IWDMS - 2018 Solar models, neutrinos and helioseismology Aldo Serenelli “IWDMS 2018” Lisbon – 11.12.18 - 12.12.18 Ins tute of Space Sciences IWDMS - 2018 Outline (Standard) Solar models Solar neutrinos current status origin of solar luminosity Helioseismology solar abundance problem energy transport (opacity) opacity – composition degeneracy Near-term prospects for CNO neutrinos measurement IWDMS - 2018 Basic facts about the Sun Luminosity – L8 3.842x1033 erg/s Radius – R8 6.9598x1010 cm Mass – M8 1.9891x1033 g Age (solar system oldest meteorites) – τ8 4.57x109 yr Surface metal to hydrogen abundance ratio – (Z/X)8 0.018 – 0.024 The Sun is a typical middle aged low-mass star IWDMS - 2018 Quantitative predictions: Solar models Luminosity – L8 3.842x1033 erg/s Radius – R8 6.9598x1010 cm Mass – M8 1.9891x1033 g Age (solar system oldest meteorites) – τ8 4.57x109 yr Surface metal to hydrogen abundance ratio – (Z/X)8 0.018 – 0.024 Compute the evolution of a 1M8 stellar model initial homegenous composition evolve up to τ8 Adjust initial composition (two parameters) and one free parameter of convection to match Result: model of present day structure of the Sun – internal thermodynamic profiles Two main ways to test models: solar neutrinos & helioseismology IWDMS - 2018 Hydrogen burning & solar neutrinos 4p -- > 4He + 2νe + 2e+ IWDMS - 2018 Hydrogen burning – pp-chains 4p -- > 4He + 2νe + 2e+ Several paths to: pp-chains Dominant in the Sun IWDMS - 2018 Hydrogen burning – pp-chains Five different neutrino sources pp 8B hep 7Be pep IWDMS - 2018 Hydrogen burning – CNO-cycles CNO-cycles – dominates at higher temperatures (more massive stars) Marginal in the Sun Three different neutrino sources Catalyzed by C+N(+O) abundance 14N +p 15O + γ 15O 15N + e++ νe 15N +p 12C +4He 13N 13C + e++ νe 13C + p 14N + γ 12C +p 13N+ γ 17F 17O + e++ νe 16O + p 17F + γ 15N +p 16O + γ 17O +p 14N + 4He 13N 15O 17F IWDMS - 2018 Solar neutrino spectrum Flux SFII-GS98 ⇥ cm 2 s 1 ⇤ pp 5.98 ⇥ 1010 pep 1.44 ⇥ 108 hep 8.04 ⇥ 103 7 Be 5.00 ⇥ 109 8 B 5.58 ⇥ 106 13 N 2.96 ⇥ 108 15 O 2.23 ⇥ 108 17 F 5.52 ⇥ 106 IWDMS - 2018 50 years of solar neutrinos experiments Muon PMTs Stainless Steel Sphere Internal PMTs Water Tank Nylon Vessels Scintillator Non-scintillating Buffer Homestake (Cl) Gallex/SAGE (Gl) Kamiokande/SuperK (H2O) SNO (D2O) Borexino (Scint.) IWDMS - 2018 Coming full circle How does the Sun shine? Which is the solar core temperature? Radiochemical experiments Kamiokande Solar neutrino problem Standard model(s) crises! Helioseismic inference of solar structure à agreement with solar models à Physics solution (circa 1996) SuperK & SNO ν oscillations Solar νs as sensitive probes of solar core IWDMS - 2018 Solar neutrino spectrum Kam, SuperK, SNO Borexino Gallex/GNO - SAGE Homestake Borexino IWDMS - 2018 How does the Sun shine? Global analysis of all solar ν data Parameters: solar neutrino fluxes and ν oscillation parameters (Δm2 21, θ12, θ13) Non-solar ν experiments providing info on oscillation parameters Bergstrom et al. 2016 IWDMS - 2018 How does the Sun shine? No luminosity constraint Bergstrom et al. 2016 SK & SNO 8B Borexino 7Be Global analysis of all solar ν data Parameters: solar neutrino fluxes and ν oscillation parameters (Δm2 21, θ12, θ13) Non-solar ν experiments providing info on oscillation parameters IWDMS - 2018 How does the Sun shine? Lnuc 4⇡(AU)2 = X i ↵i i Simple linear relation linking all neutrino fluxes to nuclear energy generation rate αi depend only on Q values of reactions and shape of neutrino spectra IWDMS - 2018 How does the Sun shine? Purely experimental result – no solar model information Bergstrom et al. 2016 Lnuc 4⇡(AU)2 = X i ↵i i Simple linear relation linking all neutrino fluxes to nuclear energy generation rate αi depend only on Q values of reactions and shape of neutrino spectra Lnuc(neutrino-inferred) L = 1.04 ⇥+0.07 0.08 ⇤ ⇥+0.20 0.18 ⇤ IWDMS - 2018 Latest results from Borexino Caccianaga et al. 2018 Data taking for more than 10 years Observed neutrino spectrum – Caccinaga et al. 2018 (Borexino Collaboration) Some highlights from Borexino 7Be measured to 3% pp measured to 10% pep measured to 15% 8B measured to lowest energy IWDMS - 2018 Latest results from Borexino Caccianaga et al. 2018 Experimental results after accounting for ν oscillations Oscillation parameters Esteban et al. 2017 Lnuc(neutrino-inferred) L = 1.01 ⇥+0.09 0.11 ⇤ Borexino experimental result IWDMS - 2018 How does the Sun shine? Lnuc(neutrino-inferred) L = 1.01 ⇥+0.09 0.11 ⇤ Lnuc(neutrino-inferred) L = 1.04 ⇥+0.07 0.08 ⇤ ⇥+0.20 0.18 ⇤ Standard solar models L = Z @L @m dm = Z ("nuc,⌫ + "g)dm = Z "nuc,⌫dm ! L = Lnuc IWDMS - 2018 How does the Sun shine? Lnuc(neutrino-inferred) L = 1.01 ⇥+0.09 0.11 ⇤ Lnuc(neutrino-inferred) L = 1.04 ⇥+0.07 0.08 ⇤ ⇥+0.20 0.18 ⇤ Standard solar models But, what if there is an energy source/sink not recognized in standard solar models ... L = Z @L @m dm = Z ("nuc,⌫ + "g)dm = Z "nuc,⌫dm ! L = Lnuc L = Z ("nuc,⌫ + "g + "x)dm = Lnuc + Lx ! L 6= Lnuc IWDMS - 2018 How does the Sun shine? Lnuc(neutrino-inferred) L = 1.01 ⇥+0.09 0.11 ⇤ Lnuc(neutrino-inferred) L = 1.04 ⇥+0.07 0.08 ⇤ ⇥+0.20 0.18 ⇤ Standard solar models But, what if there is an energy source/sink not recognized in standard solar models ... L = Z @L @m dm = Z ("nuc,⌫ + "g)dm = Z "nuc,⌫dm ! L = Lnuc L = Z ("nuc,⌫ + "g + "x)dm = Lnuc + Lx ! L 6= Lnuc A complete measurement of solar neutrino fluxes offers the only model independent limit on non-standard energy sources in the Sun (and stars) Present-day limit: 8% IWDMS - 2018 How does the Sun shine? Non standard solar models @L @m = "nuc,⌫ + "g + (±"x) "x < 0 "x > 0 "x > 0 and "x < 0 x particles escape from the star, carrying away energy, analogous to neutrinos, e.g. axions – L8 < Lnuc x particles produce energy in the star, e.g. self-annihilating DM – L8 > Lnuc transport of energy within the star, < 0 where energy is extracted and > 0 where it is deposited, e.g. non-annihilating DM talks today by P. Scott and A. Vincent IWDMS - 2018 Helioseismology Global solar oscillations – acoustic waves Key quantities: c2, p, r, Γ1 105 non-radial individual modes cm/s amplitudes in radial velocity ppm amplitudes in brightness IWDMS - 2018 Helioseismology Global solar oscillations – acoustic waves Key quantities: c2, p, r, Γ1 105 non-radial individual modes cm/s amplitudes in radial velocity ppm amplitudes in brightness Inversion methods allow reconstructing internal profiles IWDMS - 2018 Back to solar models: solar composition Luminosity – L8 3.842x1033 erg/s Radius – R8 6.9598x1010 cm Mass – M8 1.9891x1033 g Age (solar system oldest meteorites) – τ8 4.57x109 yr Surface metal to hydrogen abundance ratio – (Z/X)8 0.018 – 0.024 IWDMS - 2018 Solar composition Change of paradigm in solar composition: Grevesse & Sauval 1998 à Asplund et al. 2005, 2009, Scott et al. 2015 – Caffau et al. 2011 Ø  3D solar atmosphere models Ø  refined atomic data and line selection Ø  non-LTE treatment of line formation Elem. GS98 AGSS09met Change C 8.52 ± 0.06 8.52 ± 0.05 23% N 7.92 ± 0.06 7.83 ± 0.05 23% O 8.83 ± 0.06 8.69 ± 0.05 38% Ne 8.08 ± 0.06 7.93 ± 0.10 41% Mg 7.58 ± 0.01 7.53 ± 0.01 12% Si 7.56 ± 0.01 7.51 ± 0.01 12% S 7.20 ± 0.06 7.15 ± 0.02 12% Fe 7.50 ± 0.06 7.45 ± 0.01 12% (Z/X) 0.0229 0.0178 29% L R (Z/X) mlt 0.06 -0.19 0.06 Yini 2.35 0.56 0.08 Zini -0.73 -0.14 1.11 Impact of SSM calibration Z/X determines solar model composition: Zini & Yini IWDMS - 2018 Solar models - helioseismology 0.0 0.2 0.4 0.6 0.8 1.0 −0.005 0.000 0.005 0.010 0.015 0.0 0.2 0.4 0.6 0.8 1.0 R/Rsun −0.005 0.000 0.005 0.010 0.015 δc/c GS98 AGSS09met Helioseismic uncertainties Solar model uncertainties Vinyoles et al. 2017 Sound speed inversion IWDMS - 2018 Solar models - helioseismology 0.0 0.2 0.4 0.6 0.8 1.0 −0.005 0.000 0.005 0.010 0.015 0.0 0.2 0.4 0.6 0.8 1.0 R/Rsun −0.005 0.000 0.005 0.010 0.015δc/c GS98 AGSS09met Vinyoles et al. 2017 2-3 σ discrepancy for low Z Discrepancy between solar models (new composition) and all helioseismic inferences: solar abundance problem (lots of literature about this) Other helioseismic probes: Density inversion Depth of convective envelope Solar core through frequency ratios IWDMS - 2018 Solar composition: neutrinos Environmental (temperature) uncertainties composition, opacity, age, luminosity, etc + nuclear rate uncertainties B16 solar models – Vinyoles et al. 2017 Plots courtesy of F. Villante Experimental results Bergstrom et al. 2016 IWDMS - 2018 Solar composition: neutrinos Environmental (temperature) uncertainties composition, opacity, age, luminosity, etc + nuclear rate uncertainties Composition à affects pp-chain fluxes through Tc change à determines opacity à pp-fluxes sensitive to opacity (i.e. temperature, only indirectly to composition) à composition and atomic opacities are degenerate in pp-chain fluxes (and helioseismology) B16 solar models – Vinyoles et al. 2017 Plots courtesy of F. Villante Experimental results Bergstrom et al. 2016 IWDMS - 2018 Solar models – overall status High-Z models favored by helioseismology Vinyoles et al. 2017 IWDMS - 2018 Solar models – overall status ν-fluxes comparably good agreement (model uncertainties dominate) because they are from pp-chains Vinyoles et al. 2017 IWDMS - 2018 Solar models – overall status Global comparison favors high-Z models i.e. models with (P, ρ) or (T, µ) profiles consistent with high-Z models But interpretation in terms of solar composition is hampered by degeneracy between composition and opacity Vinyoles et al. 2017 IWDMS - 2018 Energy transport: Metals & Opacity 35% opacity from metals 75% opacity from metals  = I + X @ log  @ log zi zi Intrinsic uncertainty + composition induced variation (δ = fractional variation) In solar interior (R < 0.7 R8) energy transport by radiation – radiative opacity fundamental quantity Lack of metals = lack of opacity : hard to disentangle IWDMS - 2018 Solar opacity from νs and helioseismology Helioseismology fixes the tilt Solar neutrinos and YS the scaling (core) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 rêRo dkHrL Villante et al. 2014 IWDMS - 2018 Solar opacity from νs and helioseismology  = I + X @ log  @ log zi ziδκI is an unknown function à Gaussian Process Song et al. 2018 Bayesian analysis – composition free to vary Opacity solar profile (posterior distrib) Very close to that from GS98 model (unsurprisingly) If AGSS09 composition à 20% opacity increase at base of convective zone Few % opacity increase in solar core Determine ‘effective’ opacity profile: cannot disentangle contributions (atomic, composition, other mechanisms, e.g. dark matter) IWDMS - 2018 Opacities – Experimental result Z-pinch experiment at Sandia Lab First ever measurement at conditions close to base of the solar convective envelope Bailey et al. 2015 IWDMS - 2018 Opacities – Experimental result First ever opacity measurement at conditions close to base of the solar convective envelope Fe opacity @Sandia Lab -- > 7% increase of Rosseland mean opacity T ~ TCZ Ne ~ 1/4 NeCZ Bailey et al. 2015 Experimental hint of higher opacity than theoretical calculations predict – but situation unclear IWDMS - 2018 CN-νs and solar composition CN-cycle marginal in the Sun à intrinsic changes in its rate do not alter background state (e.g. T, ρ, X) à linear dependence on core C+N abundance and S1,14 (for 15O) (15 O)HZ (15 O)LZ (15O)LZ ⇡ 40% 14N +p 15O + γ 15O 15N + e++ νe 15N +p 12C +4He 13N 13C + e++ νe 13C + p 14N + γ 12C +p 13N+ γ 17F 17O + e++ νe 16O + p 17F + γ 15N +p 16O + γ 17O +p 14N + 4He IWDMS - 2018 CN-νs and solar composition Converting Φ(15O) measurement into C+N core measurement – use Φ(8B) as thermometer (8 B) / T25 c ! SuperK+SNO ! Tc/Tc ⇡ 0.1% Removes many solar model uncertainties (environmental) in predictions of CN neutrino fluxes IWDMS - 2018 CN-νs and solar composition Temperature dependence Temperature dependence (opacity) Nuclear rates Converting Φ(15O) measurement into C+N core measurement – use Φ(8B) as thermometer Serenelli et al. 2013 IWDMS - 2018 CN-νs and solar composition Temperature dependence Temperature dependence (opacity) Nuclear rates (15 O) (15O)SSM /  (8 B) (8B)SSM 0.785 =  C + N CSSM + NSSM (1 ± 0.4% (env) ± 2.6% (D) ± 10% (nucl)) Nuclear uncertainty dominant: S1,14 (7%) & S17 (5%) – can be potentially reduced further (Almost) direct measurement of C+N in solar core Converting Φ(15O) measurement into C+N core measurement – use Φ(8B) as thermometer Reduces to Serenelli et al. 2013 IWDMS - 2018 CN-νs at Borexino CN flux hidden below 210Bi background Indirect measurement of 210Bi by evolution of 210Po (Villante et al. 2011) provided 210Bi -- > 210Po only source of 210Po But, slow convection in the scintillator was bringing 210Po from the nylon vessel to the fiducial volume Smirnov @ Neutrino 2018 IWDMS - 2018 CN-νs at Borexino Borexino coll. IWDMS - 2018 CN-νs at Borexino Guffanti 2018 (Borexino coll.) @ 5th International Solar Neutrino Conference IWDMS - 2018 CN-νs at Borexino Guffanti 2018 Thermal insulation 210Po rate evolution after insulation IWDMS - 2018 Summary Ø  The Sun shines by pp burning : 1.03 ± 0.08 L8 – all neutrino experiments Ø  The Sun shines by pp burning : 1.01 ± 0.10 L8 – Borexino experiment Ø  Open question: pp neutrinos measurement to 1% needed to test other energy sources in the Sun Ø  Open question: direct detection of CN fluxes Ø  Precise determination of solar opacity profile from νs (core opacity) and seismic data Ø  Solar abundance/model problem remains: opacity ßà composition degeneracy Exporting abundance/opacity problem to other stars: systematic errors in ages by 10-15% Ø  First experimental opacity measurement @ solar conditions hints of higher Fe opacity at right place : 7% not enough : ~20% needed Ø  Open question: are there other mechanisms of energy transport at work (e.g. ADM), modifying ‘effective’ radiative opacity? Ø  CN fluxes remain necessary and only way to break degeneracy Whatever the result, very important measurement à core C+N abudance 40% solar abundance problem, 15% chemical mixing processes in the Sun (surface/core difference) IWDMS - 2018 Blank page IWDMS - 2018 SSM – neutrinos No luminosity constraint – purely experimental result With luminosity constraint – L8 = Lnuc Bergstrom et al. 2016 Global analysis with more recent data needed, e.g. Borexino – see Ianni’s talk IWDMS - 2018 Neutrinos: theory vs experiment ν rates: SSM vs. Experiment B16(GS98) Cl 7.84±0.81 Homestake 2.56±0.23 1±0.12 H2O Kamiokande 0.50±0.07 SuperK 0.42±0.01 125.6±3.7 Ga GALLEX + GNO 67.2±5 SAGE 65.4±4 1±0.12 D2O 0.96±0.04 SNO All ν SNO νe 0.31±0.02 ⌫ fluxes: Solar models vs. Borexino 1.00±0.006 0.69±0.06 1.00±0.01 0.54±0.09 1.00±0.06 0.66±0.02 1.00±0.12 0.47±0.03 Theory pp pep 7 Be 8 B Borexino IWDMS - 2018 Solar core temperature à solar models Strong T dependence of ν-fluxes But this determines only precision – actual TC determination requires solar models Problems start here – models depend on inputs Solar composition Radiative opacities Nuclear reaction rates Chemical mixing (gravitational settling + other mixing processes) Equation of state (7 Be) / T10 c ! Borexino ! Tc/Tc ⇡ 0.4% (8 B) / T25 c ! SuperK+SNO ! Tc/Tc ⇡ 0.1% IWDMS - 2018 How does the Sun shine? Bergstrom et al. 2016 Now including the luminosity constraint IWDMS - 2018 How does the Sun shine? Bergstrom et al. 2016 Now including the luminosity constraint With luminosity constraint pp pep IWDMS - 2018 Opacities – new calculations Old generation Ø  OPAL – Iglesias et al. 1996 Ø  Opacity Project (OP) – Badnell et al. 2005 New generation Ø  OPAS – Blancard et al. 2012 – now available Mondet et al. 2015 (only for AGSS09 composition) Ø  Los Alamos (OPLIB) – Colgan et al. 2016 – Most complete set from new generation Solid – GS98 Dashed – AGSS09 Too low in solar core Ruled out by νs IWDMS - 2018 Opacities – new calculations Old generation Ø  OPAL – Iglesias et al. 1996 Ø  Opacity Project (OP) – Badnell et al. 2005 New generation Ø  OPAS – Blancard et al. 2012 – now available Mondet et al. 2015 (only for AGSS09 composition) Ø  Los Alamos (OPLIB) – Colgan et al. 2016 – Most complete set from new generation Solid – GS98 Dashed – AGSS09 Not guaranteed that newer opacity models lead to higher opacity values ± 5% variations Current situation unclear Too low in solar core Ruled out by νs IWDMS - 2018 SSM with new opacities Solar νs rule out OPLIB opacities for low Z models IWDMS - 2018 g-modes detection (finally?) g-modes probe inner regions – but strongly damped in the surface – tiny amplitudes & high background direct searches for g-modes have failed (despite claims in Garcia et al. 2007) Fossat et al. 2017 use new method: long term modulations in p-mode spectrum Claim detections of more than 200 g-modes of angular degree l = 1 , 2 IWDMS - 2018 g-modes detection (finally?) Two important claims in Fossat et al. 2017 1)  Asymptotic period spacings for l= 1 , 2 = 2 2 p ⇥(⇥ + 1) "Z RCZ 0 N dr r # 1 N = g ✓ 1 1 d log p dr d log dr ◆ Fossat et al. P1 = 1443.1 ± 0.5s - P2 = 832.8 ± 0.7s GS98 SSMs: P1 = 1525 – 1540 s - P2 = 880 – 890 s AGSS09 SSMs: P1 = 1535 – 1560 s - P2 = 886 – 900 s 2)  Rotational splitting -- > solar core rotation ~ x3 faster than intermediate regions Maybe some impact for chemical mixing in the core – but in direction of lowering ν-fluxes IWDMS - 2018 g-modes detection (finally?) Two important claims in Fossat et al. 2017 1)  Asymptotic period spacings for l= 1 , 2 = 2 2 p ⇥(⇥ + 1) "Z RCZ 0 N dr r # 1 N = g ✓ 1 1 d log p dr d log dr ◆ Fossat et al. P1 = 1443.1 ± 0.5s - P2 = 832.8 ± 0.7s GS98 SSMs: P1 = 1525-1540 s - P2 = 880 – 890 s AGSS09 SSMs: P1 = 1535-1560 s - P2 = 886-900 s 2)  Rotational splitting -- > solar core rotation ~ x3 faster than intermediate regions Maybe some impact for chemical mixing in the core – but in direction of lowering ν-fluxes From Appourchaux et al. 2010 review IWDMS - 2018 SSM – B16 models S(0) Uncert. % S(0)/S(0) S11 4.03 · 10 25 1 +0.5% S17 2.13 · 10 5 4.7 +2.4% S114 1.59 · 10 3 7.5 -4.2% Flux B16-GS98 B16-AGSS09met Solara Chg. (pp) 5.98(1 ± 0.006) 6.03(1 ± 0.005) 5.97 (1+0.006) (1 0.005) 0.0 (pep) 1.44(1 ± 0.01) 1.46(1 ± 0.009) 1.45 (1+0.009) (1 0.009) 0.0 (hep) 7.98(1 ± 0.30) 8.25(1 ± 0.30) 19 (1+0.63) (1 0.47) -0.7 (7 Be) 4.93(1 ± 0.06) 4.50(1 ± 0.06) 4.80 (1+0.050) (1 0.046) -1.4 (8 B) 5.46(1 ± 0.12) 4.50(1 ± 0.12) 5.16 (1+0.025) (1 0.017) -2.2 (13 N) 2.78(1 ± 0.15) 2.04(1 ± 0.14) 13.7 -6.1 (15 O) 2.05(1 ± 0.17) 1.44(1 ± 0.16) 2.8 -8.1 (17 F) 5.29(1 ± 0.20) 3.26(1 ± 0.18) 85 -4.2 New SSMs - changes in some nuclear rates (Vinyoles et al. 2017) Small changes 7Be-8B (S11-S17) Larger for 13N-15O (S11-S114) IWDMS - 2018 SSM – B16 models Flux B16-GS98 B16-AGSS09met Solara Chg. (pp) 5.98(1 ± 0.006) 6.03(1 ± 0.005) 5.97 (1+0.006) (1 0.005) 0.0 (pep) 1.44(1 ± 0.01) 1.46(1 ± 0.009) 1.45 (1+0.009) (1 0.009) 0.0 (hep) 7.98(1 ± 0.30) 8.25(1 ± 0.30) 19 (1+0.63) (1 0.47) -0.7 (7 Be) 4.93(1 ± 0.06) 4.50(1 ± 0.06) 4.80 (1+0.050) (1 0.046) -1.4 (8 B) 5.46(1 ± 0.12) 4.50(1 ± 0.12) 5.16 (1+0.025) (1 0.017) -2.2 (13 N) 2.78(1 ± 0.15) 2.04(1 ± 0.14) 13.7 -6.1 (15 O) 2.05(1 ± 0.17) 1.44(1 ± 0.16) 2.8 -8.1 (17 F) 5.29(1 ± 0.20) 3.26(1 ± 0.18) 85 -4.2 0.6 0.8 1.0 1.2 1.4 0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.6 0.8 1.0 1.2 1.4 Φ(7 Be)/Φ(7 Be)Exp 0.000 0.002 0.004 0.006 0.008 0.010 0.012 Prob 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Φ(8 B)/Φ(8 B)Exp 0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 Prob ν data fit AGSS09 GS98 B16 models Older models S(0) Uncert. % S(0)/S(0) S11 4.03 · 10 25 1 +0.5% S17 2.13 · 10 5 4.7 +2.4% S114 1.59 · 10 3 7.5 -4.2% New SSMs - changes in some nuclear rates (Vinyoles et al. 2017) Small changes 7Be-8B (S11-S17) Larger for 13N-15O (S11-S114) Revision of global analysis including new Borexino data needed IWDMS - 2018 SSM – B16 models 0.0 0.2 0.4 0.6 0.8 0.000 0.005 0.010 0.0 0.2 0.4 0.6 0.8 r/Rsun 0.000 0.005 0.010 δc/c B16−GS98 B16−AGSS09met Qnt. B16-GS98 B16-AGSS09met Solar YS 0.2426 ± 0.0059 0.2317 ± 0.0059 0.2485 ± 0.0035 RCZ/R 0.7116 ± 0.0048 0.7223 ± 0.0053 0.713 ± 0.001 c/c⇥ 0.0005 ± 0.0004 0.0021 ± 0.001 — Small changes in helioseismic probes IWDMS - 2018 Opacities Helioseismic probes and pp ns depend on “effective” opacity profiles: opacity models + composition details in F. Villante’s talk OP vs OPAL OPAS vs OP (blue) Status of opacity models in 2014 @ “A special Borexino Event” Few percent differences in solar interiors Only theoretical calculations available IWDMS - 2018 SSM with new opacities New opacities lead to some variations in sound speed profiles but nothing too dramatic IWDMS - 2018 SSM with new opacities 1000 1500 2000 2500 3000 3500 4000 0.06 0.07 0.08 0.09 1000 1500 2000 2500 3000 3500 4000 Freq. [µHz] 0.06 0.07 0.08 0.09 r02 Solar (BiSON) OPAL OPLIB (LA) OP GS98 1000 1500 2000 2500 3000 3500 4000 0.06 0.07 0.08 0.09 1000 1500 2000 2500 3000 3500 4000 Freq. [µHz] 0.06 0.07 0.08 0.09 r02 Solar (BiSON) OPAL OPLIB (LA) OP OPAS AGSS09 New OPLIB opacities lead to indecisive results for helioseismic probes not all agree (disagree) with high(low) Z solar models IWDMS - 2018 SSM with new opacities IWDMS - 2018 SSM: the need for CN(O) New opacity calculations do not alter state-of-the-art or complicate matters more Most robust way to break the opacity < -- > composition degeneracy is through CNO ns 1% 10% 100% 5% Measurement error logZGS/ZAGS moderate evidence ν-experiments only Bergstrom et al. 2016 Discriminating power can improve if model information is added (Haxton et al. 2008) IWDMS - 2018 Extra slides