$$
H = t \sum_{\langle ij \rangle,\sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}
$$

Large Fock space: dim 2¹²

Use conservation of S_z : (s1, s2) sectors of dim

For example a **basis** function from (1,2) sector:

in binary code (10000|101000)

$$
H = t \sum_{\langle ij \rangle,\sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}
$$

Sector $(3,3)$ **Matrix elements** of the interaction part (diagonal in present basis):

Matrix elements of the hopping part: in binary code (10100|100000) -> -(01100|100000) ✓ (11000|000000) **Signs**:

$$
H = t \sum_{\langle ij \rangle,\sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}
$$

Sector $(3,3)$ **Spectrum** of eigenenergies:

$$
H = t \sum_{\langle ij \rangle,\sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}
$$

Non-interacting (canonical) bosons or fermions

 \Rightarrow We can find all eigenstates by diagonalizing the 1-p Hamiltonian (= hopping matrix)

$$
H = \sum_{a,b} h_{ab} c_a^{\dagger} c_b
$$

\n
$$
c_b = U_{bi} c_i, \quad (c_b^{\dagger} = U_{bi}^* c_i^{\dagger} = U_{ib}^{\dagger} c_i^{\dagger})
$$

\n
$$
H = \sum_i \epsilon_i c_i^{\dagger} c_i
$$

\n
$$
| \phi \rangle = c_{i_1}^{\dagger} \dots c_{i_N}^{\dagger} | \text{vac} \rangle
$$

\n
$$
H | \phi \rangle = \left(\sum_{k=1}^N \epsilon_{i_k} \right) | \phi \rangle
$$

\n
$$
H | \phi \rangle = \left(\sum_{k=1}^N \epsilon_{i_k} \right) | \phi \rangle
$$

\n
$$
L | \phi \rangle = \left(\sum_{k=1}^N \epsilon_{i_k} \right) | \phi \rangle
$$

$$
H = t \sum_{\langle ij \rangle,\sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}
$$

$$
H = t \sum_{\langle ij \rangle,\sigma} c_{i\sigma}^{\dagger} c_{j\sigma}^{} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}
$$

Expectation values/correlation functions:

Simple form for operator diagonal in a given basis

$$
\langle S_{iz} \rangle = \langle \psi_g | S_{iz} | \psi_g \rangle = \sum_l a_l |l \rangle |a_l|^2
$$

$$
\langle S_{iz} \rangle = \langle \psi_g | S_{iz} | \psi_g \rangle = \sum_l \langle l | S_{iz} | l \rangle |a_l|^2
$$

The average value one gets when many measurement on site i are performed. Possible result of each individual measurement is 0, 1 and -1.

At half filling
$$
(N=6)
$$

 $\langle S_{iz} \rangle = 0$ $\langle n_{i\uparrow} \rangle = \frac{1}{2}$

Fluctuations of S^z

 $\langle S_{iz}^2 \rangle - \langle S_{iz} \rangle^2 \neq 0$

Total moment (occupation number):

$$
S_s \equiv \sum_i S_{i,s}
$$

 $\langle S_z \rangle = 0$ $\langle (\delta S_z)^2 \rangle \equiv \langle (S_z - \langle S_z \rangle)^2 \rangle = 0$

$$
\langle N \rangle = 6 \qquad \langle (\delta N)^2 \rangle \equiv \langle (N - \langle N \rangle)^2 \rangle = 0
$$

Conserved quantities (corresponding operators commute with Hamiltonian)

$$
H = t \sum_{\langle ij \rangle,\sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}
$$

Expectation values/correlation functions:

Double occupancy: (probability to find two electrons in a given site)

 $\langle n_{i\uparrow}n_{i\downarrow}\rangle$

$$
H = t \sum_{\langle ij \rangle,\sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}
$$

Expectation values/correlation functions:

(Fluctuating) local moment

$$
H = t \sum_{\langle ij \rangle,\sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}
$$

Expectation values/correlation functions:

Non-local spin-spin correlation function $\langle S_{iz}S_{jz}\rangle$

Weighted sum over configurations like

Which one has the largest weight?

$$
H = t \sum_{\langle ij \rangle,\sigma} c_{i\sigma}^{\dagger} c_{j\sigma}^{} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}
$$

Expectation values/correlation functions:

$$
H = t \sum_{\langle ij \rangle,\sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}
$$

Why correlation functions?

- Contributions to interaction energy of the system $\langle n_{i\uparrow}n_{i\downarrow}\rangle$
- Response to small perturbations

$$
H = t \sum_{\langle ij \rangle,\sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}
$$

What about symmetry?

- We have used conservation of N and S_z when constructing the basis
- We did not use translation symmetry

This would require a bit more 'brain' input

$$
H = t \sum_{\langle ij \rangle,\sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}
$$

Translation symmetry is reflected in the correlation functions:

$$
S_z(\mathbf{k}) = \sum_{\mathbf{k}} e^{i\mathbf{k} \cdot \mathbf{R}} S_{\mathbf{R} z}
$$

$$
H = t \sum_{\langle ij \rangle,\sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}
$$

Translation symmetry is reflected in the correlation functions:

 $S_z(\mathbf{k}) = \sum_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{R}} S_{\mathbf{R}z}$

$$
H = t \sum_{\langle ij \rangle,\sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}
$$

Translation symmetry is reflected in the correlation functions:

$$
S_z(\mathbf{k}) = \sum_{\mathbf{k}} e^{i\mathbf{k} \cdot \mathbf{R}} S_{\mathbf{R} z}
$$

