
DÚ 1. Denote by AJxK the ring of formal power series with coefficients in A, i.e. its elements
are formal expressions

f(x) = a0 + a1x+ a2x
2 + · · · =

∑
anx

n.

1. Let J ⊆ R be an ideal and define the limit of the diagram

· · · → R/J2 → R/J2 → R/J

to be the completion of R at the ideal J and denote it R̂J . Show that AJxK = Â[x]m0
,

the completion of the polynomial ring at the maximal ideal m0 = (x). Consider all the
rings in the diagram equipped with the discrete topology and endow AJxK with the limit
topology. Give an explicit criterion for a sequence (or a net or a filter) of formal power
series fk(x) =

∑
aknx

n to converge to f(x) =
∑

anx
n in terms of the coefficients akn

and an.

2. Show that for a field k the ring kJxK is a UFD. As one of the ingredients, prove more
generally that f(x) ∈ AJxK is invertible iff a0 ∈ A× is invertible; in the nontrivial
direction, reduce to the case a0 = 1, write f(x) = 1+g(x) so that g(x) = a1x+a2x

2+· · · ,
and show that the following makes sense and defines the inverse:

f(x)−1 = (1 + g(x))−1 = 1− g(x) + g(x)2 − · · ·

(using the previous point, one can make sense of the infinite sum on the right hand side
as the limit of the sequence of partial sums; this indeed converges).

3. The goal is to prove that kJxK is a UFD. As for the polynomials, one observes that for
a tuple of variables x = (x′, t) , one gets kJxK = kJx′KJtK. However, it is generally not
true that A being a UFD implies AJxK being a UFD, so one has to argue differently.
We say that f(x) ∈ kJxK is a not-necessarily-monic Weierstrass polynomial w.r.t. t
if it lies in

kJx′K[t] ⊆ kJx′KJtK

and as such is a polynomial of degree n with leading coefficient invertible in kJx′K
and all other coefficients non-invertible, i.e. lying in m0JtK. Classically, a Weierstrass
polynomial is additionally assumed to be monic. The Weierstrass preparation theorem
says that every formal power series f(x) ∈ kJx′KJtK ∖ m0JtK is associated to a (unique
monic) Weierstrass polynomial (the condition simply means that f is non-zero along
the t-axis, i.e. that as an element of kJxK it contains some monomial tn with a non-
zero coefficient).1 Since we can assume that kJx′K[t] is a UFD by induction, this can be

1Here is an idea of the proof: We want f(x) = a(x)(tn + b(x)) with b(x) ∈ m0[t] of degree n − 1. Now
rewriting this as tn = a(x)−1f(x)− b(x) we want to divide tn by f(x) “with a remainder”. Now one can easily
divide by tn, for one can write canonically any formal power series as a0(x)t

n + b0(x) with b0(x) ∈ kJx′K[t] of
degree n − 1. Expressing f(x) in this way as f(x) = u(x)tn + v(x), now with v(x) ∈ m0[t] – this determines
n, we see that f(x) is roughly u(x)tn and we start by dividing by u(x)tn instead:

a0(x)t
n + b0(x) = a0(x)u(x)

−1 u(x)tn︸ ︷︷ ︸
f(x)−v(x)

+ b0(x) = a0(x)u(x)
−1f(x) + (−a0(x)u(x)

−1v(x)︸ ︷︷ ︸
a1(x)tn+b1(x)

+b0(x)).

Continuing in this way we see that the quotient is (a0(x) + a1(x) + · · · )u(x)−1 and the remainder is b0(x) +
b1(x)+ · · · provided that these converge. But one can see easily, using v(x) ∈ m0[t], that if ak(x) ∈ mk

0JtK then
both ak+1(x), bk+1(x) ∈ mk+1

0 JtK.



ultimately used to show that kJxK is a UFD: Assume that M ⊆ N are two (cancellative)
monoids satisfying:

� The mapping M/ass → N/ass is bijective. In detail, every element of N is associ-
ated to some element of M and every two elements of M that are associated in N
are associated also in M .

Show that if M has a unique factorization property then so does N . Apply this to
M consisting of the (not-necessarily-monic) Weierstrass polynomials (these easily
inherit the unique factorization property from kJx′K[t] for they are closed both under
multiplication and factorization) and N = kJx′KJtK ∖m0JtK. Finally, show that for any
non-zero element f(x) ∈ kJxK one can set up the coordinates so that f(x) ∈ N (look at
the lowest non-zero homogeneous degree and apply the theorem from algebraic geometry
about polynomials).

DÚ 2. Here we work over R (or better over C). Let C = V (f) ⊆ A2 be a curve that is
smooth at x0 ∈ C in the sense that df(x) ̸= 0. Then one can parametrize C near x0 locally
as x = (ξ(t), α(t)), passing through x0 for t = t0, and any two parametrizations differ by a
diffeomorphism of the parameter space near t0, so the following definition makes sense: The
multiplicity of the intersection point x0 of C = V (f) and D = V (g) is defined as the order of
zero at t0 of the function g(ξ(t), α(t)) (here the function g is defined uniquely up to a constant
if it is required to be polynomial – since it is the generator of I(D) – and up to a multiple
by a nonzero smooth function otherwise). It is not obvious why this definition is symmetric
in C and D; you may try to give it a thought.

1. Take some concrete example like f = x2 + y2 − 1 and g = (x −
√
2)2 + (y −

√
2)2 − 1

and use the parametrization using sin and cos or any other to compute the multiplicity.

2. Now assume that the coordinate system has been set up so that f has a non-zero
coefficient at yr, the x-coordinates of all intersection points are distinct and also distinct
from all the points of C for which f ′

x = 0 (these form the set V (f, f ′
x) which must be

finite unless (x− a) | f – in other words, we want all the linear factors of f depend on
y). Then near each x-coordinate of an intersection point, one can write the branches
of V (f) as y = αi(x), i.e. the local parametrizations as above are (x, αi(x)). Plug the
above into the formula

Res(f, g; y) = asr · g(x, α1(x)) · · · g(x, αr(x))

and prove that the number of intersections is bounded by rs even when counted with
multiplicity in the sense of this exercise. In the concrete example above, plugging in the
non-polynomial parametrization into the formula must give a polynomial expression
(the resultant is a polynomial after all), try it.

DÚ 3. Let f : X → Y be a regular map and denote by φ = f∗ : k[Y ] → k[X] the induced
map on coordinate k-algebras. We showed that V (φ∗I) = f−1(V (I)).

1. Prove symmetrically that

I(f(S)) = φ∗I(S)
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(this should be quite obvious) and deduce that f(S) = V (φ∗(I(S)). Now specialize to
S = V (J) and use Hilbert Nullstellensatz to prove that

f(V (J)) = V (φ∗J).

(I don’t know if Hilbert Nullstellensatz is really necessary – you may try to figure it
out.)

2. Now assume in addition that f is dominant, i.e. that φ is injective. We showed (using
Nakayama lemma) that if φ is finite then f is surjective and closed. Prove that fibres of
f are all finite (this does not use the previous point, and it should have been done in
the tutorial).

3. You may know the following theorem: Let A be a finitely generated k-algebra, acted
upon by a finite group G of k-algebra automorphisms, from the right and denoted as
ag. If n = |G| is not divisible by chark then the subalgebra

AG = {a ∈ A | ag = a}

of invariants (or fixed points) is also finitely generated. In addition, A is a finite AG-
algebra.2

4. Assume now that an affine varietyX has a (left) action of a finite group G by polynomial
maps. This induces a (right) action of G on k[X] and we may apply the previous point
to conclude that there exists an affine variety XG such that k[XG] = k[X]G. Show that
the canonical map X → XG is surjective with finite fibres and identify them as orbits
of the G-action. Conclude that XG = X/G as sets.

2Start by observing that any a ∈ A is a root of a monic polynomial pa =
∏

g∈G(x− ag) whose coefficients

are the elementary symmetric polynomials σi(a) = σi{ag | g ∈ G}, up to a sign, and as such lie in AG. Denote
the generators of A as uj and denote by B the subalgebra generated by σi(uj). Then puj (uj) = 0 implies that

un
j ∈ B{1, uj , . . . , u

n−1
j }. For this reason,

A = B{uα1
1 . . . uαr

r | α1, . . . , αr < n} = B{uα},

so A is already finite over B. Explicitly, for any a ∈ A, we have an expression a =
∑

bαu
α with bα ∈ B. Apply

the symmetrization S : A → AG, S(a) = 1
n

∑
g∈G ag; assuming that a ∈ AG, we get

a = S(a) =
∑

bαS(u
α)

and thus AG = B{S(uα)} = k[σi(uj), S(a
α)].
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DÚ 1. Dokažte následuj́ıćı izomorfismy:

� A[a−1] ∼= A[t]/(at− 1),

� (A/I)[t] ∼= A[t]/J a popǐste ideál J ,

� A/(I + J) ∼= (A/I)/J ′ a popǐste ideál J ′ ve stylu “je to v zásadě J , jenom. . . ”.

DÚ 2. Pomoćı Gröbnerovy báze vyřešte soustavu polynomiálńıch rovnic

x2 + y + z = 1

x+ y2 + z = 1

x+ y + z2 = 1

DÚ 3. Necht’ k je algebraicky uzavřené těleso. Studujte vztah mezi nenulovými kvadratickými
polynomy f ∈ k[x1, . . . , xn] a př́ıslušnými afinńımi varietami V (f) ⊆ An; konkrétně se zabývejte
t́ım, nakolik je zobrazeńı f 7→ V (f) injektivńı. Dále proved’te analogickou studii pro kubické
polynomy.

DÚ 4. Dokažte následuj́ıćı tvrzeńı:

� Afinńı varieta X je ireducibilńı, právě když pro libovolné afinńı variety X1, X2 plat́ı

X ⊆ X1 ∪X2 =⇒ (X ⊆ X1 ∨X ⊆ X2).

� Ideál J je prvoideál, právě když pro libovolné ideály J1, J2 plat́ı

J ⊇ J1J2 =⇒ (J ⊇ J1 ∨ J ⊇ J2).

� Pomoćı předchoźıch dvou tvrzeńı dokažte, že X je ireducibilńı, právě když I(X) je
prvoideál (neńı k tomu potřeba Hilbertova věta o nulách, ale klidně ji použijte).

DÚ 5. Označme Ĩ = (g̃ | g ∈ I) ideál generovaný homogenizacemi g̃ = x deg g
0 g(x1

x0
, . . . , xn

x0
).

(Plat́ı V af(I) = V pr(Ĩ), to ukážeme na př́ı̌st́ı přednášce; toto tvrzeńı je d̊uvodem, proč se
t́ımto ideálem zabýváme.) Uvažujme následuj́ıćı uspořádáńı monomů

xα >gr x
β ⇔ |α| > |β| ∨ (|α| = |β| ∧ xα > xβ).

Dokažte, že v př́ıpadě, že I = (g1, . . . , gr) je Gröbnerova báze vzhledem k >gr, je také Ĩ =
(g̃1, . . . , g̃r) Gröbnerovou báźı vzhledem k podobném uspořádáńı >gr, jen s x0 nav́ıc a menš́ım
než zbylé proměnné, tj. x1 > · · · > xn > x0.

DÚ 6. Ukažte, že zobrazeńı f : P2 // P2, (x0 : x1 : x2) 7→ (x1x2 : x2x0 : x0x1) je biracionálńı
ekvivalence a najděte otevřené podmnožiny P2, na nichž je f izomorfismus. (Nápověda:
naṕı̌sete-li si zobrazeńı afinně, inverze by měla být jasná.)

DÚ 7. Dokažte, že obraz regulárńıho zobrazeńı A1 → An je uzavřený (nápověda: použijte,
že P1 → Pn je regulárńı a zkoumejte obraz nevlastńıho bodu).

DÚ 8. Řekneme, že k-rovina K a l-rovina L se prot́ınaj́ı transverzálně v Pn, jestliže jejich
pr̊unik je (k + l − n)-rovina. Ukažte, že obecná dvojice (K,L) ∈ G(k, n)×G(l, n) se prot́ıná
transverzálně.

DÚ 9. Necht’ f : X → Y je surjektivńı uzavřené zobrazeńı mezi Noetherovskými topologickými
prostory takové, že pro každou dvojici uzavřených podmnožinA ⫋ B ⊆ X, kdeB je ireducibilńı,
je f(A) ⫋ f(B). Dokažte, že f je otevřené.
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