Jméno: 1 2 3 Celkem 2. písemka ze semináře z matematiky II 1. (4 body) Nechť funkce / : IR —y IR je spojitá v bodě a a f (a) ^ 0. Dokažte, že funkce 1/f(x) je definována na nějakém okolí bodu a a je v bodě a spojitá. 2. (4 body) Nechť U = {ay/Š + by/% eR;a,be Q}. Dokažte: (a) U je vektorový prostor nad racionálními čísly Q (1 bod), (b) Reálná čísla y/Š a y/b tvoří jeho bázi (3 body). 3. (4 body) Nechť M je podmnožina intervalu [a, b] s těmito vlastnostmi: (1) a EM, (2) Je-li iGlai/ř), pak existuje ô > 0 takové, že [x, x + ô) C M, (3) Je-li {i;n}™=1 rostoucí posloupnost prvků množiny M a lim xn = x, pak x G M. Dokažte, že M = [a, b].