Maple 17 A Quick Reference Prepared by: Douglas Meade Department of Mathematics University of South Carolina March 2013, updated for Maple 17 (Earlier editions for Maple 12, Maple 11, Maple 9, Maple 8, Maple 7, Maple 6, Maple V, Release 5, and Release 4.) Symbols and Abbreviations Symbol Description Example := assignment f := x^2/y^3; ; terminate command; display result int( x^2, x ); : terminate command; hide result int( x^2, x ): .. specify a range or interval plot( t*exp(-2*t), t=0..3 ); { } set delimiter (a set is an unordered list) { y, x, y }; [ ] list delimiter (lists are ordered) [ y, x, y ]; % refers to previous result (percent) Note: Was " until Maple V, Release 5 Int( exp(x^2), x=0..1 ): % = evalf( % ); " " (see ?strings) string delimiter (double quote) Note: Changed in Maple V, Release 5 (see %) plot( sin(10*x) + 3*sin(x), x=0..2*Pi, title="An interesting plot" ); ` `(see ?names) name delimiter (back quote) `A name` := `This is a name.`; || (see also ?cat) concatenate string or name Note: Was . prior to Maple 6 a||3; a||(1..3); ´ ´(see ?uneval) delayed evaluation (single quote) x := ´x´; -> (see ?-> and ?proc) mapping (procedure) definition f := (x,y) -> x^2*sin(x-y); f(Pi/2,0); @ composition operator (cos@arcsin)(x); @@ repeated composition operator (D@@2)(ln); Mathematical Operations, Functions, and Constants Symbol Description Example +, -, *, /, ^ add, subtract, multiply, divide, power 3*x^(-4) + x/Pi; sin, cos, tan, cot, sec, csc trigonometric functions sin( theta-Pi/5 ) - sec( theta^2 ); arcsin, arccos, arctan, arccot, arcsec, arccsc inverse trigonometric functions arctan( 2*x ); exp exponential function exp( 2*x ); ln natural logarithm ln( x*y/2 ); log10 common logarithm (base 10) log10( 1000 ); abs absolute value abs( (-3)^5 ); sqrt square root sqrt( 24 ); ! factorial k!; =, <>, <, <=, >, >= equations and inequalities Note: E no longer exists; use exp(1) diff( y(x), x ) + x*y(x) = F(x); exp(Pi) > Pi^exp(1); Pi, I π, i (mathematical constants) Note: Maple is case-sensitive exp( Pi*I ); infinity infinity (∞) int( x^(-2), x=1..infinity ); NOTES: • The PDF version of this document is available on the World Wide Web at http://www.math.sc.edu/~meade/maple/ maple-ref.pdf. • Please send comments, corrections, and suggestions for improvements to meade@math.sc.edu. Commands Command Description Example restart clear all Maple definitions restart: with load a Maple package with( DEtools ); with( plots ): help (also ?) display Maple on-line help ?DEplot limit calculate a limit limit( sin(a*x)/x, x=0 ); diff compute the derivative of an expression diff( a*x*exp(b*x^2)*cos(c*y), x ) int definite or indefinite integration int( sqrt(x), x=0..Pi ); Limit inert (unevaluated) form of limit Limit( sin(a*x)/x, x=0 ); Diff inert (unevaluated) form of diff Diff( a*x*exp(b*x^2)*cos(c*y), x ); Int inert (unevaluated) form of int Int( sqrt(x), x=0..Pi ); value evaluate an inert expression (typically used with Limit, Diff, or Int) G := Int( exp(-x^2), x ); value( G ); plot create a 2-dimensional plot plot( u^3, u=0..1, title="cubic" ); plot3d create a 3-dimensional plot plot3d(sin(x)*cos(y),x=0..4*Pi,y=0..Pi); display combine multiple plot structures into a single plot or modify optional settings in a plot (in plots package) F:=plot( exp(x), x=0..3, style=line ); G:=plot( 1/x, x=0..3, style=point ); plots[display]([F,G], title="2 curves"); solve solve equations or inequalities solve( x^4 - 5*x^2 + 6*x = 2, { x } ); fsolve solve using floating-point arithmetic fsolve( t/10 + t*exp(-2*t) = 1, t ); dsolve solve ordinary differential equations; see ?dsolve for a list of available options dsolve( diff(y(x),x)-y(x)=1, y(x) ); odeplot create 2D and 3D plots from solutions obtained by dsolve (with type=numeric); see ?odeplot for more options (in plots package) S:=diff(x(t),t)=-y(t),diff(y(t),t)=x(t): IC:=x(0)=1,y(0)=1: P:=dsolve({S,IC}, {x(t),y(t)}, numeric): odeplot(P, [[t,x(t)],[t,y(t)]], 0..Pi); odeplot(P, [x(t),y(t)], 0..Pi); DEplot create plot associated with an ODE or system of ODEs; see ?DEplot for more information (in DEtools package) ODE := diff( y(x),x ) = 2*x*y(x); DEplot( ODE, [y(x)], x=-2..2, y=-1..1, arrows=SMALL ); D differential operator (often used when specifying derivative initial conditions for dsolve) ODE := diff(y(x),x$2) +y(x) = 1; IC := y(0)=1, D(y)(0)=1; dsolve( { ODE, IC }, y(x) ); simplify apply simplification rules to an expression simplify( exp( a+ln(b*exp(c)) ) ); factor factor a polynomial factor( (x^3-y^3)/(x^4-y^4) ); convert convert an expression to a different form convert( x^3/(x^2-1), parfrac, x ); collect collect coefficients of like powers collect( (x+1)^3*(x+2)^2, x ); rhs right-hand side of an equation rhs( y = a*x^2 + b ); lhs left-hand side of an equation lhs( y = a*x^2 + b ); numer extract the numerator of an expression numer( (x+1)^3/(x+2)^2 ); denom extract the denominator of an expression denom( (x+1)^3/(x+2)^2 ); subs substitute values into an expression subs( x=r^(1/3), 3*x*ln(x^3) ); eval evaluate an expression with specific values eval( 3*x*ln(x^3), x=r^(1/3)); evalf evaluate using floating-point arithmetic evalf( exp( Pi^2 ) ); evalc evaluate a complex-valued expression (returns a value in the form a+I*b) evalc( exp( alpha+I*omega ) ); evalb evaluate a Boolean expression (returns true or false or FAIL) evalb( evalf( exp(Pi) > Pi^exp(1) ) ); assign perform assignments (often used after solve or dsolve) S:=solve( {x+y=1, 2*x+y=3}, {x,y} ); assign( S ); x; y; seq create a sequence seq( [0,i], i=-3..3 ); for . . . from . . . to . . . by . . . in . . . while . . . do . . . end do repetition statement; see ?do for syntax (Note: od is an acceptable substitute for end do) tot := 0; for i from 11 by 2 while i < 100 do tot := tot + i^2 end do; if . . . then . . . elif . . . else . . . end if conditional statement; see ?if for syntax (Note: fi is an acceptable substitute for end if) if type(x,name) then ’f’(x) else x+1 end if; assume inform Maple of additional properties of objects assume( t>0 ); about check assumptions on Maple objects about( t );