
6-site Hubbard model 

Large Fock space:  dim 212 

Use conservation of Sz : (s1, s2) sectors of dim 

We study all sectors with N=6 simultaneously (6,0), (5, 1), (4,2), (3,3), (2,4), (1,5), (0,6) 



Thermal equilibrium 

Thermal averages (finite temperature): 

system 
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ensemble averaging: 

p4 p3 p2 p1 

... 

t1 t3 t2 t4 

p1 p3 p2 p4 

Measurement involves different (weakly coupled) 

parts of the system,  

e.g., total moment is a sum of local moments 

Measurement involves averaging over (long) time (=duration 

of measurement) 

Ergodic hypothesis 

Averaging over various realizations of the system 

Thermal equilibrium 
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Measurement involves averaging over (long) time (=duration 

of measurement) 

Ergodic hypothesis 

Averaging over various realizations of the system 

system 

reservoir 

Coupling is very weak ! 

The slow dynamics due to system-reservoir 

interaction is replaced  by ensemble averaging 

(the fast dynamics of the system itself is retained) 

Thermal equilibrium 



ensemble averaging: 

p1 p3 p2 p4 

Averaging over various realizations of the system 

How do we get the probabilities?  

Statistical considerations => in thermal equilibrium: 

avg. at temperature T 

sum over eigenstates l 

Boltzmann weight/factor Partition function 

Thermal equilibrium 



ensemble averaging: 

p1 p3 p2 p4 

Averaging over various realizations of the system 

How do we get the probabilities?  

Statistical considerations => in thermal equilibrium: 

Thermal equilibrium 

density matrix  

(statistical operator) 
Hamiltonian (operator) (number) inverse temperature 



ensemble averaging: 
p1 p3 p2 p4 

Averaging over various realizations of the system 

Thermal equilibrium 

Ground state: 

Finite temperature: 



Thermodynamic observables 

Thermodynamic observables: 
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Correlation functions 

Expectation values/correlation functions: 
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Linear response 

Why correlation functions? 

• Contributions to interaction energy of the system 

• Response to small perturbations 

external uniform field 
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Does it work? 

Let's calculate a response to finite h. 

T 

h 

Sz 

h 

Sz 
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Linear response 

Why correlation functions? 

• Contributions to interaction energy of the system 

• Response to small perturbations 

external uniform field 

General case (e.g. local susceptibility): 

Uniform susceptibility is a special case because  



Kubo formula 

Linear response (perturbative) regime 

External time-dependent field (el.-mag. field, photon) 

Evolution operator 
Initial state (ground state) 

H0 and V do not commute and thus is it not possible to split the exponential even if V did 

not depend on time! 

Standard trick: discretise the time into small steps and use the fact that                                            , 

i.e., we can split the exponential on each time (the error can be made arbitrarily small): 

Next we expand the exponentials containing the external field: 



Kubo formula 

Linear response (perturbative) regime 

External time-dependent field (el.-mag. field, photon) 

Evolution operator 
Initial state (ground state) 

H0 and V do not commute and thus is it not possible to split the exponential even if V did 

not depend on time! 

Standard trick: discretise the time into small steps and use the fact that                                            , 

i.e., we can split the exponential on each time (the error can be made arbitrarily small): 

Next we expand the exponentials containing the external field: 

+ 

+ + + 

+ 

+ + 

+ 

…. 

…. 

…. …. 

Now we arrange the terms in powers of V: 
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Kubo formula 

Linear response (perturbative) regime 

External time-dependent field (el.-mag. field, photon) 

Evolution operator 
Initial state (ground state) 

H0 and V do not commute and thus is it not possible to split the exponential even if V did 

not depend on time! 

Standard trick: discretise the time into small steps and use the fact that                                            , 

i.e., we can split the exponential on each time (the error can be made arbitrarily small): 

Next we expand the exponentials containing the external field: 

T is so called time ordering symbol (sometimes called an time-ordering operator). 

Note that it is not an operator! The meaning of T is the expansion on the line 

above.  

You cannot interpret this expression as “evaluate the integral in the bracket -> 

exponentiate the result -> apply T on the result”! 
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Kubo formula 

Linear response (perturbative) regime 

Now we can evaluate the expectation value of operator A in the system evolving with time 

We keep only terms linear in V. 

In compact form. Note that operators are in so called interaction 

representation with respect to H0 (This is indicated by <>0) 

The formula can be used in thermal equilibrium, in which case <>0 refers to thermal average - 

trace with                  . 

We have shifted origin of time integral to infinity, assuming that the 

perturbation is adiabatically (slowly) turned on (this excludes the 

transient states that takes place after sudden turning of finite 

external field) 



Kubo formula 

A typical external field has the form of a (classical) function (electric field, Zeeman field, vector 

potential, …) coupled to a typically (semilocal) operator (charge-, spin-, current-density): 

In the linear response regime the amplitude of the response is linearly proportional to the 

amplitude of the external field. We want to investigate the trivial temporal (or frequency) 

relationship. 

Note, that the expectation value of the commutator depends only on the difference t-t’, 

because H0 does not depend on time. 

Linear response (perturbative) regime 


