
Standards of programming in R
R style guide

Stanislav Katina

ÚMS, MU

19.09.2023 13:09

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 1 / 53

Table of contents

1 Statistics and

2 The statistician and data science

3 R style guide

4 Basic objects

5 Miscellaneous

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 2 / 53

References

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 3 / 53

Statistics and

Section 1

Statistics and

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 4 / 53

Statistics and

Why ?

1 is open source software. It has many advantages of other commercial statistical
platforms such as MATLAB, SAS and SPSS.

2 has its roots in the statistics community, being created by statisticians for
statisticians. This is reflected in the design of the programming language: many of
its core language elements are geared toward statistical analysis.

3 The amount of code that we need to write in is very small compared to other
programming languages. There are many high-level data types and functions
available in that hide the low-level implementation details from the programmer.
Although there exist systems used in production with significant complexity, for
most data analysis tasks, we need to write only a few lines of code.

4 ’s history is inexorably tied to its domain specific predecessors and cousins, as it is
100 percent focused and built for statistical data a nalysis and visualization.

5 can access and manipulate various file types and databases (and was also
designed for flexibility and extensibility)

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 5 / 53

http://www.mathworks.com/products/matlab/
http://www.sas.com
http://www.ibm.com/analytics/us/en/technology/spss/

Statistics and

Why ?

6 focus on foundational analytics-oriented data types.
7 makes it remarkably simple to run extensive statistical analyses on your data

and then generate informative and appealing visualizations with just a few lines
of code.

8 More modern libraries/packages extend and enhance these base capabilities and
are the foundations of many of mind- and eye-catching examples of
cutting-edge data analysis and visualization. Vast package library called the
Comprehensive R Archive Network, or more commonly known as CRAN.

9 also provides an interactive execution shell that has enough basic functionality
for general needs.

10 The desire for even more interactivity sparked the development of , which is
a combination of integrated development environment (IDE), data exploration
tool, and iterative experimentation environment that exponentially enhances ’s
default capabilities.

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 6 / 53

Statistics and

Why ?

Click below to see more:

The Comprehensive R Archive Network

RStudio – Open source and enterprise-ready professional software for R

Both links provide full installation details for Linux, Windows, and macOS systems.

RStudio comes in two flavors: Desktop and Server.

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 7 / 53

http://cran.r-project.org/
http://www.rstudio.com/

Statistics and

Why ?

RStudio core features:

Built-in IDE.
Data structure and workspace exploration tools.
Quick access to the console.

help viewer.
Graphics panel viewer.
File system explorer.
Package manager.
Integration with version control systems.

The primary difference is that one runs as a standalone, single-user application (RStudio
Desktop) and the other (RStudio Server) is installed on a server, accessed via browser,
and enables multiple users to take advantage of the compute infrastructure.

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 8 / 53

Statistics and

– reading in data

abstract quite a bit of complexity when it comes to reading and parsing data into
structures for processing. See functions:

read.table() – reads a *.txt file in table format and creates a data frame from
it,
read.csv() – reads a *.csv file in table format and creates a data frame from it
(check also argument encoding, e.g. "Windows-1250", "UTF-8" or other),
read.delim().

See help() arguments header, sep and delim.

download.file(url,destfile) – to download a single file from the url and store
it in destfile; the url must start with a scheme such as http://, https://,
ftp:// or file://.
getURL(url) – to download a single file from the url directly to and then use
function read.table() to read data – in library(RCurl).

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 9 / 53

Statistics and

– reading in data

First set a working directory to dir using function setwd(dir).

You can check an absolute filepath representing the current working directory using
function getwd().

1 ## reading *.txt file
2 DATA <- read.table("DATA.txt",header = TRUE)
3 ## reading *.csv file
4 DATA <- read.csv("DATA.csv",encoding = "Windows-1250",
5 header = TRUE)
6 ## reading from the web
7 URL <- "http://www.math.muni.cz/.../DATA.txt"
8 download.file(URL,destfile = "DATA.txt",method = "libcurl")
9 DATA <- read.table("DATA.txt",header = TRUE)

10 ## reading from the web
11 install.packages("RCurl")
12 library(RCurl)
13 URL <- getURL(URL)
14 DATA <- read.table(textConnection(URL))
15 head(DATA)

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 10 / 53

Statistics and

– reading in data

functions for reading data from other statistical software:

readMat() – package R.matlab,
read.spss() – reads a file stored by the SPSS save or export commands – also in
library foreign,
read.ssd() – generates a SAS program to convert the content of ssd data file to
SAS transport format and then uses read.xport() to obtain a data.frames() –
library foreign,
read.xport() – reads a file as a SAS XPORT format library and returns a list of
data.frames() – library foreign.

also provides extensive support for accessing data stored in various SQL and NoSQL
databases. For SQL databases, use e.g., library(RPostgreSQL).

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 11 / 53

Statistics and

– reading in data – exploring the future (end of frustration)

Explore: Load flat files in to with the readr package, which is part of the core
tidyverse package. Most of readr’s functions are concerned with turning flat files into
data frames:

1 read_csv() reads comma-delimited files,
2 read_csv2() reads semicolon-separated files (common in countries where ”comma”

is used as the decimal place),
3 read_tsv() reads tab-delimited files,
4 read_delim() reads files with any delimiter,
5 read_fwf() reads fixed-width files,
6 read_table() reads a common variation of fixed-width files where columns are

separated by white space.

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 12 / 53

Statistics and

– reading in data – exploring the future (end of frustration)

Compared to base (there are a few good reasons to favor readr functions over the
base equivalents):

1 They are typically much faster (≈ 10×) than their base equivalents. Long-running
jobs have a progress bar, so you can see what is happening. If you are looking for
raw speed, try data.table::fread().

2 They produce tibbles, and they do not convert character vectors to factors,
use row names, or munge the column names. These are common sources of
frustration with the base functions.

3 They are more reproducible. Base functions inherit some behavior from your
operating system and environment variables, so import code that works on your
computer might not work on someone else’s.

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 13 / 53

Statistics and

– reading in data – tibble and parsers (end of frustration)

Tibbles are data frames, but they tweak some older behaviors to make life a little easier.
is an old language, and some things that were useful 10 or 20 years ago now get

in your way. It’s difficult to change base without breaking existing code, so most
innovation occurs in packages.

Before we get into the details of how readr reads files from disk, we need to take a little
detour to talk about the parse_*() functions. These functions are useful in their own
right, but are also an important building block for readr. Using parsers is mostly a
matter of understanding what is available and how they deal with different types
of input.

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 14 / 53

Statistics and

– reading in data – eight particularly important parsers (end of
frustration)

1 parse_logical() parse logicals and parse_integer() parse integers. There is
basically nothing that can go wrong with these parsers so I won’t describe them here
further.

2 parse_double() is a strict numeric parser, and parse_number() is a flexible
numeric parser. These are more complicated than you might expect because
different parts of the world write numbers in different ways.

3 parse_character() seems so simple that it should not be necessary. But one
complication makes it quite important: character encodings.

4 parse_factor() creates factors, the data structure that uses to represent
categorical variables with fixed and known values.

5 parse_datetime(), parse_date(), and parse_time() allow you to parse various
date and time specs – the most complicated – there are so many different ways of
writing dates.

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 15 / 53

Statistics and

– reading in data – numbers (end of frustration)

readr has the notion of a locale, an object that specifies parsing options that differ
from place to place. When parsing numbers, the most important option is the
character you use for the decimal mark (separator). You can override the default
value of decimal point to, e.g., decimal comma, by creating a new locale and
setting the decimal_mark argument.
readr’s default locale is US-centric, because generally is US-centric (i.e., the
documentation of base is written in American English). An alternative approach
would be to try and guess the defaults from your operating system. This is hard to
do well, and, more importantly, makes your code fragile – even if it works on your
computer, it might fail when you email it to a colleague in another country.

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 16 / 53

Statistics and

– reading in data – strings (end of frustration)

seems like parse_character() should be really simple – it could just return its
input. Unfortunately life is not so simple, as
there are multiple ways to represent the same string.
ASCII does a great job of representing English characters, because it’s the
American Standard Code for Information Interchange.
Things get more complicated for languages other than English. In the early days of
computing there were many competing standards for encoding non-English
characters, and to correctly interpret a string you needed to know both the values
and the encoding – e.g., two common encodings are Latin1 (ISO-8859-1, used for
Western European languages) and Latin2 (ISO-8859-2, used for
Eastern European languages) – and coding a particular byte could be different.
underline, today there is one standard that is supported almost everywhere: UTF-8.
UTF-8 can encode just about every character used by humans today, as well as
many extra symbols (like emoji).

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 17 / 53

Statistics and

– reading in data – strings (end of frustration)

readr uses UTF-8 everywhere – it assumes your data is UTF-8 encoded when
you read it, and always uses it when writing. This is a good default, but will fail
for data produced by older systems that do not understand UTF-8.
How do you find the correct encoding? If you are lucky, it will be included
somewhere in the data documentation. Unfortunately, that’s rarely the case, so
readr provides guess_encoding() to help you figure it out. It’s not foolproof, and
it works better when you have lots of text, but it is a reasonable place to start.
Encodings are a rich and complex topic. If you would like to learn more I would
recommend reading the detailed explanation at http://kunststube.net/encoding/.

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 18 / 53

http://kunststube.net/encoding/

Statistics and

– reading in data – factors (end of frustration)

uses factors to represent categorical variables that have a known set of possible
values.
Give parse_factor() a vector of known levels to generate a warning whenever an
unexpected value is present.

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 19 / 53

Statistics and

– reading in data – dates, date-times, and times (end of frustration)

You pick between three parsers depending on whether you want a date (the number of
days since 1970-01-01), a date-time (the number of seconds since midnight 1970-01-01),
or a time (the number of seconds since midnight). When called without any additional
arguments:

parse_datetime() expects an ISO8601 date-time. ISO8601 is an international
standard in which the components of a date are organized from biggest to smallest:
year, month, day, hour, minute, second. This is the most important date-time
standard (for more details see https://en.wikipedia.org/wiki/ISO_8601).
parse_date() expects a four-digit year, ”-” or ”/”, the month, ”-” or ”/”, then the
day.
parse_time() expects the hour, ”:”, minutes, optionally ”:” and seconds, and an
optional a.m./p.m. specifier.

Base does not have a great built-in class for time data, so readr use the one provided
in the hms package. You can also supply your own date-time format.

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 20 / 53

https://en.wikipedia.org/wiki/ISO_8601

Statistics and

– reading in data – parsing strategy (end of frustration)

readr uses a heuristic to figure out the type of each column – it reads the first 1000
rows and uses some (moderately conservative) heuristics to figure out the type of
each column. You can emulate this process with a character vector using
guess_parser(), which returns readr’s best guess, and parse_guess(), which uses
that guess to parse the column. The heuristic tries each of the following types, stopping
when it finds a match:

logical – contains only ”F”, ”T”, ”FALSE”, or ”TRUE”,
integer – contains only numeric characters (and ”-”),
double – contains only valid doubles (including numbers like 4.5e-5),
number – contains valid doubles with the grouping mark inside,

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 21 / 53

Statistics and

– reading in data – parsing strategy (end of frustration)

time – matches the default time_format,
date – matches the default date_format,
date-time – matches any ISO8601 date.

If none of these rules apply, then the column will stay as a vector of strings. It is always a
good idea to explicitly pull out the problems(), so you can explore them in more depth.
It is highly recommended always supplying col_types, building up from the printout
provided by readr. This ensures that you have a consistent and reproducible data import
script. If you rely on the default guesses and your data changes, readr will continue to
read it in. If you want to be really strict, use stop_for_problems() – that will throw an
error and stop your script if there are any parsing problems.

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 22 / 53

Statistics and

– reading in data

The consistency in the record format makes the consumption of the data equally as
straightforward in each language. In each language/environment, we follow a typical
pattern of:

1 Reading in data.
2 Assigning meaningful column names (if necessary).
3 Using built-in functions to get an overview of the data structure.
4 Taking a look at the first few rows of data, typically with the head() or tail().

function

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 23 / 53

Statistics and

– reading in data – data entry errors

Most common data entry errors (errors can arise from human sloppiness, whereas others
are due to machine or hardware failure):

1 redundant whitespace – leading and trailing spaces [solved by database
programming],

2 capital letters mismatches [solved by database programming],
3 deviation from a code book [solved by database programming],
4 different units of measurement [solved by database programming],
5 impossible values and sanity checks – physically or theoretically impossible values

(can be directly expressed with rules, if present – reference ranges should be used
here) [solved by database programming],

6 possible outliers [solved by statistical programming].

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 24 / 53

Statistics and

– writing data to a file – .csv

readr also comes with two useful functions for writing data back to disk – write_csv()
and write_tsv(). This is about twice as fast as write.csv(), and
never writes row names. Both functions increase the chances of the output file being
read back in correctly by:

1 Always encoding strings in UTF-8.
2 Saving dates and date-times in ISO8601 format so they are easily parsed elsewhere.

If you want to export a .csv file to MS Excel, use write_excel_csv() – this writes a
special character (a ”byte order mark”) at the start of the file, which tells MS Excel that
you are using the UTF-8 encoding. Note that the type
information is lost when you save to .csv. This makes .csv a little unreliable for caching
interim results – you need to re-create the column specification every time you load in.

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 25 / 53

Statistics and

– writing data to a file – .rds and .feather

Alternatives:

1 write_rds() and read_rds() are uniform wrappers around the base functions
readRDS() and saveRDS(). These store data in ’s custom binary format called
.rds.

2 The feather package implements a fast binary file format that can be shared across
programming languages. feather tends to be faster than .rds, is usable outside of

, and .rds supports list-columns (feather currently does not).

Explore other packages for (reading and writing data files): haven, rio, readxl, xlsx,
XLConnect, xml2, etc.

Read also the R data import/export manual at
https://cran.r-project.org/doc/manuals/r-release/R-data.html.

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 26 / 53

https://cran.r-project.org/doc/manuals/r-release/R-data.html

The statistician and data science

Section 2

The statistician and data science

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 27 / 53

The statistician and data science

The statistician

Given some of the “rookie mistakes” seen in many scientific reports (bio-medical,
geographical or other) or industry reports (pharmaceutical, security or other) and the
prevalence of raw counts in science/industry dashboards, there is a high probability that
statistics is the weakest area for science/industry professionals.

You do not need a Ph.D. in statistics to be an effective data scientist. However, it’s
important to have an understanding of the fundamentals of statistical analysis, even
when you are part of a multidisciplinary team.

Understanding and applying statistics correctly is more complex than you might
imagine, and individuals in disciplines with a rich history of using statistics to solve
complex problems oftentimes fall into common traps.

A hallmark of a good data scientist is adaptability and you should be continually
scouring the digital landscape for emerging tools that will help you solve problems.

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 28 / 53

The statistician and data science

The data science workflow

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 29 / 53

The statistician and data science

Data science

The methodology of extracting insights from data is called as data science. Historically,
data science has been known by different names: in the early days, it was known simply
as statistics, after which it became known as data analytics. There is an important
difference between data science as compared to statistics and data analytics.

Data science is a multi-disciplinary subject: it is a combination of statistical analysis,
programming, and domain expertise.

Over the last few years, data science has emerged as a discipline in its own right.

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 30 / 53

The statistician and data science

Data science

Three aspects and their importance:

1 Statistical skills are essential in applying the right kind of statistical methodology
along with interpreting the results.

2 Programming skills are essential to implement the analysis methodology, combine
data from multiple sources and especially, working with large-scale datasets.

3 Domain expertise is essential in identifying the problems that need to be solved,
forming hypotheses about the solutions, and most importantly understanding how
the insights of the analysis should be applied.

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 31 / 53

The statistician and data science

Data science and

However, there is no standardized set of tools that are used in the analysis. Data
scientists use a variety of programming languages and tools in their work, sometimes
even using a combination of heterogeneous tools to perform a single analysis. This
increases the learning curve for the new data scientists.

The programming environment presents a great homogeneous set of tools for most
data science tasks.

is more than a programming language. It is an interactive environment for doing
statistics. Think of as having a programming language than being a programming
language. The language is the scripting language for the environment. Variables
cannot be declared. They come into existence on first assignment (lexical scoping) – it
is not always easy to determine the scope of a variable.

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 32 / 53

R style guide

Section 3

R style guide

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 33 / 53

R style guide

style guide

style guide:

1 The assignment operator in is ”<-” (the arrow) with the receiving variable on
the left; it is also possible, though uncommon, to reverse the arrow and put the
receiving variable on the right; it is sometimes possible to use ”=” for assignment.

2 When supplying default function arguments or calling functions with named
arguments, you must use the ”=” operator and cannot use the arrow.

3 At some time in the past used underscore as assignment – this meant that the C
convention of using underscores as separators in multi-word variable names was not
only disallowed but produced strange side effects; however allows underscore as a
variable character and not as an assignment operator.

4 Don’t use hyphens ”-”.

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 34 / 53

R style guide

style guide

style guide (cont.):

5 Because the underscore was not allowed as a variable character, the convention arose
to use dot as a name separator (see also point (9), dot is not used anymore).

6 Unlike its use in many object oriented languages, the dot character in has no
special significance, with two exception,

the ls() function in lists active variables but does not list files that begin with a
dot,
... is used to indicate a variable number of function arguments.

7 uses ”$” in a manner analogous to the way other languages use dot (identifying
the parts of an object) – see e.g., data.frame() and list().

8 has several one-letter reserved words: c, q, s, t, C, D, F, I, and T – actually,
these are not reserved, but it is best to think of them as reserved.

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 35 / 53

R style guide

style guide

style guide (cont.):

9 The preferred form for variable names is all lower case letters and words
separated with underscores (variable_name) .

10 Function names have initial capital letters and no dots (FunctionName).
11 Constants are named like functions but with an initial k (kConstantName).
12 Line length – the maximum line length is 80 characters.
13 Indentation – when indenting your code, use two spaces – never use tabs or mix

tabs and spaces (exception: when a line break occurs inside parentheses, align the
wrapped line with the first character inside the parenthesis).

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 36 / 53

R style guide

style guide

style guide (cont.):

14 Spacing
Place spaces around all binary operators (=, +, -, <-, etc.) exception: spaces around
=’s are optional when passing parameters in a function call.
Do not place a space before a comma, but always place one after a comma.
Place a space before left parenthesis, except in a function call.
Extra spacing (i.e., more than one space in a row) is okay if it improves alignment of
equals signs or arrows (<-).
Do not place spaces around code in parentheses or square brackets; exception: always
place a space after a comma.

15 Semicolons – do not terminate your lines with semicolons or use semicolons to put
more than one command on the same line.

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 37 / 53

R style guide

style guide

style guide (cont.):

16 attach() – avoid using it – the possibilities for creating errors when using attach are
numerous.

17 Commenting – comment your code
Entire commented lines should begin with ”#” and one space.
Short comments can be placed after code preceded by two spaces, ”#”, and then one
space.
use Commented lines of ”-” and ”=” to break up your file into easily readable chunks,
e.g., ”# Section ====”, ”# Subsection ----”.

18 Function definitions and calls – function definitions should first list arguments
without default values, followed by those with default values – in both function
definitions and function calls, multiple arguments per line are allowed; line breaks are
only allowed between assignments.

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 38 / 53

R style guide

style guide

style guide (cont.):

19 Function documentation
Functions should contain a comments section immediately below the function definition
line – these comments should consist of a one-sentence description of the function.
A list of the function’s arguments, denoted by Args:, with a description of each
(including the data type).
A description of the return values, denoted by Returns:.
The comments should be descriptive enough that a caller can use the function without
reading any of the function’s code.

Note: For more details about function documentation see Tidyverse Style Guide
(Hadley Wickham’s Style Guide), section Documentation. Documentation of code is
essential, even if the only person using your code is future-you. Use roxygen2 with
markdown support enabled to keep your documentation close to the code
(especially for package documentation),

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 39 / 53

https://style.tidyverse.org
https://style.tidyverse.org
https://github.com/r-lib/roxygen2
https://roxygen2.r-lib.org/articles/rd-formatting.html

R style guide

style guide

style guide (cont.):

20 General layout and ordering
copyright statement comment,
author comment,
file description comment, including purpose of program, inputs, and outputs,
source() and library() statements,
function definitions,
executed statements, if applicable (e.g., print, plot).

For more details see:

Google’s original R Style Guide, Google’s current R Style Guide, Tidyverse Style Guide
(Hadley Wickham’s Style Guide), and R Coding Conventions

Note: RStudio does style diagnostics, i.e. the style diagnostic checks to see if your
code conforms to Hadley Wickham’s Style Guide, and reports style warnings when
encountered. The same is true for automatic reformatting.

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 40 / 53

http://google.github.io/styleguide/Rguide.xml
https://google.github.io/styleguide/Rguide.html
https://style.tidyverse.org
https://style.tidyverse.org
http://www.aroma-project.org/developers/RCC

Basic objects

Section 4

Basic objects

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 41 / 53

Basic objects

– vectors

1 Built-in function for creating vectors is c().
2 ”Container vector” – an ordered collection of numbers with no other structure

the length of a vector is the number of elements in the container,
operations are applied componentwise.

3 ”Mathematical vector” – an element of a vector space
length of a vector is geometrical length determined by an inner product,
the number of components is called dimension,
operations are not applied componentwise.

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 42 / 53

Basic objects

– vectors

A vector in is a container vector, a statistician�s collection of data, not a
mathematical vector. The language is designed around the assumption that a vector is
an ordered set of measurements rather than a geometrical position or a physical state.

supports mathematical vector operations, but they are secondary in the design of the
language.

The language has no provision for scalars. The only way to represent a single number
in a variable is to use a vector of length one. It is usually clearer and more efficient in

to operate on vectors as a whole.

4 Vectors in are indexed starting with 1 and matrices in are stored in
column-major order.

5 Elements of a vector can be accessed using ”[]”.
6 Vectors automatically expand when assigning to an index past the end of the vector.

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 43 / 53

Basic objects

– vectors

7 Five types of indices/subscripts in
Positive integers – subscripts that reference particular elements.
Negative integers – is an instruction to remove an element from a vector (it makes
sense in statistical context).
Zero – is does nothing (it doesn’t even produce an error).
Booleans

A Boolean expression with a vector evaluates to a vector of Boolean values, the results of
evaluating the expression componentwise (e.g., x[x > 3] – the expression x > 3 evaluates to
the vector of TRUE or FALSE)
when a vector with a Boolean subscript appears in an assignment, the assignment applies to
the elements that would have been extracted if there had been no assignment. (x[x > 3] <-
7).

Nothing – a subscript can be left out entirely (So x[] would simply return x).

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 44 / 53

Basic objects

– sequences

8 Sequences
the expression seq(a, b, n) creates a closed interval from a to b in steps of size n,
the notation a:b is an abbreviation for seq(a, b, 1),
the notation seq(a, b, length = n) is a variation that will set the step size to (b -
a)/(n - 1) so that the sequence has n points.

1 seq(1, 10, by = 2) # odd numbers
2 seq(1, 10, length = 4)
3 seq(1, 10, by = 0.05) # sufficiently dense sequence (?)

9 Replications – function rep(x) replicates the values in x – important arguments are
times, each and length.

1 rep(1:4, 2)
2 rep(1:4, each = 2) # not the same as above
3 rep(1:4, c(2,2,2,2)) # the same as above
4 rep(1:4, c(2,1,2,1))
5 rep(1:4, each = 2, len = 4) # only first four elements

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 45 / 53

Basic objects

– types

10 The type of a vector is the type of the elements it contains and must be one of the
following logical, integer, numeric, character, factor, complex, double
(creates a double-precision vector), or raw – all elements of a vector must have the
same underlying type (this restriction does not apply to lists).

1 x1 <- c(TRUE,TRUE,TRUE,FALSE,TRUE,FALSE) # logical vector
2 x2 <- c(1,2,5.3,6,-2,4) # numeric vector
3 x3 <- c("one","two","three") # character vector
4 gender <- c(rep("male", 20), rep("female", 30))
5 gender <- factor(gender) # factor vector

11 The type of a vector is the type of the elements it contains and must be one of the
following logical, integer, numeric,

12 type conversion functions have the naming convention as.xxxx() for the function
converts its argument to type xxxx, e.g., as.integer(4.2) returns the integer 3,
and as.character(4.2) returns the string ”4.2” (see also is.xxxx()).

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 46 / 53

Basic objects

– Boolean operators

13 Boolean operators
true values – T or TRUE and false values – F or FALSE,
the shorter form operators and ”&” and or ”|” apply element-wise on vectors (are
vectorized),
the longer form operators and ”&&” and or ”||” are often used in conditional
statements (evaluates left to right examining only the first element of each vector),
the operators will not evaluate their second argument if the return value is determined
by the first argument.

1 ((-2:2) >= 0) & ((-2:2) <= 0)
2 # [1] FALSE FALSE TRUE FALSE FALSE
3

4 ((-2:2) >= 0) && ((-2:2) <= 0)
5 # [1] FALSE

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 47 / 53

Basic objects

– lists, matrices

14 Lists are like vectors, except elements need not all have the same type, e.g., the first
element of a list could be an integer and the second element be a string or a vector
of Boolean values

are created using the list() function,
elements can be access by position using ”[[]]”,
named elements of lists can be accessed by dollar sign ”$”,
if you attempt to access a non-existent element of a list, say A[[3]] above, you will
get an error,
you can assign to a non-existent element of a list, thus extending the list; if the index
you assign to is more than one past the end of the list, intermediate elements are
created and assigned NULL values.

1 A <- list(name = "John", age = 24)
2 A[[1]]
3 A$name

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 48 / 53

Basic objects

– matrices, arrays, data frames

15 Matrix and array – does not support matrices and arrays, only vectors, but you
can change the dimension of a vector, essentially making it a matrix (see also
rbind(),cbind())

fills matrices by column,
to fill matrix by row, add the argument byrow = TRUE to the call to the matrix()
function.

1 A1 <- array(c(1,2,3,4,5,6), dim = c(2,3))
2 A2 <- matrix(c(1,2,3,4,5,6), 2, 3)
3 A3 <- matrix(c(1,2,3,4,5,6), 2, 3, byrow = TRUE)

16 Data frame – is more general than a matrix, in that different columns can have
different modes (numeric, character, factor, etc.)

1 x1 <- c(1,2,3,4)
2 x2 <- c("red","white","red",NA)
3 x3 <- c(TRUE,TRUE,TRUE,FALSE)
4 mydata <- data.frame(x1,x2,x3)
5 names(mydata) <- c("ID","Color","Passed") # variable names

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 49 / 53

Basic objects

– missing values and NaNs

17 Missing values and NaNs – the result of an operation on numbers may return
different types non-number

”not a number” – NaN ,
”not applicable” – NA (to indicate missing data, and is unfortunately fairly common in
data sets),
the author of an function, has no control over the data his function will receive
because NA is a legal value inside an vector – there is no way to specify that a
function takes only vectors with non-null components – you must handle NA values,
even if you handle them by returning an error ,
the function is.nan() will return TRUE for those components of its argument that are
NaN (see also !is.nan()),
the function is.na() will return true for those components that are NA or NaN (see also
!is.na()).

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 50 / 53

Miscellaneous

Section 5

Miscellaneous

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 51 / 53

Miscellaneous

– miscellaneous

Miscellaneous:

18 sessionInfo() – prints the version, OS, packages loaded, etc.
19 help(fctn) – displays help on any function fctn.
20 the function quit() or its alias q() terminate the current session.
21 save.image() is just a short-cut for ”save my current workspace”.
22 ls() – shows which objects are defined.
23 rm(list=ls()) – clears all defined objects.
24 prefixes d, p, q, r stand for density (probability density function, PDF), probability

(cumulative distribution function, CDF), quantile (CDF−1), and random sample –
e.g., dnorm() is the density function of a normal random variable and rnorm()
generates a sample from a normal random variable etc.

Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 52 / 53

Miscellaneous

– miscellaneous
function description function description
binomial distribution Poisson distribution
dbinom() probability mass function dpois() probability mass function
pbinom() distribution function ppois() distribution function
qbinom() quantile qpois() quantile
rbinom() pseudo-random numbers rpois() pseudo-random numbers
multinomial distribution gamma distribution
dmultinom() probability mass function dgamma() density function
pmultinom() distribution function pgamma() distribution function
qmultinom() quantile qgamma() quantile
rmultinom() pseudo-random numbers rgamma() pseudo-random numbers
normal distribution Student 𝑡 distribution
dnorm() density function dt() density function
pnorm() distribution function pt() distribution function
qnorm() quantile qt() quantile
rnorm() pseudo-random numbers rt() pseudo-random numbers
𝜒2 distribution Fisher 𝐹 distribution
dchisq() density function df() density function
pchisq() distribution function pf() distribution function
qchisq() quantile qf() quantile
rchisq() pseudo-random numbers rf() pseudo-random numbers
multivatiate normal distribution multivatiate normal distribution
library mvtnorm library MASS
rmvnorm() pseudo-random numbers mvrnorm() pseudo-random numbers

For more details see e.g., R language for programmers.
Stanislav Katina (ÚMS, MU) Standards of programming in R 19.09.2023 13:09 53 / 53

http://www.johndcook.com/blog/r_language_for_programmers/

	Statistics and
	The statistician and data science
	R style guide
	Basic objects
	Miscellaneous

