int64}}}() # example of graph # [(1,2),(2,3),(3,4),(4,1)] # [(1,4),(2,3)] order(x::Tuple{Int64,Int64})=(x[1]tol && i|^2 real algebra assumed # i2s=CartesianIndices(A) # for i in 1:length(A) # if (A[i] > tol) # de=eig[i2s[i][1]]-eig[i2s[i][2]] # (E2-E1, <1|O|2><2|O|1>) # push!(elements,(i2s[i][1],i2s[i][2],A[i])) # end # end # return elements #end function ElementsSelect(O::Matrix, U::Matrix, eig::Vector; Max::Int=100000, tol::Real = 1e-6) mod2(x)=real(conj(x)*x) elements=Vector() Max=min(Max,size(U)[2]) A=U'*O*U[:,1:Max] @. A=mod2.(A) # |<2|O|1>|^2 real algebra assumed i2s=CartesianIndices(A) for i in 1:length(A) if (real(A[i]) > tol) de=eig[i2s[i][1]]-eig[i2s[i][2]] # (E2-E1, <1|O|2><2|O|1>) push!(elements,(i2s[i][1],i2s[i][2],real(A[i]))) end end return elements end function ElementsSelect(O::Tuple{Matrix,Matrix}, U::Matrix, eig::Vector; Max::Int=100000, tol::Real = 1e-6) elements=Vector() Max=min(Max,size(U)[2]) A=U'*O[1]*U[:,1:Max] B=U'*O[2]'*U[:,1:Max] @. A .*=conj.(B) # <2|O2|1><1|O1|2> i2s=CartesianIndices(A) for i in 1:length(A) if (abs(A[i]) > tol) de=eig[i2s[i][1]]-eig[i2s[i][2]] # (E2-E1, <1|O2|2><2|O1|1>) push!(elements,(i2s[i][1],i2s[i][2],A[i])) end end return elements end function WeightedElements(elements::Vector, eig::Vector, T::Real; Norm::Bool = true, tol::Float64=1e-6) weights=Bweights(eig,T,Norm=Norm) # Welements=[(0.,0.)] Welements=Vector() static = 0. for i in 1:length(elements) x=weights[elements[i][2]]*elements[i][3] if abs(x) > tol E=eig[elements[i][1]]-eig[elements[i][2]] if abs(E) > tol push!(Welements,(E,x)) # (E2-E1, <1|O|2><2|O|1>exp(-beta*E1)/Z ) else static +=x # sum_1,2 <1|O|2><2|O|1>exp(-beta*E1)/Z for E1=E2 end # non-causal (thermal) contribution to static chi, this part does not appear in KK relations end end if length(Welements)==0 push!(Welements,(100.,0.)) end return Welements,static end function SuscI(elements::Vector, w::Real, G::Real) # sum_1,2 <1|O|2><2|O|1>exp(-beta*E1)/Z imag[1/(w+iG-E)-1/(w+iG+E)] sum(map(x->x[2]*ILor(w,x[1],G),elements)) # E=E2-E1 end function SuscR(elements::Vector, w::Real, G::Real) # sum_1,2 <1|O|2><2|O|1>exp(-beta*E1)/Z real[1/(w+iG-E)-1/(w+iG+E)] sum(map(x->-x[2]*RLor(w,x[1],G),elements)) # E=E2-E1 end end #Operators module BinaryBasisFermions using LinearAlgebra export BaseGen, H1gen, H2gen, occbin, szbin, c!, cdag! function bits2int(bits::BitVector,N::Int) # dim-N BitVector -> Int base_2=(2 .^(N-1:-1:0)) dot(bits,base_2)+1 # bits -> Fock index end function int2bits(n::Int, N::Int) # Int -> dim-N BitVector y=string(n-1, base = 2) parse.(Bool,collect(lpad(y,N,"0"))) end function c!(flavor::Int, state::BitVector) # c(flavor) in bit basis, updates state, output is sign l=length(state) if state[flavor] state[flavor] = false isodd(sum(view(state,flavor:l))) ? sgn = -1 : sgn = 1 else sgn = 0 end return sgn end function cdag!(flavor::Int, state::BitVector) # cdag(flavor) in bit basis, updates state, output is sign l=length(state) if !state[flavor] state[flavor] = true isodd(sum(view(state,flavor:l))) ? sgn = 1 : sgn = -1 else sgn = 0 end return sgn end occbin(state::BitVector) = sum(state) # occupation number of a bit state function szbin(state::BitVector) # sz(Int) of a bit state m=div(length(state),2) return 2*sum(view(state,1:m))-sum(state) end function BaseGen(N::Int, n::Int) # generates a basis in n-particle subspace of 2^N Fock space base = Vector{BitVector}() hash = Dict{BitVector,Int}() j=0 for i in 1:2^N state = int2bits(i,N) if (sum(state)==n) j +=1 push!(base,state) merge!(hash,Dict(state=>j)) end end return base, hash end function BaseGen(N::Int, func::Function, val::Int) # generates a basis of func(state)== val subspace of 2^N Fock space base = Vector{BitVector}() hash = Dict{BitVector,Int}() j=0 for i in 1:2^N state = int2bits(i,N) if (func(state)==val) j +=1 push!(base,state) merge!(hash,Dict(state=>j)) end end return base, hash end function BaseGen(N::Int, conds::Tuple{Function,Int}...) # as above with multiple conditions base = Vector{BitVector}() hash = Dict{BitVector,Int}() j=0 for i in 1:2^N state = int2bits(i,N) acc = true for cond in conds acc &=(cond[1](state)==cond[2]) end if acc j +=1 push!(base,state) merge!(hash,Dict(state=>j)) end end return base, hash end #generates a matrix of 1P operator in BitVector basis "base"; "index" is the distionary state => index function H1gen(elements::Vector{Tuple{Int64, Int64, T}},base::Vector{BitVector},index::Dict{BitVector, Int64}) where T <:Number bsize=length(base) if length(index)!=bsize return "incosistent basis map" end H1=zeros(T,bsize,bsize) for i in 1:bsize s=base[i] for x in elements if s[x[2]] && (!s[x[1]] || x[1]==x[2]) state=copy(s) sgn = c!(x[2],state) sgn2= cdag!(x[1],state) sgn *=sgn2 j=index[state] H1[j,i] +=sgn*x[3] end end end return H1 end #generates a matrix of 2P operator in BitVector basis "base"; "index" is the distionary state => index function H2gen(elements::Vector{Tuple{Int, Int, Int, Int, T}},base::Vector{BitVector},index::Dict{BitVector, Int64}) where T <:Number bsize=length(base) H2=zeros(bsize,bsize) for i in 1:bsize s=base[i] for x in elements if s[x[4]]&s[x[3]] state=copy(s) sgn = 1 sgn *=c!(x[4],state) sgn *=c!(x[3],state) sgn *=cdag!(x[2],state) sgn *=cdag!(x[1],state) if sgn != 0 j = index[state] H2[j,i] += sgn*x[5] end end end end return H2 end end module CouplingConstants export Graph2Hop,CrystalField,Sz,Sx,iSy,Splus,Sminus,ChainU,SlaterKanamori,Elements2Tensor,Tensor2Elements,ElementsTransform ############################################# # 1P (bilinear) operators function Graph2Hop(graph::Vector{Vector{Tuple{Int,Int}}}, m::Int, ts::Real...) # generates spin-diag. hopping on a given graph x=Vector{Tuple{Int,Int,Real}}() i=0 for sub in graph i +=1 if i <= length(ts) for bond in sub push!(x,(bond[1],bond[2],ts[i])) push!(x,(bond[1]+m,bond[2]+m,ts[i])) push!(x,(bond[2],bond[1],ts[i])) push!(x,(bond[2]+m,bond[1]+m,ts[i])) end end end return x end function CrystalField(x::Real...) # crystal field (spin-indepent orbital-diagonal operator) l=length(x) vcat([(i,i,Float64(x[i])) for i=1:l],[(i+l,i+l,Float64(x[i])) for i=1:l]) end function Sz(m::Int) # total Sz: up 1,...,m down m+1,...,2m vcat([(i,i,Float64(1/2)) for i=1:m],[(i+m,i+m,Float64(-1/2)) for i=1:m]) # total spin end function Sx(m::Int) # total Sz: up 1,...,m down m+1,...,2m vcat([(i,i+m,Float64(1/2)) for i=1:m],[(i+m,i,Float64(1/2)) for i=1:m]) # total spin end function iSy(m::Int) # total Sz: up 1,...,m down m+1,...,2m vcat([(i,i+m,Float64(1/2)) for i=1:m],[(i+m,i,Float64(-1/2)) for i=1:m]) end Sz(m::Int,i::Int)=[(i,i,Float64(1/2)),(i+m,i+m,Float64(-1/2))] Sx(m::Int,i::Int)=[(i,i+m,Float64(1/2)),(i+m,i,Float64(1/2))] iSy(m::Int,i::Int)=[(i,i+m,Float64(1/2)),(i+m,i,Float64(-1/2))] Splus(m::Int,i::Int)=[(i+m,i,1)] Sminus(m::Int,i::Int)=[(i,i+m,1)] #function Matrix2Elements(h::Matrix{T}; tol::Real = 1e-6) where T <:Number # extracts non-zero (>1e-6) elements from a matrix # tmp=findall(x->abs(x)>tol,h) # map(x->(x[1],x[2],h[x]),tmp) #end #function Elements2Matrix(elements::Vector{Tuple{Int64, Int64, T}}, m::Int) where T <:Number # generate 1P matrix from set of elements # x=zeros(T,m,m) # for y in elements # x[y[1],y[2]]=y[3] # end # return x #end ################################################ # 2P (biquadratic) operators function ChainU(m::Int,U::Real) # local interaction on m-sites (1-orbital) chain [(i,i+m,i+m,i,U) for i in 1:m] end function ChainU(m::Int,U::Vector{Real}) # local U_m interaction on m-sites (1-orbital) chain if length(U) != m return "incosistent number of Us" else return [(i,i+m,i+m,i,U[i]) for i in 1:m] end end function SlaterKanamori(m::Int, U::Real, J::Real; g::Real = 1) # Slate-Kanamori interaction for m orbtials elements=Vector{Tuple{Int, Int, Int, Int, Float64}}() append!(elements,[(i,i+m,i+m,i,U) for i in 1:m]) # Unn for i in 1:m append!(elements,[(i,j+m,j+m,i,U-2*J) for j in 1:m if i!=j]) # (U-2J)n_up n_dn end for i in 1:m append!(elements,[(i,j,j,i,U-3*J) for j in i+1:m]) # (U-3J)n_up n_up end for i in 1:m append!(elements,[(i+m,j+m,j+m,i+m,U-3*J) for j in i+1:m]) # (U-3J)n_dn n_dn end for i in 1:m append!(elements,[(j,i+m,j+m,i,J) for j in i+1:m]) # J a*_up b*_dn a_dn b_up end for i in 1:m append!(elements,[(j+m,i,j,i+m,J) for j in i+1:m]) # J a*_dn b*_up a_up b_dn end for i in 1:m append!(elements,[(j,j+m,i+m,i,g*J) for j in 1:m if i!=j]) # J a*_up a*_dn b_dn b_up end return elements end ############################################## # Basis transformations function Elements2Tensor(elements::Vector, dim::Int) # builds a tensor out of non-zero elements T = typeof(last(elements[1])) rank = length(elements[1])-1 form = ntuple(x->dim,rank) tensor = zeros(T,form) for x in elements tensor[CartesianIndex(x[1:rank])]=last(x) end return tensor end function Tensor2Elements(tensor::Array{T}; tol::Real = 1e-6) where T <:Number # builds a list on non-zero elements tmp=findall(x->abs(x)>tol,tensor) map(i->(Tuple(i)...,tensor[i]), tmp) end using TensorOperations function transform(A::Array{T,4}, U::Matrix) where T <:Number # transformation of 2P (4-index) tensors CU = conj.(U) @tensor D[a,b,c,d]:= CU[e,a]*CU[f,b]*U[g,c]*U[h,d]*A[e,f,g,h] end function transform(A::Array{T,2}, U::Matrix) where T <:Number # transformation of 1P (2-index) tensors U'*A*U end # object of type cdag*c or cdag*cdag*c*c is expected function ElementsTransform(elements::Vector, U::Matrix) # transformation of 1P and 2P objects elements -> elements dim = size(U)[1] A=Elements2Tensor(elements, dim) D=transform(A,U) Tensor2Elements(D) end end