Second quantization and lattice QFT

Quantum mechanics:

vector graphics (.ps)

- we follow each particle (**r** is dynamical variable)
- impractical for many electrons
- Pauli statistics causes complications (Slater det.)
- cannot capture states with fractional occupation
- Fock space is artificial construct 'product' of Hilbert spaces of each particle

Quantum field theory:

bitmap (.bmp)

- we follow the state of space points (lattice sites)
- **r** (=site index) is a parameter
- general approach
- Pauli statistics is simple (commutation rules)
- no problem with fractional occupation
- Fock space is very natural 'product' of Hilbert spaces of lattice sites

Hubbard model

 $H = t \sum_{\langle ij \rangle, \sigma} c^{\dagger}_{i\sigma} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$ $\langle ij \rangle, \sigma$

lattice Fock space

local Fock space for fermions

Hubbard model

 $H = t \sum_{\langle ij \rangle, \sigma} c^{\dagger}_{i\sigma} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$ $(ij),\sigma$

lattice Fock space

for bosons

Hubbard model

$$H = t \sum_{\langle ij
angle, \sigma} c^{\dagger}_{i\sigma} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Definition:

Flavor = (orbital, spin)

Hilbert space of each flavor is {|0}, |1}}

2-flavors per site | and |local Fock space: $| \emptyset \rangle$ $| \uparrow \rangle_i = c_{i\uparrow}^{\dagger} | \emptyset \rangle$ $| \downarrow \rangle_i = c_{i\downarrow}^{\dagger} | \emptyset \rangle$ Pauli statistics: $| d \rangle_i = c_{i\uparrow}^{\dagger} c_{i\downarrow}^{\dagger} | \emptyset \rangle$

> $\{c_i,c_j\}=c_ic_j+c_jc_i=0$ $\{c_i,c_j^\dagger\}=c_ic_j^\dagger+c_j^\dagger c_i=\delta_{ij}$

- Fock space can be constructed by acting with creation operators on vacuum
- One can use binary code to index the states
- Order of operators is crucial

Definition:

Flavor = (orbital, spin)

Hilbert space of each flavor is $\{|0\rangle, |1\rangle\}$

- F(ck space can be constructed by acting with creation operators on
- One can use binary code to index the states
- Order of operators is crucial

Non-interacting problem Aufbau principle

$$\begin{split} H &= \sum_{a,b} h_{ab} c_a^{\dagger} c_b \\ c_b &= U_{bi} c_i, \quad (c_b^{\dagger} = U_{bi}^* c_i^{\dagger} = U_{ib}^{\dagger} c_i^{\dagger}) \qquad \{c_i, c_j^{\dagger}\} = U_{ia}^{\dagger} \{c_a, c_b^{\dagger}\} U_{bj} = U_{ia}^{\dagger} \delta_{ab} U_{bj} = \delta_{ij} \\ H &= \sum_i \epsilon_i c_i^{\dagger} c_i \\ I &= \sum_i \epsilon_i c_i^{\dagger} c_i \\ |\phi\rangle &= c_{i_1}^{\dagger} \dots c_{i_N}^{\dagger} |\text{vac}\rangle \\ H |\phi\rangle &= \left(\sum_{k=1}^N \epsilon_{i_k}\right) |\phi\rangle \end{split}$$

- Total size of fermionic Fock space is 4^N. (bosonic is infinite)
- Any state can be written as a linear combination of the states in occupation number basis

$$H = t(a_{\uparrow}^{\dagger}b_{\uparrow} + a_{\downarrow}^{\dagger}b_{\downarrow} + b_{\uparrow}^{\dagger}a_{\uparrow} + b_{\downarrow}^{\dagger}a_{\downarrow}) + U(a_{\uparrow}^{\dagger}a_{\downarrow}^{\dagger}a_{\downarrow}a_{\uparrow} + b_{\uparrow}^{\dagger}b_{\downarrow}^{\dagger}b_{\downarrow}b_{\uparrow})$$

Remarks:

- number of 1-p states N=4
- dimension of the Fock space
- dimension of an M-particle sector
- density/particle number operator

$$2^{N} = 16$$

 $\begin{pmatrix} N \\ M \end{pmatrix}$, e.g., $\begin{pmatrix} 4 \\ 2 \end{pmatrix} =$
 $n_{c} = c^{\dagger}c$

6

$$H = t(a_{\uparrow}^{\dagger}b_{\uparrow} + a_{\downarrow}^{\dagger}b_{\downarrow} + b_{\uparrow}^{\dagger}a_{\uparrow} + b_{\downarrow}^{\dagger}a_{\downarrow}) + U(a_{\uparrow}^{\dagger}a_{\downarrow}^{\dagger}a_{\downarrow}a_{\uparrow} + b_{\uparrow}^{\dagger}b_{\downarrow}^{\dagger}b_{\downarrow}b_{\uparrow})$$

Construction of the Hamiltonian (in occupation number basis):

- sign convention, e.g. order the 1-p states: $c_{i_3}^{\dagger}c_{i_2}^{\dagger}c_{i_1}^{\dagger}|0\rangle, i_3 > i_2 > i_1$ $\{b\uparrow, b\downarrow, a\uparrow, a\downarrow\}$
- order the 1-p states:
- Two options: Construct the matrices of the elementary creation/anihilation operators. (computer - sparse matrices)

Construct the basis states and compute the matrix elements of *H* using commutation relations. (pen&paper)

$$H = t(a_{\uparrow}^{\dagger}b_{\uparrow} + a_{\downarrow}^{\dagger}b_{\downarrow} + b_{\uparrow}^{\dagger}a_{\uparrow} + b_{\downarrow}^{\dagger}a_{\downarrow}) + U(a_{\uparrow}^{\dagger}a_{\downarrow}^{\dagger}a_{\downarrow}a_{\uparrow} + b_{\uparrow}^{\dagger}b_{\downarrow}^{\dagger}b_{\downarrow}b_{\uparrow})$$

Construction of the Hamiltonian (in occupation number basis): • sign convention, e.g. $c_{i_3}^{\dagger}c_{i_2}^{\dagger}c_{i_1}^{\dagger}|0\rangle$, $i_3 > i_2 > i_1$

• order the 1-p states: $\{b\uparrow, b\downarrow, a\uparrow, a\downarrow\}$

Let us focus on the 2 electron sector (the rest is trivial)

The basis:	index <i>i</i> ₂ <i>i</i> ₁	state	Hamiltonian:						
	1 21	$a^{\dagger}_{\uparrow}a^{\dagger}_{\downarrow} \emptyset angle$							
	2 31	$b^{\dagger}_{\downarrow}a^{\dagger}_{\downarrow} \emptyset angle$	((U 0 t	0 0 0	t 0 0	- <i>t</i> 0 0	0 0 0	°)
	3 41	$b^{\dagger}_{\uparrow}a^{\dagger}_{\downarrow} \emptyset angle$	<u></u>						t
	4 32	$b^{\dagger}_{\downarrow}a^{\dagger}_{\uparrow} \emptyset angle$		-t	0	0	0 0	0 0	$\begin{bmatrix} -t \\ 0 \end{bmatrix}$
	5 42	$b^{\dagger}_{\uparrow}a^{\dagger}_{\uparrow} \emptyset angle$		Ŏ	Ŏ	ť	-t	Õ	Ŭ)
	6 43	$b^{\dagger}_{\star}b^{\dagger}_{\star} \emptyset\rangle$							

$H = t(a^{\dagger}_{\uparrow}b^{}_{\uparrow} \dashv$	$\vdash a_{\downarrow}^{\dagger}b_{\downarrow}$	$+ b^{\dagger}_{\uparrow}a$	$b_{\uparrow\uparrow} + b_{\downarrow}^{\dagger}a_{\downarrow}) +$	$-U(a^{\dagger}_{\uparrow}a^{\dagger}_{\downarrow}$	[a₁a₁	+ b	†b†l	5 _↓ 6 _↑)			
The basis:	index	index <i>i₂i₁</i> state			Hamiltonian:						
	1	21	$a^{\dagger}_{\uparrow}a^{\dagger}_{\downarrow} \emptyset angle$		(U	0	t	-t	0	0)	
	2	31	$b_{\downarrow}^{\dagger}a_{\downarrow}^{\dagger} \emptyset angle$			0	0	0 0	0	0	
	3	41	$b^{\dagger}_{\uparrow}a^{\dagger}_{\downarrow} m 0 angle$	H =		Ŏ	Ŏ	Ö	Õ	-t	
	4	32	$b^{\dagger}_{\downarrow}a^{\dagger}_{\uparrow} \emptyset angle$			0 0	0 t	0 —t	0 0	$\begin{bmatrix} 0\\ U \end{bmatrix}$	
	5	42	$b^{\dagger}_{\uparrow}a^{\dagger}_{\uparrow} \emptyset angle$		`						
	6	43	$b^{\dagger}_{\uparrow}b^{\dagger}_{\downarrow} \emptyset angle$								
Spectrum:	Energy			Eigenfunctions Total spin							
	0			$ 2 angle, 5 angle,rac{1}{\sqrt{2}}(3 angle+ 4 angle)$					(S = 1)		
	U			$\frac{1}{\sqrt{2}}(1 angle - 6 angle)$					(S=0)		
Ground state:	$\frac{1}{2}(U - \sqrt{U^2 + 16t^2})$			$pprox rac{1}{\sqrt{2}}(- 3 angle+ 4 angle)$					(S=0)		
	$\frac{1}{2}(U + \sqrt{U^2 + 16t^2})$			$\approx rac{1}{\sqrt{2}}(1 angle+ 6 angle)$					(S=0)		

Various operators:121 $a_{\uparrow}^{\dagger}a_{\downarrow}^{\dagger}|\emptyset\rangle$ $n_{\alpha} = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$ 341 $b_{\uparrow}^{\dagger}a_{\downarrow}^{\dagger}|\emptyset\rangle$ $n_{\alpha} = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$ 432 $b_{\downarrow}^{\dagger}a_{\uparrow}^{\dagger}|\emptyset\rangle$ 542 $b_{\uparrow}^{\dagger}a_{\uparrow}^{\dagger}|\emptyset\rangle$

6 43 $b^{\dagger}_{\uparrow}b^{\dagger}_{\downarrow}|\emptyset\rangle$

$$a_{\uparrow}^{\dagger}a_{\uparrow} + a_{\downarrow}^{\dagger}a_{\downarrow}$$

 $n_{a} = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad a_{\uparrow}^{\dagger}a_{\uparrow} + a_{\downarrow}^{\dagger}a_{\downarrow}$ Various operators: 21 $a^{\dagger}_{\uparrow}a^{\dagger}_{\perp}|0\rangle$ 1 2 31 $b_{\perp}^{\dagger}a_{\perp}^{\dagger}|\emptyset\rangle$ 3 41 $b^{\dagger}_{\uparrow}a^{\dagger}_{\downarrow}|\emptyset\rangle$ 4 32 $b^{\dagger}_{\downarrow}a^{\dagger}_{\uparrow}|\emptyset\rangle$ 5 42 $b^{\dagger}_{\uparrow}a^{\dagger}_{\uparrow}|\emptyset\rangle$

 $S^x = S^x_a + S^x_b$

6 43 $b^{\dagger}_{\uparrow}b^{\dagger}_{\downarrow}|\emptyset\rangle$

 $S^{\mathbf{v}} = S^{\mathbf{v}}_{\mathbf{a}} + S^{\mathbf{v}}_{\mathbf{b}}$

 $S^{z} = S^{z}_{a} + S^{z}_{b}$

Some expectation values

Ground state:

$$|GS >= \frac{1}{\sqrt{2+\mu^2}} \begin{pmatrix} 1\\ 0\\ -\mu\\ \mu\\ 0\\ 1 \end{pmatrix}; \quad \mu = \frac{1}{4}(u + \sqrt{u^2 + 16})$$

Lowest excitation energy:
$$E_1 = \frac{1}{2}(\sqrt{16 + u^2} - u) \approx \frac{4}{u}$$

Total spin (conserved): $\langle \mathbf{GS} | \mathbf{S}^2 | \mathbf{GS} \rangle = 0$
 $large \ u = U/t$
Spin per atom (non-conserved): $\langle \mathbf{GS} | \mathbf{S}^2 | \mathbf{GS} \rangle = \frac{3}{4} - \frac{3}{8} \frac{16}{u^2 + u\sqrt{u^2 + 16} + 16}$
 $\approx \frac{3}{4}(1 - \frac{4}{u^2})$

Some physics

$$\begin{aligned} \mathbf{G} \\ |\mathbf{GS}> &= \frac{1}{\sqrt{2+\mu^2}} \begin{pmatrix} 1 \\ 0 \\ -\mu \\ \mu \\ 0 \\ 1 \end{pmatrix}; \quad \mu = \frac{1}{4} (u + \sqrt{u^2 + 16}) \end{aligned}$$

Non-interacting limit (μ =1): |GS> = $\frac{1}{2}(a^{\dagger}_{\uparrow}a^{\dagger}_{\downarrow} - b^{\dagger}_{\uparrow}a^{\dagger}_{\downarrow} + b^{\dagger}_{\downarrow}a^{\dagger}_{\uparrow} + b^{\dagger}_{\uparrow}b^{\dagger}_{\downarrow})|\emptyset>$

Bonding—anti-bonding picture:

Some physics

$$\begin{aligned} \mathbf{G} \\ |\mathbf{GS}> &= \frac{1}{\sqrt{2+\mu^2}} \begin{pmatrix} 1 \\ 0 \\ -\mu \\ \mu \\ 0 \\ 1 \end{pmatrix}; \quad \mu = \frac{1}{4} (u + \sqrt{u^2 + 16}) \end{aligned}$$

Non-interacting limit (μ =1):

$$|\mathrm{GS}
angle = rac{1}{2}(a_{\uparrow}^{\dagger}a_{\downarrow}^{\dagger} - b_{\uparrow}^{\dagger}a_{\downarrow}^{\dagger} + b_{\downarrow}^{\dagger}a_{\uparrow}^{\dagger} + b_{\uparrow}^{\dagger}b_{\downarrow}^{\dagger})|\emptyset
angle \ = rac{1}{2}(a_{\uparrow}^{\dagger} - b_{\uparrow}^{\dagger})(a_{\downarrow}^{\dagger} - b_{\downarrow}^{\dagger})|\emptyset
angle$$

Bonding—anti-bonding picture:

