DU 1. Denote by A[z] the ring of formal power series with coefficients in A, i.e. its elements
are formal expressions

f(z) =ag+ a1z + agx® + - = Zanx”.
1. Let J C R be an ideal and define the limit of the diagram
.- R/J* - R/J* - R/J

to be the completion of R at the ideal J and denote it Rj. Show that Afz] = ‘meo’
the completion of the polynomial ring at the maximal ideal my = (z). Consider all the
rings in the diagram equipped with the discrete topology and endow A[z] with the limit
topology. Give an explicit criterion for a sequence (or a net or a filter) of formal power
series fr(z) = > agpx™ to converge to f(z) = >  ana™ in terms of the coefficients ay,
and a,.

2. Show that for a field k the ring k[z] is a UFD. As one of the ingredients, prove more
generally that f(z) € Afx] is invertible iff ap € A is invertible; in the nontrivial
direction, reduce to the case ag = 1, write f(x) = 1+g(z) so that g(z) = ayz+azr®+- -,
and show that the following makes sense and defines the inverse:

flo) ' =1 +g@) " =1-g(@)+gla)’ -

(using the previous point, one can make sense of the infinite sum on the right hand side
as the limit of the sequence of partial sums; this indeed converges).

3. The goal is to prove that k[x] is a UFD. As for the polynomials, one observes that for
a tuple of variables x = (x/,t) , one gets k[x]] = k[x'][¢t]. However, it is generally not
true that A being a UFD implies A[z] being a UFD, so one has to argue differently.
We say that f(x) € k[x] is a not-necessarily-monic Weierstrass polynomial w.r.t. ¢
if it lies in

k[x][t] € k[x][t]
and as such is a polynomial of degree n with leading coefficient invertible in k[x’]
and all other coefficients non-invertible, i.e. lying in mg[t]. Classically, a Weierstrass
polynomial is additionally assumed to be monic. The Weierstrass preparation theorem
says that every formal power series f(x) € k[x'][t] ~ mo[¢] is associated to a (unique
monic) Weierstrass polynomial (the condition simply means that f is non-zero along
the t-axis, i.e. that as an element of k[x] it contains some monomial t" with a non-
zero coefficient).! Since we can assume that k[x'][¢] is a UFD by induction, this can be

'Here is an idea of the proof: We want f(x) = a(x)(t" + b(x)) with b(x) € mo[t] of degree n — 1. Now
rewriting this as " = a(x) ™! f(x) — b(x) we want to divide t™ by f(x) “with a remainder”. Now one can easily
divide by ", for one can write canonically any formal power series as ao(x)t" + bo(x) with bo(x) € k[x][t] of
degree n — 1. Expressing f(x) in this way as f(x) = u(x)t" 4+ v(x), now with v(x) € mg[t] — this determines
n, we see that f(x) is roughly u(x)t" and we start by dividing by u(x)t" instead:

ao(x)t" + bo(x) = an(x)u(x) " ulx)t” +bo(x) = ao(x)ulx) " f(x) + (—ao(x)u(x) " v(x) +bo(x)).
——

f(x)—v(x) a7y (x)t" by (x)

Continuing in this way we see that the quotient is (ao(x) + a1(x) 4 - - Ju(x) ™" and the remainder is bo(x) +
bi(x)+--- provided that these converge. But one can see easily, using v(x) € mo[t], that if ax(x) € m§[t] then
both akr1(x), brr1(x) € m&T ],



ultimately used to show that k[x] is a UFD: Assume that M C N are two (cancellative)
monoids satisfying;:

e The mapping M /ass — N/ass is bijective. In detail, every element of N is associ-
ated to some element of M and every two elements of M that are associated in N
are associated also in M.

Show that if M has a unique factorization property then so does N. Apply this to
M consisting of the (not-necessarily-monic) Weierstrass polynomials (these easily
inherit the unique factorization property from k[x][¢] for they are closed both under
multiplication and factorization) and N = k[x/[[¢] ~ mg[t]. Finally, show that for any
non-zero element f(x) € k[x] one can set up the coordinates so that f(x) € N (look at
the lowest non-zero homogeneous degree and apply the theorem from algebraic geometry
about polynomials).

DU 2. Here we work over R (or better over C). Let C' = V(f) C A? be a curve that is
smooth at xo € C in the sense that df(x) # 0. Then one can parametrize C' near xq locally
as x = (§(t), a(t)), passing through x¢ for ¢t = ¢, and any two parametrizations differ by a
diffeomorphism of the parameter space near tg, so the following definition makes sense: The
multiplicity of the intersection point xg of C' = V(f) and D = V(g) is defined as the order of
zero at to of the function g(&(t), a(t)) (here the function g is defined uniquely up to a constant
if it is required to be polynomial — since it is the generator of I(D) — and up to a multiple
by a nonzero smooth function otherwise). It is not obvious why this definition is symmetric
in C and D; you may try to give it a thought.

1. Take some concrete example like f = 22 +9?> — 1 and g = (v — vV2)2 + (y — vV2)? — 1
and use the parametrization using sin and cos or any other to compute the multiplicity.

2. Now assume that the coordinate system has been set up so that f has a non-zero
coefficient at y", the z-coordinates of all intersection points are distinct and also distinct
from all the points of C' for which f, = 0 (these form the set V(f, f) which must be
finite unless (z — a) | f — in other words, we want all the linear factors of f depend on
y). Then near each z-coordinate of an intersection point, one can write the branches
of V(f) as y = ay(z), i.e. the local parametrizations as above are (z,a;(z)). Plug the
above into the formula

Res(f,g;y) = a; - g(x, 01(x)) - - - gz, ar(x))

and prove that the number of intersections is bounded by rs even when counted with
multiplicity in the sense of this exercise. In the concrete example above, plugging in the
non-polynomial parametrization into the formula must give a polynomial expression
(the resultant is a polynomial after all), try it.

DU 3. Let f: X — Y be a regular map and denote by ¢ = f*: k[Y] — k[X] the induced
map on coordinate k-algebras. We showed that V (¢.I) = f~1(V(I)).

1. Prove symmetrically that

I(f(8)) = ¥"1(S)



(this should be quite obvious) and deduce that f(S) = V(¢*(I(S)). Now specialize to
S = V(J) and use Hilbert Nullstellensatz to prove that

fV() =V(p™J).

(I don’t know if Hilbert Nullstellensatz is really necessary — you may try to figure it
out.)

2. Now assume in addition that f is dominant, i.e. that ¢ is injective. We showed (using
Nakayama lemma) that if ¢ is finite then f is surjective and closed. Prove that fibres of
f are all finite (this does not use the previous point, and it should have been done in
the tutorial).

3. You may know the following theorem: Let A be a finitely generated k-algebra, acted
upon by a finite group G of k-algebra automorphisms, from the right and denoted as
a¥. If n = |G| is not divisible by chark then the subalgebra

A ={aecAla=a}

of invariants (or fixed points) is also finitely generated. In addition, A is a finite A%-
algebra.?

4. Assume now that an affine variety X has a (left) action of a finite group G by polynomial
maps. This induces a (right) action of G on k[X] and we may apply the previous point
to conclude that there exists an affine variety X such that k[Xg] = k[X]“. Show that
the canonical map X — X¢ is surjective with finite fibres and identify them as orbits
of the G-action. Conclude that X¢ = X/G as sets.

2Start by observing that any a € A is a root of a monic polynomial p, = [, (x — a?) whose coefficients

geG
are the elementary symmetric polynomials o;(a) = 0:{a’ | g € G}, up to a sign, and as such lie in A%, Denote
the generators of A as u; and denote by B the subalgebra generated by o;(u;). Then p; (u;) = 0 implies that

uy € B{1,uj,... ,u?’l}. For this reason,
A=B{ul...ui" |a1,...,ar <n}=B{u"},

so A is already finite over B. Explicitly, for any a € A, we have an expression a = Y, bou® with bo € B. Apply
the symmetrization S: A — A%, S(a) =1 ZgEG a?; assuming that a € A%, we get

n

a=S(a) = ZbaS(ua)

and thus A% = B{S(u®)} = k[o:(u;), S(a®)].



DU 4. Dokazte nasledujici tvrzeni:

e Afinni varieta X je ireducibilni, pravé kdyz pro libovolné afinni variety X;, Xo plati

X§X1UX2:>(XQX1\/XQX2).

e Idedl J je prvoidedl, pravé kdyz pro libovolné idedly Jy, Jo plati
J2J1J2:>(J2J1\/JQJ2).

e Pomoci predchozich dvou tvrzeni dokazte, ze X je ireducibilni, pravé kdyz I(X) je
prvoidedl (neni k tomu potfeba Hilbertova véta o nulach, ale klidné ji pouzijte).

DU 5. Oznaéme I = (§ | g € I) idedl generovany homogenizacemi § = a:odegg g(3E, . om).

(Plati Vaf(I) = VP'(I), to ukdzeme na pifsti predndsce; toto tvrzeni je diuvodem, pro¢ se
timto idedlem zabyvame.) Uvazujme nasledujici usporaddni monomu

2 >u 1 e ol > |8V (Ja| = |B| Az > 2P).

Dokazte, ze v piipadé, ze I = (g1,...,9,) je Grobnerova baze vzhledem k >, je také I =
(91, - - -, 9r) Grébnerovou bazi vzhledem k podobném usporddani >g, jen s z navic a mensim
nez zbylé proménné, tj. x1 > -+ > x, > xg.

DU 6. Ukaite, 7e zobrazeni FiP2o - P2 (20 : 21 m2) = (2122 : Tox0 @ Tox1) je biracionalni
ekvivalence a najdéte oteviené podmnoziny P2, na nichz je f izomorfismus. (Napovéda:
napisete-li si zobrazeni afinné, inverze by méla byt jasna.)

DU 7. Dokazte, ze obraz reguldarniho zobrazeni A — A" je uzavieny (napovéda: pouzijte,
7e P! — P je reguldrni a zkoumejte obraz nevlastniho bodu).

DU 8. Rekneme, ze k-rovina K a [-rovina L se protinaji transverzdlné v P", jestlize jejich
prunik je (k 4+ I — n)-rovina. Ukazte, ze obecna dvojice (K, L) € G(k,n) x G(I,n) se protina
transverzalné.




