

10 Possibilities of climate change mitigation and adaptation measures

Lukáš Dolák, MSc, PhD

"It's warming. It's us. We are sure. It's bad.

But we can fix it."

Kimberley Nicholas

Content of the lecture

- 1. Mitigation options for climate change
- 2. Adaptation options for climate change

Mitigation vs adaptation

Mitigation

- actions to reduce or prevent greenhouse gas emissions (GHG) from human activities
 - implementing mechanisms to reduce GHG emissions

Adaptation

- actions to prepare and adjust to the current and projected impacts of climate change
- Synergies between mitigation and adaptation measures
 - e.g. thermal protection the house against heat leaks and shading the facade with greenery

- Reducing the use of fossil fuels and replacing them with other sources
 - 3% decrease in the rate of increase in GHG emissions (2010–2020)
 - cancelation of fossil fuel subsidies
 - introduction/increase of a carbon tax
 - synthetic fuels (e-fuels) as a solution?
 - climate dividend?
 - phasing out coal-fired power plants (22 EU countries without coal-fired power plants by 2024)

- Decarbonising the economy and the transition to a sustainable economy
 - Europe as an example of decarbonisation (leading by example)
 - decrease of EU's GHG emissions by 31% (1991–2021)
 - diplomatic export of the decarbonisation idea to the world (education, historical responsibility)

- More efficient use of energy resources
 - the use of appropriate renewable energy sources (RES)
 - thermal insulation of buildings
- Reducing deforestation and desertification
- Higher reforestation of the landscape
 - 1 ha of forest in Central Europe absorbs up to 22 t CO₂/year = production of a car with 1 passenger after 120 000 km

More emphasis on recycling and upcycling

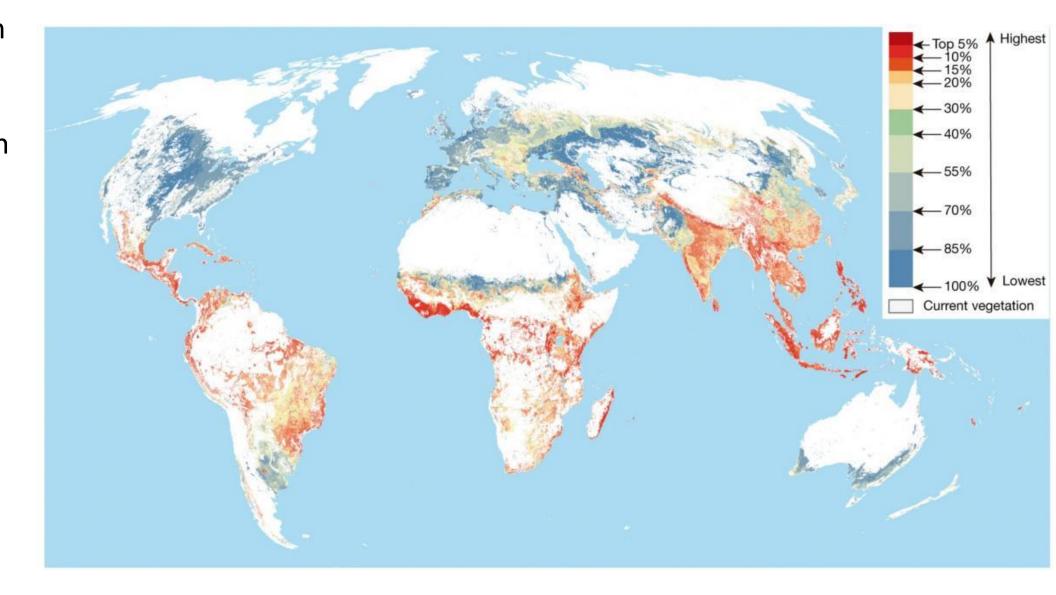
- Upcycling: converting waste or unwanted products into new or better-quality materials
- Moving from a linear to a circular economy

Reforestation

New reforestation and protection of environment:

– possibility of removing up to 33% of anthropogenic CO_2 and reducing CO_2 emissions to 350 ppm

Areas with the greatest potential:


- tropical areas (issue of agriculture and high population density)
- E and SE Europe (minimum restoration costs)

Areas with minimum potential:

W Europe and east North America

Reforestation

Reforestation priority in terms of CO₂ sequestration efficiency; lower % = higher priority

Reforestation

- Reforestation and ecosystem protection cannot compensate for the end of fossil fuel burning
- The matter of planting locations and tree species
 - absurdity of planting trees on, e.g. savannahs or steppes

Great Green Wall (China)

- Reforestation project in China to suppress (reduce) the expansion of the Gobi Desert to the south and southeast China
- **Project period:** 1978–2050
- Reasons:
 - desertification (intensive agriculture, pastoralism, deforestation, excessive water pumping)
 - erosion
 - sandstorms

Great Green Wall (China)

- Plan for reforestation of about 300 000 km² with a length of 4 500 km
 - so far approximately 220 000 km²
 forested
 - increase in China's forest coverfrom 17% (1990) to 23% (2020)
 - local desert retreat

Great Green Wall (China)

Problems:

- loss of approximately 4 000 km² of agricultural land/year
- predominance of monocultures (3 tree species)
- inappropriate environment for forest (steppe)
- increase in drought episodes due to drop in groundwater levels

Great Green Wall (Africa)

- Reforestation project of 21 African countries in the South Sahel
- Aims to protect green areas, use land more efficiently, increase fertility
- Planned end of the project: 2030
- Reasons: desertification, erosion
- Various results:
 - so far only 4% of the area planted, mortality up to 80% seedlings
 - improved landscape management, increased crop yields

Great Green Wall (Africa)

- Reducing GHG emissions in transport, promoting electromobility, sustainable agriculture, cleaner technologies
- Capturing and storing CO₂ from the atmosphere
- Approval of the Global Oceans Convention
 - marine reserves for 30% of the open seas

Capturing and storing CO2 from the atmosphere

- Methods of CO₂ capture and storage
 - Direct Air Capture (DAC)
 - reverse extraction from the atmosphere
 - Carbon Capture and Storage (CCS)
 - reverse extraction from the atmosphere and its storage
 - regenerative agriculture
- Not emitting emissions is preferable to capturing them (CCS as a last possibility)

Direct Air Capture (DAC)

- Prototypes of CO₂ extraction equipment and CaCO₃ production (Iceland):
 - 2017: 50 t/year = 1 small household
 - 2021, Orca: 4 000 t/year = 800 pers. cars/year
 - **2024**, Mammoth: 36 000 tonnes/year
- Utilization of removed CO₂:
 - construction, carbon nanofibers,
 food processing, oil extraction

Direct Air Capture (DAC)

- IPCC targets (2050): 1 Gt/year
- All DAC targets (2050): 4.5 Gt/year
 - 4.5 Gt equivalent of 130 000 Mammoth plants = construction of 13
 Mammoth plants per day (total electricity consumption of 13 500
 TWh = 10% of electricity consumption in 2050)

Disadvantages:

- high extraction costs (600–1 200 USD/t)
- fossil fuels as a source of energy for factories

Carbon Capture Storage (CCS)

- Extraction of CO₂ from the atmosphere and its storage
- Efficiency up to 90%
- Suitable locations for storage:
 - mines, groundwater deposits, salt deposits, oceans, soil

• But:

- insufficiently developed and costly technology
- risk of accidents and subsequent releases

"Pumping that much CO₂ underground would be like starting the entire oil industry backwards"

John Doerr

Regenerative agriculture – principles

- Minimal soil disturbance (mechanical and chemical)
- Continuous ground cover with vegetation (intercropping)
- Highest possible biodiversity
- Keeping roots alive in the soil all year round
- Use of livestock grazing

Regenerative agriculture – the benefits

- Environment friendly farming
- Reduction of mechanical work in the field (ploughing, pest spraying...)
- Reducing the amount of fertilisers, pesticides and herbicides
- Minimal disturbance to soil micro-organism populations
- Reducing soil erosion
- Increased absorption of (heavy) rainfall
- Increased harvest in the long term view
- Improving the soil's ability to sequester CO₂

Regenerative agriculture – disadvantages

- Temporarily lower yields when introducing regenerative agriculture
- Risk of temporary pest overpopulation

KEEP SOIL COVERED

INTEGRATE LIVESTOCK

MAINTAIN LIVING

ROOT YEAR ROUND

MINIMIZE SOIL DISTURBANCE

MAXIMIZE CROP DIVERSITY

The matter of geoengineering

 Geoengineering: targeted human influence on the state of the Earth (climate)

- space mirrors
- aerosol spraying into the atmosphere
- cloud strengthening over the oceans
- weakening of high clouds
- fertilising the oceans

GEOENGINEERING PROPOSALS

Increased reflectivity from aerosols pumped into atmosphere

Increased reflectivity from low clouds

(e.g. by spraying sea salt into them)

Thinning high clouds

(clouds act as a blanket, retaining heat)

Ocean fertilisation

(increasing population of carbon-absorbing plankton)

Biomass energy with capture and storage

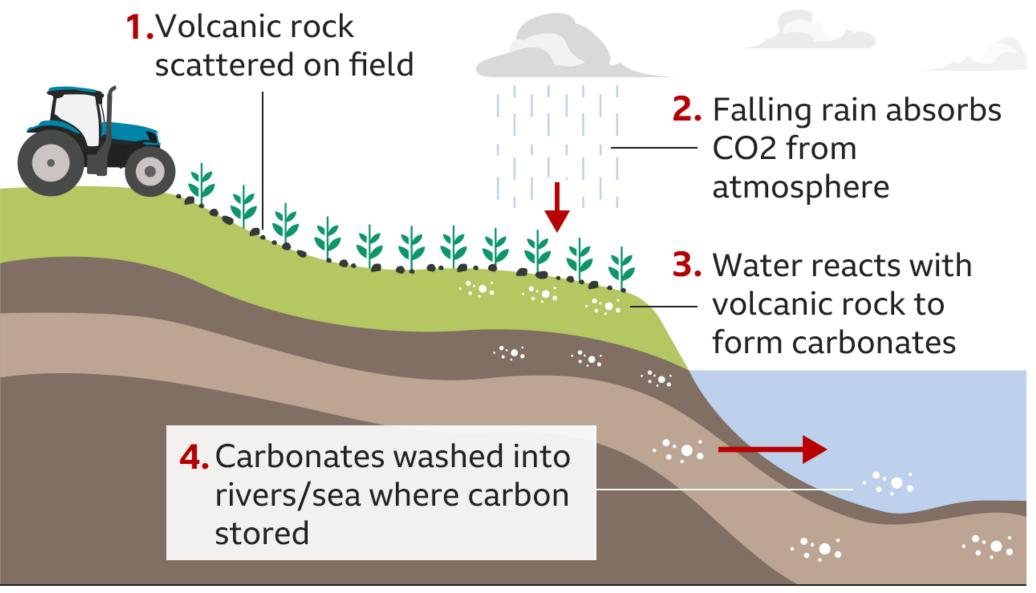
(using biomass for energy and capturing the CO₂)

Increased reflectivity of crops

Afforestation (planting vast forests)

Increased reflectivity from deserts

(using highly reflective materials)



(carbon-rich charcoal from burnt crops added to soil)

Direct capture and storage of CO.

Increased reflectivity from the oceans (microbubbles increase reflectivity)

How enhanced rock weathering works

Adaptation options for climate change

Adaptation measures to reduce glacier melting

Rhone Glacier near Furka, Switzerland

Adaptation measures to reduce glacier melting

Stubai Glacier, Austria

Adaptation measures for climate change

- Infrastructure transformation to cope with more frequent natural disasters
- Relocation of human settlements and industry (Kiribati -> Fiji)
- Helping the most vulnerable areas and their development
- Change of farming methods (agriculture, forestry)
- Reduction of drinking water usage
- Increasing general public awareness

Coastal strengthening – Maldives

Source: Profimedia, 2022

Coastal strengthening – Maldives

Source: Profimedia, 2022

Bank erosion of the Padma River in Bangladesh

Source: Profimedia, 2023

Erosion of the Padma river bank in Bangladesh – consolidation

Source: Profimedia, 2023

Options for efficient water management

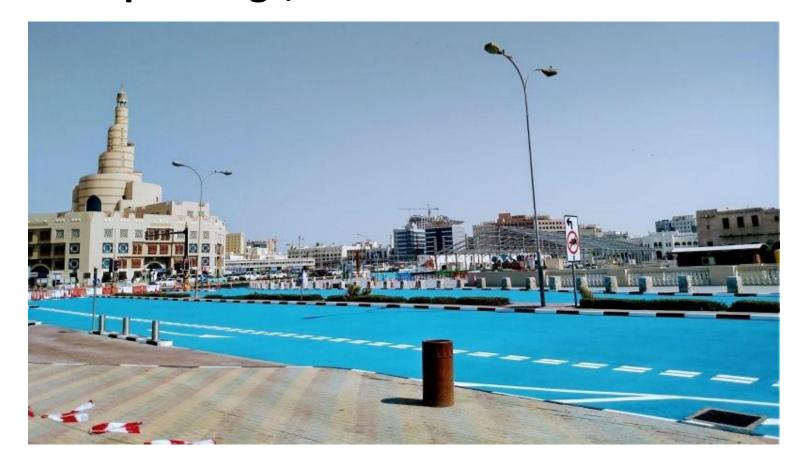
- Frequent use of surface
 water
- Reconstruction of water supply systems
- Seawater desalination
- Wastewater recycling

Specific ways of obtaining water in arid regions

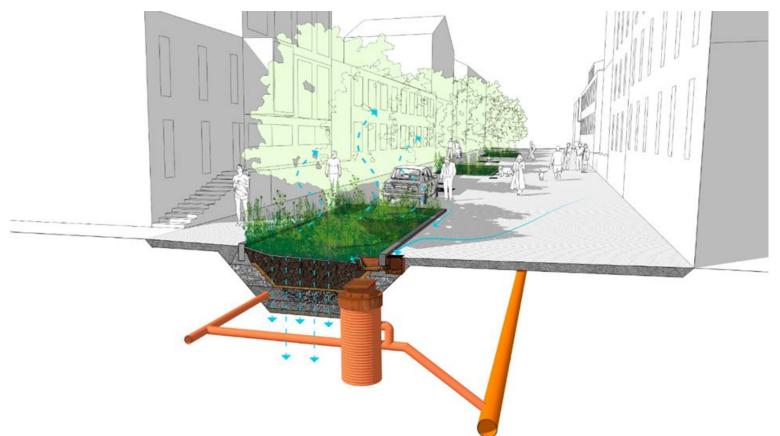
• S.A.W.E.R.: autonomous system for water extraction by condensation from air - capture up to 500 l of water/day

Specific ways of obtaining water in arid regions

Capture up to 400 l/day of water from morning mist

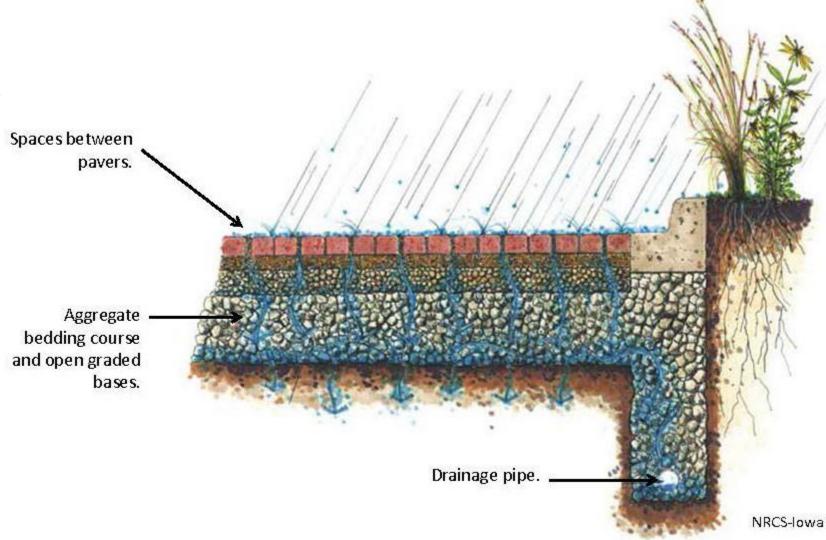

Change in the architectural structure of cities (building of wind

corridors)


- Planting of greenery, passive homes
- Solar parking



• Special surface paintings, white roofs and facade


 Water retention from pavements, roadways and shopping areas

Building
 permeable/porous

 surfaces in cities

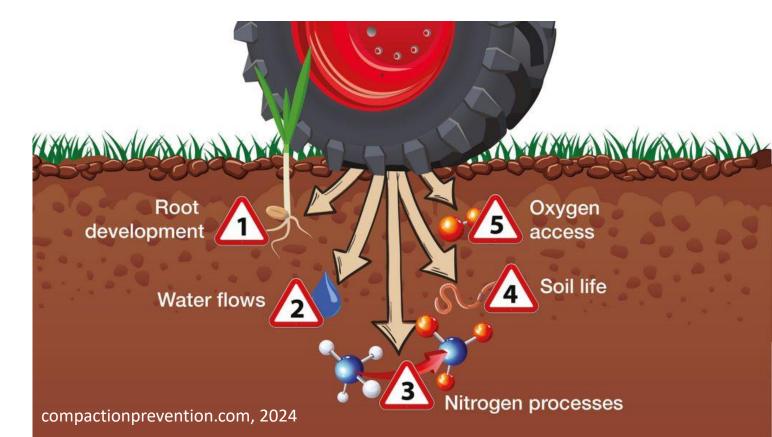
Change of management method

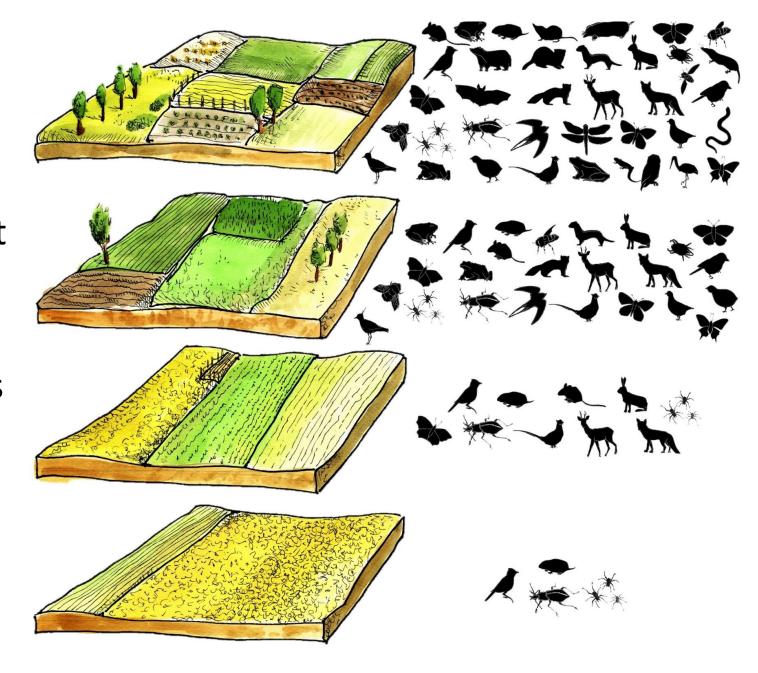
- Focusing on sustainable, environment friendly agriculture rather than to maximise finacial gain
- Better timing of agricultural activities
- Supporting the use of organic fertilisers
- Breeding and sowing more resistant varieties of plants
- Increased species diversity of agricultural crops

Agrovoltaics

- Combining (semi-transparent) solar panels and agriculture
- Advantages:
 - shading of crops
 - wetter microclimate (cooling of the landscape and panels)
 - keeping yields in dry periods
- Installations in Japan, China (Gobi), India, W and S Europe

Agrovoltaics


Agroforestry (on the example of the Czech Republic)

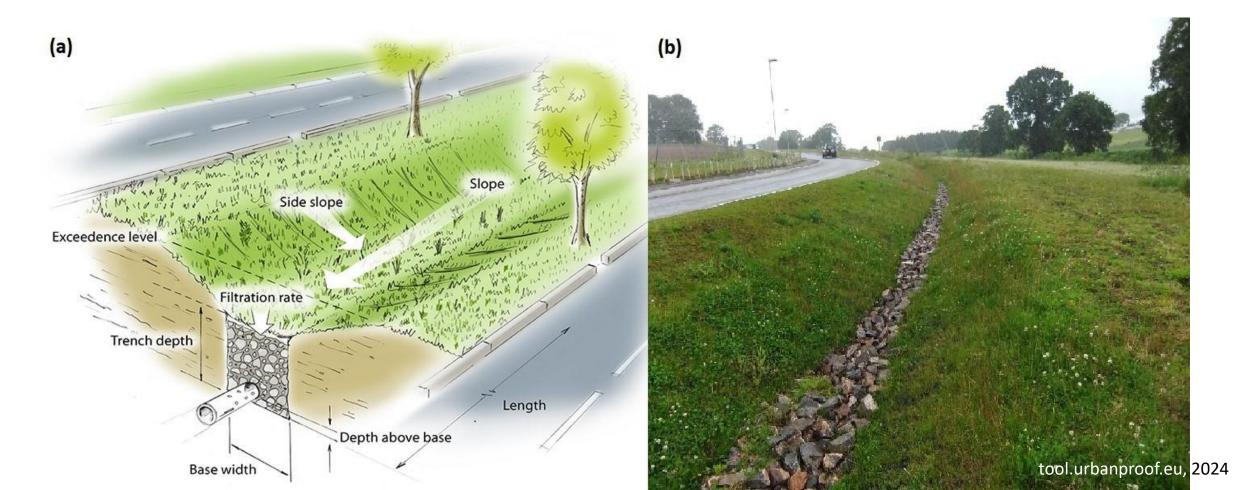

Reducing erosion of agricultural land

- Surface stabilisation by interspecific (various) plants
- Lower soil compaction/hardening by agricultural machinery
- Increasing the biotic
 component –
 fertilisation
- Vine planting

Restoring the biodiversity of the landscape

- **Reduction** of fields extent and their separation
- Recultivation of forests, revitalisation of wetlands and watercourses, restoration of lines of trees

Revitalisation of straightened stream beds (on the example of the Baštýnský Brook)


Water retention in the landscape – technical measures

- Construction of new water reservoirs
- Restriction of new building on arable land
- Higher interconnection of the water supply system
- Drip irrigation

Water retention in the landscape – environment friendly measures

Building terraces or infiltration trenches

Grass strips in the field near Bošovice (Czechia) increasing soil retention capacity and limiting erosion

Building pools in forests

pools on the approximate 70 m long path on the Big Javorník, Moravian-Silesian Beskydy Mountains (Czechia)

(150 000 l of water)

Restoration of peat bogs and wetlands (Giant Mountains, Czechia)

Photo: Plíhal, 2020

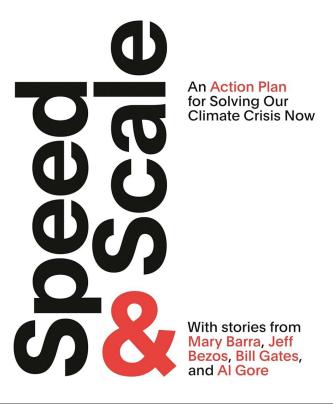
Protective measures against the effects of natural disasters

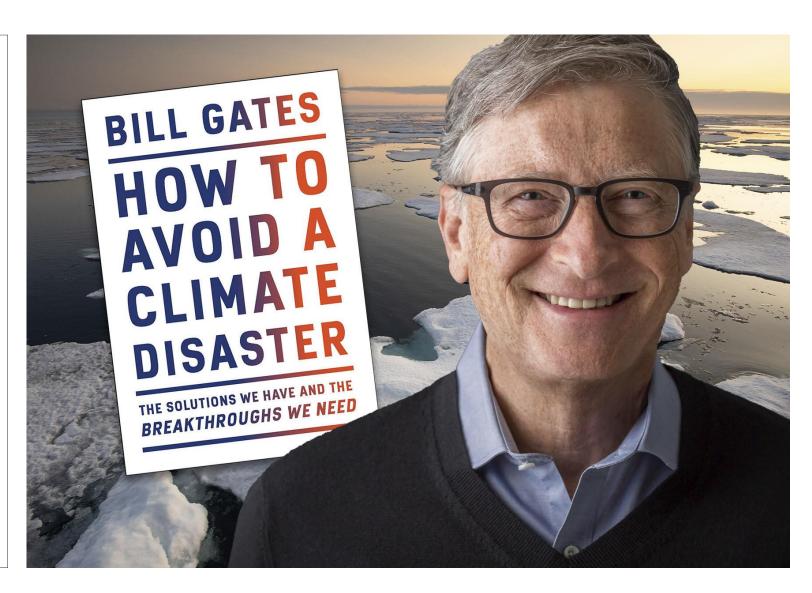
Installation of hail nets in orchards

Warming of the ground layer of the air as protection against late frosts

Warming of the ground layer of the air as protection against late frosts

How to fight drought


- Proper water management and water storage
- Raising awareness of drought and disseminating information to the public
- Establishment of national and regional drought commissions (drought, water shortage, emergency)
- Water price increases in times of drought


Creating an information platform on drought and water scarcity

Recommended literature

From #1 New York
Times Bestselling
Author John Doerr
and Ryan Panchadsaram

Literature

- What is soil compaction?
- Gates, B. (2021): How to Avoid a Climate Disaster: The Solutions We Have and the Breakthroughs We Need. Allen Lane, 257 p.

Thank you for your attention