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Abstract In this paper, we investigate the dynamical
behaviors of a Morris–Lecar neuron model. By using bifur-
cation methods and numerical simulations, we examine the
global structure of bifurcations of the model. Results are sum-
marized in various two-parameter bifurcation diagrams with
the stimulating current as the abscissa and the other parameter
as the ordinate. We also give the one-parameter bifurcation
diagrams and pay much attention to the emergence of peri-
odic solutions and bistability. Different membrane excitabil-
ity is obtained by bifurcation analysis and frequency-current
curves. The alteration of the membrane properties of the
Morris–Lecar neurons is discussed.

Keywords Morris–Lecar model · Limit cycle ·
Bifurcation · Bistability

1 Introduction

Action potentials are generated by neurons with the pur-
pose of transmitting information through the nervous sys-
tem (Koch 1999; Izhikevich 2007). According to the firing
patterns of action potentials and frequency-current curves,
Hodgkin proposed three basic classes of neuronal excitabil-
ity (Hodgkin 1948). The distinction among classes 1, 2, and
3 excitability has been proved extremely useful. Class 1
excitable neurons can smoothly encode the strength of an
input into the output firing frequency; Class 2 neurons can-
not do that, and they fire in a relatively narrow frequency
band; Class 3 neurons cannot exhibit sustained spiking activ-
ity, so Hodgkin regarded them as “sick” or “unhealthy,” but
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“healthy” Class 3 neurons have been described in the audi-
tory brainstem neurons [e.g., in the medial superior olive
(Smith 1995)], dorsal horn of the spinal cord (Prescott and
Koninck 2002), dorsal root ganglia (Sculptoreanu and Groat
2007), etc. Many papers have studied Hodgkin’s classes 1
and 2 excitability by the mechanisms of bifurcations and
phase space analysis (FitzHugh 1955; Rinzel and Ermen-
trout 1989; Gutkin and Ermentrout 1998; Izhikevich 2000,
2007; Tsumoto et al. 2006; Tsuji et al. 2007; Prescott et
al. 2008). Class 1 excitability is concerned with a saddle-
node on invariant circle bifurcation in which the oscillation
emerges with zero frequency. On the other hand, Class 2
excitability is observed when a rest potential loses stability
via an Andronov-Hopf bifurcation, which is characterized
by the oscillation emerging with nonzero frequency. Class 3
excitability occurs when the resting state remains stable, and
no bifurcation appears. For the Morris–Lecar model (Mor-
ris and Lecar 1981), Rinzel and Ermentrout (1989) studied
classes 1 and 2 excitability by changing stimulating current.
They found that the bifurcations in the generation of the repet-
itive firing change from the saddle-node bifurcation to the
subcritical Hopf bifurcation. Tsumoto et al. (2006) gave a
global view of the bifurcation mechanism of the Morris–
Lecar model. They investigated one- or two-parameter bifur-
cation diagrams of the model.

In this paper, we study the dynamics of a Morris–Lecar
model from Prescott et al. (2008). The model parameters
of this paper are different from the previously used para-
meters in Morris–Lecar models. We give the one- and two-
parameter bifurcation analyses of this model. We investigate
the excitability from the viewpoint of bifurcation. We also
discuss the alteration of the membrane properties and the
bistability of the Morris–Lecar model.

The paper is organized as follows: In Sect. 2, we describe
the Morris–Lecar model and list the tools for computer sim-
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ulations. The results of the bifurcation diagrams and phase
portraits are shown in Sect. 3. Finally, the conclusions and
the discussions are given in Sect. 4.

2 Model and tools

Prescott et al. (2008) consider a Morris–Lecar model, which
is described by

C
dV

dt
= Istim − gfastm∞(V )(V − ENa) − gsloww(V − Ek)

−gleak(V − Eleak),
dw

dt
= φw

w∞(V ) − w

τw(V )
,

(1)

where V represents the fast activation variable; w is the
slower recovery variable; Istim is the stimulating current that
is assumed to be temporally constant. The system parameters
ENa, Ek, and Eleak represent equilibrium potentials of Na+,
K+, and leak currents; gfast, gslow, and gleak denote the max-
imum conductances of corresponding fast, slower, and leak
current, respectively. The steady-state activation functions
and the time constant are given by the following:

m∞(V ) = 0.5

[
1 + tanh

(
V − βm

γm

)]
,

w∞(V ) = 0.5

[
1 + tanh

(
V − βw

γw

)]
,

τw(V ) = 1

cosh
(

V −βw

2γw

) .

The following parameter values are the same as in Prescott
et al. (2008):

ENa =50 mV, Ek = −100 mV, Eleak = −70 mV,

gfast = 20 mS/cm2, gslow =20 mS/cm2, gleak =2 mS/cm2,

φw = 0.15, C = 2 µF/cm2, γm = 18 mV,

the other parameters Istim, βm, βw, γw are varied in the next
section.

When varying the parameter βm or βw, the Morris–Lecar
model can exhibit classes 1, 2, and 3 excitability based on
their frequency-current curves. In this paper, we treat Istim as
a main control parameter and analyze two-parameter bifur-
cations in the parameter plane of Istim as the abscissa and one
of the parameters βm and βw as the ordinate. We also give
the one-parameter bifurcation diagrams, frequency-current
curves, phase portraits, and waveforms of the Morris–Lecar
model.

The model has been integrated by the fourth-order Runge–
Kutta method with a time step of 0.01. The integration,
bifurcation analysis, and phase plane analysis were per-

formed using the parameter continuation software MAT-
CONT (Kuznetsov et al. 2010) and MATLAB.

3 Results

In this section, we give the numerical results from the bifur-
cation analysis of Morris–Lecar model (1). We use the fol-
lowing symbols in the bifurcation diagrams of this paper: SNi

and Hi , (i = 1, 2) represent for the saddle-node bifurcation
and Hopf bifurcation of an equilibrium point, respectively;
LPCi , (i = 1, 2) for the tangent bifurcation of limit cycles;
Homi , (i = 1, 2) for the homoclinic bifurcation; GH, BT,
and CP for the generalized Hopf bifurcation, the Bogdanov–
Takens bifurcation, and the cusp bifurcation of an equilib-
rium point, respectively. The meanings of these bifurcations
can be referred to Kuznetsov (1998) or Guckenheimer and
Holmes (1983). In one-parameter bifurcation diagrams, the
symbols Vmax and Vmin denote the maximum value and the
minimum value of V of the limit cycles, respectively. The
solid blue curves represent the values of V at the stable equi-
libria (or stable limit cycles), and the dashed blue curves
denote the values of V at the unstable equilibria (or unstable
limit cycles).

In the following, we will discuss bifurcation phenom-
ena observed in two-parameter bifurcation diagrams of
(Istim, βm) and (Istim, βw)-planes, respectively.

3.1 Bifurcations in the (Istim, βm)-plane

Let βw = −10 mV, γw = 13 mV. All other parameters
are as indicated in Sect. 2. Figure 1a is the two-parameter
bifurcation diagram in the (Istim, βm)-plane. Figure 1b–d are
enlarged bifurcation diagrams around LPC1, BT, and LPC2,
respectively. In Fig. 1, the yellow region indicates parame-
ters at which a stable limit cycle exists; in green region, three
equilibrium points coexist. In the following, we account for
each bifurcation mechanism along lines l1, l2, l3, and l4 in
Fig. 1a.

Figure 2a shows a one-parameter bifurcation diagram
along the line l1 with βm = 0 in Fig. 1 (or an enlarged bifur-
cation diagram Fig. 1). If Istim is relatively small, then the
Morris–Lecar model (1) has a stable equilibrium point EP.
An example of which is shown in Fig. 3a. By increasing Istim,
a pair of limit cycles is generated by the tangent bifurcation
LPC1. One of them is a stable limit cycle, which corresponds
to repetitive firing in the Morris–Lecar model (1). It coexists
with the stable equilibrium point; namely, there is a bistabil-
ity in the narrow range between the bifurcation point LPC1

and the subcritical Hopf bifurcation point H1. An example
of the bistability is shown in Fig. 3b. After the Hopf bifurca-
tion H1, the stable limit cycle remains a unique attractor. An
example of which is shown in Fig. 3c.
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Fig. 1 a Two-parameter
bifurcation diagram in the
(Istim, βm)-plane. All
parameters are as indicated in
Sect. 2 with βw = −10 mV and
γw = 13 mV. The yellow region
indicates parameters at which a
stable limit cycle exists. In
green region, three equilibrium
points coexist. The values of βm
in l1, l2, l3, l4 are
0,−6.5,−12,−20,
respectively. b–d are the
enlarged bifurcation diagrams
around l1, l2, l4 of a,
respectively. Detailed analysis
of b–d is given later (color
figure online)
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Fig. 2 a One-parameter bifurcation diagram along the line l1 (βm =
0). The solid and dashed blue curves represent the values of V at the
equilibria (or the maximum and minimum values of V of limit cycles),
stable and unstable, correspondingly. The vertical dashed lines repre-
sent Istim = 20, 57, 80, respectively. By increasing Istim, the model

will undergo the tangent bifurcation of limit cycles (LPC1) and Hopf
bifurcation (H1). b Frequency f as a function of Istim. This function is
discontinuous, and action potentials are generated in a certain frequency
band, which is the typical property of Class 2 excitability

Figure 2b shows the frequency-current ( f − Istim) curve
alone the line l1 in Fig. 1a. We see that the repetitive firing
with a nonzero frequency appears via the subcritical Hopf
bifurcation, which is the typical property of Class 2 excitabil-
ity.

Figure 4b shows a one-parameter bifurcation diagram
along the line l2 with βm = −6.5 in Fig. 4a. If Istim is rel-
atively small, then the system (1) has a stable equilibrium
point EP. By increasing Istim, an unstable node point EP1 and
a saddle point EP2 are generated from the saddle-node bifur-
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Fig. 3 Examples of phase
portraits (left) and waveforms
(right) when βm = 0.Red and
dark green closed curves in
phase portraits (b), and (c)
denote stable and unstable limit
cycles, respectively. Arrows
indicate directions of
trajectories. Light and heavy
dashed curves indicate V - and
w-nullclines of model (1) (color
figure online)
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cation of the equilibrium point SN1. By further increasing
Istim, there is a homoclinic bifurcation point Hom1 [labeled
by (c) in Fig. 4b], which corresponds to a large homo-
clinic orbit. After the bifurcation point Hom1, the homo-
clinic orbit is destroyed and a stable limit cycle appears.
The next bifurcation is another kind of homoclinic bifur-
cation Hom2 [labeled by (d) in Fig. 4b], which corresponds
to a small homoclinic orbit. After the homoclinic bifurca-
tion Hom2, an unstable limit cycle appears and it shrinks to

a subcritical Hopf bifurcation point H1; after that, an unsta-
ble equilibrium point EP3 and a saddle point EP2 get close
to each other, coalesce at the saddle-node bifurcation point
SN2, and then disappear. By further increasing Istim, the
Morris–Lecar model (1) has a unique unstable equilibrium
EP1 and a stable limit cycle. It is easy to see that the Morris–
Lecar neuron is bistable between the homoclinic bifurcation
Hom1 and the Hopf bifurcation H1. After the Hopf bifur-
cation H1, the stable limit cycle remains a unique attractor.
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Fig. 4 a An enlarged
bifurcation diagram around the
line l2 in Fig. 1c (βm = −6.5). b
One-parameter bifurcation
diagram along the line l2. The
vertical dashed lines represent
Istim = 28, 28.7, 28.895111, 28.97575, 29.05, 29.8,
respectively. In a and b, by
increasing Istim, the model has
saddle-node bifurcation of
equilibria (SN1, SN2), Hopf
bifurcation (H1), a large
homoclinic orbit bifurcation
(Hom1), and a small homoclinic
orbit bifurcation (Hom2) 27.5 28 28.5 29 29.5 30
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Hence, the Morris–Lecar neuron is monostable. Examples
are shown in Fig. 5a–f. The values of Istim labeled by (a)–(f)
in Fig. 4b correspond to the phase portraits shown in Fig. 5a–
f.

Figure 6a shows a one-parameter bifurcation diagram
along the line l3 with βm = −12 in Fig. 1a. As Istim increas-
ing, the stable equilibrium EP1 and the saddle equilibrium
EP2 get closer to each other, and they coalesce at the saddle-
node bifurcation point SN2 and then disappear. After the
saddle-node bifurcation SN2, a stable limit cycle is gener-
ated from a saddle-node on invariant circle bifurcation. Fig-
ure 7a–c illustrate phase portraits and waveforms before and
after the saddle-node on invariant circle bifurcation. The val-
ues of Istim labeled by a–c in Fig. 6a correspond to the phase
portraits in Fig. 7a–c, respectively.

Figure 6b shows the frequency-current ( f − Istim) curve
alone the line l3 in Fig. 1a. We see that the repetitive firing
starts with the zero frequency occurring via a saddle-node on
invariant circle bifurcation. Hence, the Morris–Lecar neuron
exhibits the property of the Class 1 excitability.

The bifurcation mechanism along line l4 in Fig. 1a
(or an enlarged bifurcation diagram Fig. 1d) is similar to
those along line l1 in Fig. 1a. Model (1) goes through
the same bifurcations along l1 and l4, but in the opposite
direction. The one-parameter bifurcation diagram and the
frequency-current ( f − Istim) curve are shown in Fig. 8a, b,
respectively. From the frequency-current curve in Fig. 8b,
we see that the frequency at the transition “spiking→
resting” stops at a nonzero value. According to Izhike-
vich (2000) or Izhikevich (2007), this is a Class 2 spik-
ing.

Along the line with βm = −23 in Fig. 1a (not shown in
Fig. 1a), the resting state remains stable for Istim varying
from 0 to 100 mV; no bifurcation occur, which corresponds
to Class 3 excitability.

3.2 Bifurcations in the (Istim − βw)-plane

Let βm = −1.2 mV, γw = 10 mV. All other parameter values
are the same as in Sect. 2. Figure 9a is the two-parameter
bifurcation diagram of Morris–Lecar model (1) in (Istim, βw)

-plane. Figure 9b is an enlarged diagram in the dashed box of
Fig. 9a. The bifurcation diagram Fig. 9a is almost the same
as the bifurcation diagram Fig. 1a of Tsumoto et al. (2006),
except for (βm, γw) in the dashed box of Fig. 9a. Therefore,
we only consider the bifurcation mechanism in Fig. 9b.

Figure 10a shows a one-parameter bifurcation diagram
along the line l1 with βw = −18.5 in Fig. 9b. When Istim is
relatively small, the model has exactly a stable equilibrium
point EP. An example of which is shown in Fig. 11a. By
increasing Istim, a pair of limit cycles is generated from the
tangent bifurcation LPC1. Moreover, there is a bistability in
the narrow range between the tangent bifurcation point LPC1

and the supercritical Hopf bifurcation point H2 in Fig. 10a;
namely, a stable limit cycle coexists with a stable equilibrium
point. An example of bistability is shown in Fig. 11b. By
further increasing Istim, the equilibrium point loses stability.
Model (1) has three limit cycles between the Hopf bifurca-
tion point H2 and the tangent bifurcation point LPC2, two
of which are stable, and the another one is unstable. Hence,
there is also a bistability in the narrow range. An example
of which is shown in Fig. 11c. After the tangent bifurcation
LPC2, the stable limit cycle remains a unique attractor. An
example of which is shown in Fig. 11d.

Figure 10b shows a one-parameter bifurcation diagram
along the line l2 with βw = −20.5 in Fig. 9b. The Hopf
bifurcation H2 is between LPC1 and LPC2 in Fig. 10a, but it
is in front of LPC1 in Fig. 10b. The bifurcation mechanisms
of model (1) along the lines l1 and l2 in Fig. 9b are similar to
each other. Model (1) is bistable in the narrow range between
the tangent bifurcation LPC1 and LPC2 in Fig. 10b.
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Fig. 5 Examples of phase
portraits observed in Eq. (1)
with βm = −6.5. Red and dark
green closed curves in phase
portraits denote stable and
unstable limit cycles,
respectively. Purple curvesin
phase portraits (c), (d), and (d1)
indicate large and small
homoclinic orbits, respectively
(color figure online)
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4 Conclusions and discussions

The aim of this paper is to investigate dynamics of a Morris–
Lecar model. By changing Istim, βm , and βw, we give two-
parameter and one-parameter bifurcation analyses of the
Morris–Lecar model. We have found that the Morris–Lecar
model can exhibit the properties of classes 1, 2, and 3
excitability and bistability.

For the study of Morris–Lecar model, FitzHugh (1955)
discussed stable solutions by changing the system parame-
ters Iext, φ, ḡca, V3, V4 (which correspond to Istim, φw, gfast,
βw, γw in Morris–Lecar model (1), respectively). They
presented that the membrane properties of classes 1 and 2
correspond to repetitive firing oscillations generated by a
saddle-node and a subcritical Hopf bifurcation of equilib-
rium points, respectively. Tsumoto et al. (2006) investigated
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Fig. 5 continued
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Fig. 6 a One-parameter
bifurcation diagram along the
line l3 (βm = −12).
A saddle-node on invariant
circle (SNIC) bifurcation
occurs, i.e., the model has a
bifurcation of homoclinic orbits
to saddle-node point (SN2). The
vertical dashed lines represent
Istim = 6, 13.849841, 40,
respectively. b Frequency f as a
function of Istim. This function
is continuous. Action potentials
are generated with arbitrarily
low frequency; this is the typical
property of Class I excitability

0 20 40 60 80 100
−100

−50

0

50

I
stim

V

SN
2

V
min

V
max

(a)

EP
3

EP
2

EP
1

(c)(b)(a)

0 20 40 60 80 100
0

50

100

150

200

I
stim

f (
H

z)

(b)

detailed bifurcations of invariant sets in the parameter space
Iext, φ, ḡca, V3, V4. They gave the two-parameter and one-
parameter bifurcation analysis of the Morris–Lecar model,
and presented the mechanism of global transition between
Class 1 and Class 2 from the bifurcation point of view.
Prescott et al. (2008) gave the one-parameter bifurcation
analysis of a Morris–Lecar model in spinal lamina I neurons.
They analyzed classes 1, 2, and 3 excitability by changing
the stimulating current. In this paper, we have studied the
two-parameter bifurcation in (Istim, βm) parameter plane; the
bifurcation diagram is shown in Fig. 1a. When βm decrease,
classes 1, 2, and 3 excitability will vary. We have shown
that the Morris–Lecar model can exhibit classes 2, 1, and 3
excitability when the parameters (Istim, βm)of model (1) vary
along l1, l3, and the line with βm = −23 in Fig. 1a, respec-
tively. Between the lines l1 and l3, the model undergoes the
Bogdanov–Takens bifurcation, which is important to switch
between Class 2 and Class 1 excitability. Izhikevich (2000)
suggested the classification of repetitive spiking based on the
frequency as oscillations terminate. Namely, Class 1 spiking
systems exhibit terminating oscillations having arbitrary low
frequency; Class 2 spiking systems exhibit oscillations that

terminate with a nonzero frequency. According to this clas-
sification of repetitive spiking, we conclude that the class of
excitability coincides with the class of spiking when model
(1) along with l1, l3, and l4 in Fig. 1a, but the neuron exhibits
Class 2 excitability and Class 1 spiking along l2 in Fig. 1a.

It is easy to see that βm is a parameter determining the
property of the membrane excitability of the Morris–Lecar
model, which has the same function as βw (or V3) in Prescott
et al. (2008) (or Tsumoto et al. 2006). βm and βw were half-
maximal activation of the fast current (Ifast) and slow current
(Islow), respectively. Ifast and Islow represent the sum of all
ion currents with fast- and slow-gating kinetics, respectively.
Grouping currents with similar kinetics is a method for reduc-
ing dimensionality (Kepler et al. 1992). The low-dimensional
model is better for mathematical analysis, but the higher-
dimensional model is better for biological interpretation. For
example, we can ungroup Islow into parts which include the
delayed rectifier K + current Ik,dr and a subthreshold current
Isub. This converts the model from 2D to 3D and makes it
more biophysically realistic.

We also consider the bistability in this paper. Bistable sys-
tems have an important neurocomputational property: They
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Fig. 7 Examples of phase
portraits (left) and waveforms
(right) when βm = −12. The
purple curve and red closed
curve in phase portraits (b) and
(c) denote homoclinic orbit and
stable limit cycle, respectively
(color figure online)
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can be switched from one state to the other by an appropri-
ate stimulation. We have found that the Morris–Lecar model
(1) has bistability along the line l1, l2, and l4 in Fig. 1a and
along l1 and l2 in Fig. 9b for some parameters, respectively.
Along the l1 and l2 in Fig. 9b, the neuron has two differ-
ent kinds of bistability. One kind is coexistence of a sta-
ble equilibrium point and a stable limit cycle; another kind
is coexistence of two stable limit cycles. Therefore, chang-
ing the initial state of neurons with other stimuli, such as

noise, or adding an adaptation current, for example, calcium-
activated K+ current or voltage-activated M-type K+ current,
will lead the neurons changing from rest to tonic-spiking, or
from the small amplitude tonic-spiking to large amplitude
tonic-spiking.

For the analysis in (Istim, βw) parameter plane, we only
discuss the different parts between the bifurcation diagram
in Fig. 9a and the bifurcation diagram in Fig. 1a of Tsumoto
et al. (2006). We also give the regions of the bistability in
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Fig. 8 a One-parameter
bifurcation diagram along the
line l4 (βm = −20). A tangent
bifurcation of limit cycle
(LPC2) and a subcritical Hopf
bifurcation (H2) occur.
b Frequency f as a function of
Istim. The frequency at the
transition “spiking→ resting”
stops at a nonzero value, and it
is a Class 2 spiking
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Fig. 9 a Two-parameter bifurcation diagram in the (Istim, βw)-plane.
All parameters are as indicated in Sect. 2 with βm = −1.2 mV and
γw = 10 mV. In addition to the part in the dashed box, the other parts of
the figure are similar to Fig. 1a of Tsumoto et al. (2006) (b) an enlarged

bifurcation diagram in the dashed box of a. The red, dark green, blue
curves denote Hopf, LPC1, and LPC2 curves, respectively. βw = −18.5
in l1 and βw = −20.5 in l2 (color figure online)
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Fig. 10 a One-parameter bifurcation diagram along the line l1 in
Fig. 9b (βw = −18.5). The vertical dashed lines represent Istim =
54, 59.5, 60, 65, respectively. There is a bistability in the range between
the tangent bifurcation point LPC1 and LPC2. When the value of Istim
increases between the points LPC1 and H2, a stable limit cycle coexists

with a stable equilibrium point. When Istim increases from H2 to LPC2,
two stable limit cycles coexist. b One-parameter bifurcation diagram
along the line l2 in Fig. 9b. There is a bistability in the range between
the tangent bifurcation points LPC1 and LPC2. Two stable limit cycles
coexist

123



84 Biol Cybern (2014) 108:75–84

Fig. 11 Examples of phase
portraits when βw = −18.5.
The red and dark green closed
curves in b, c, and d represent
stable and unstable limit cycles,
respectively (color figure online)
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Fig. 10a, b of model (1). Our results show that there exist
three limit cycles of model (1) for some parameters. This is
a new dynamical phenomenon in the Morris–Lecar models.
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