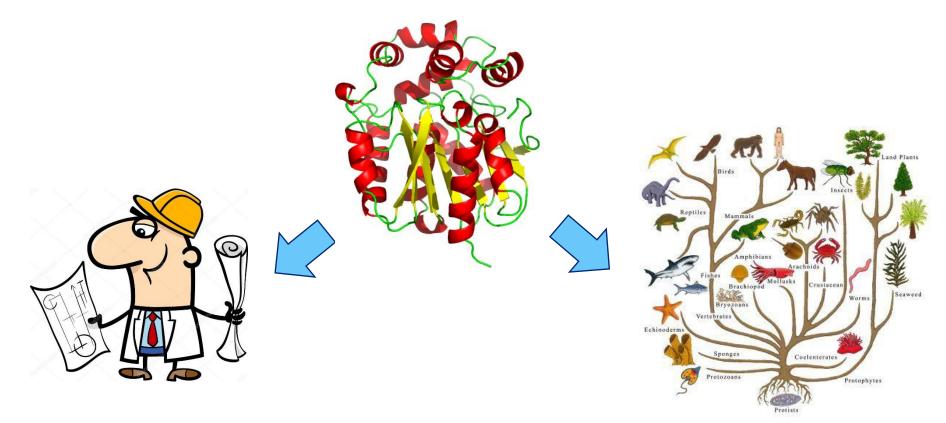


PROTEIN ENGINEERING 2. *IN SILICO* IDENTIFICATION OF PROTEINS

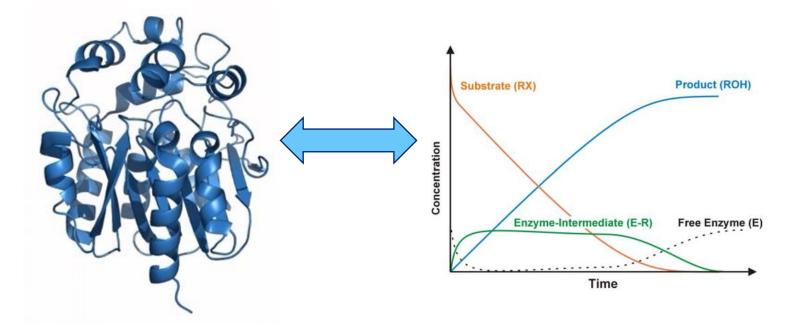


Outline

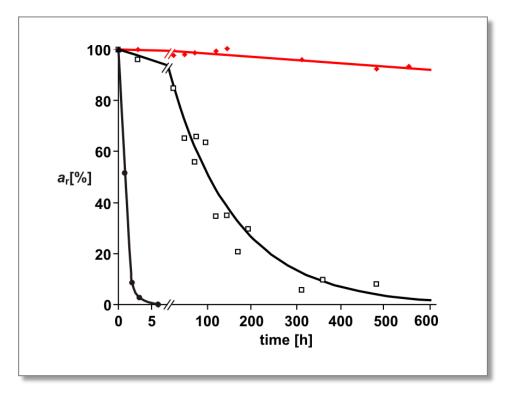
- □ Why to search for new proteins?
- □ How to acquire new proteins?
 - traditional approach
 - metagenomic approach
 - bioinformatic approach
- Bioinformatic approach
 - Where to find target sequences?
 - How to find target sequences?
 - How to recognize interesting sequences?
- □ What to keep in mind?

Strategies for protein optimization

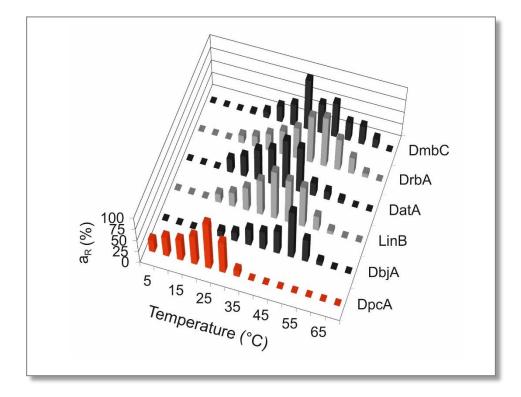
Optimization of protein for applications


Protein engineering

Natural diversity

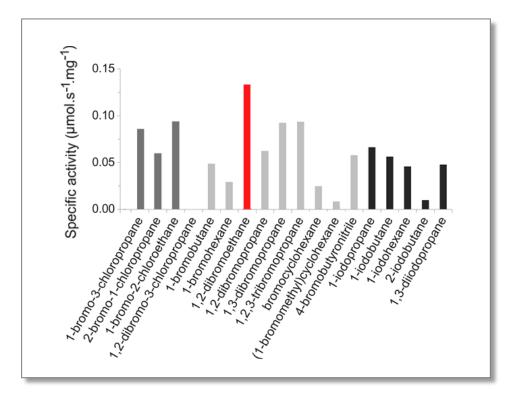

better understanding of structure-function relationships

required for rational design



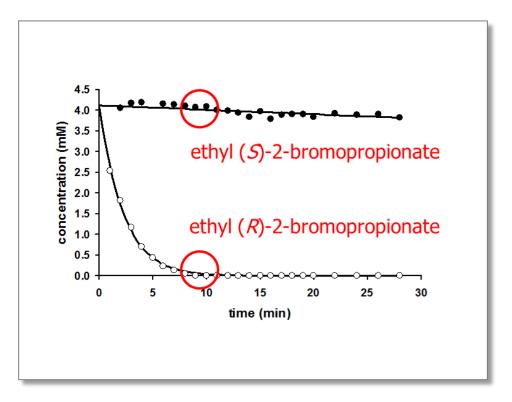
better understanding of structure-function relationships

- novel properties
 - stability


- better understanding of structure-function relationships
- novel properties
 - stability
 - temperature profile

better understanding of structure-function relationships

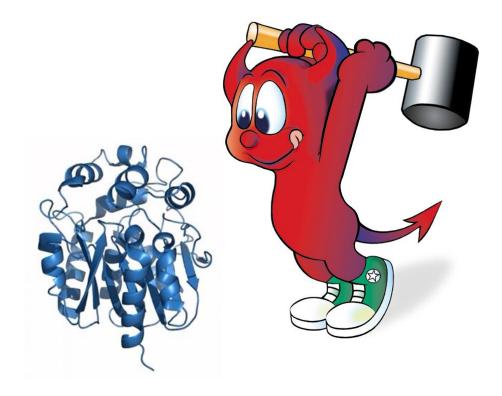
novel properties


- stability
- temperature profile
- activity
- specificity

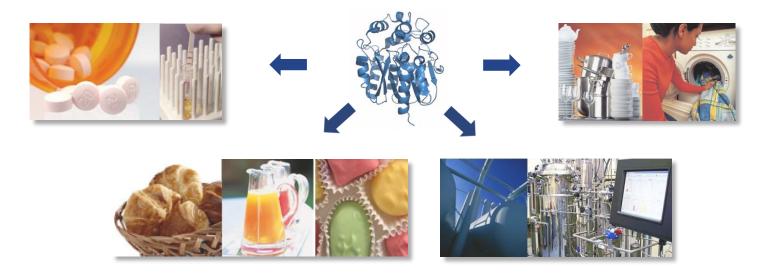
better understanding of structure-function relationships

novel properties

- stability
- temperature profile
- activity
- specificity
- enantioselectivity

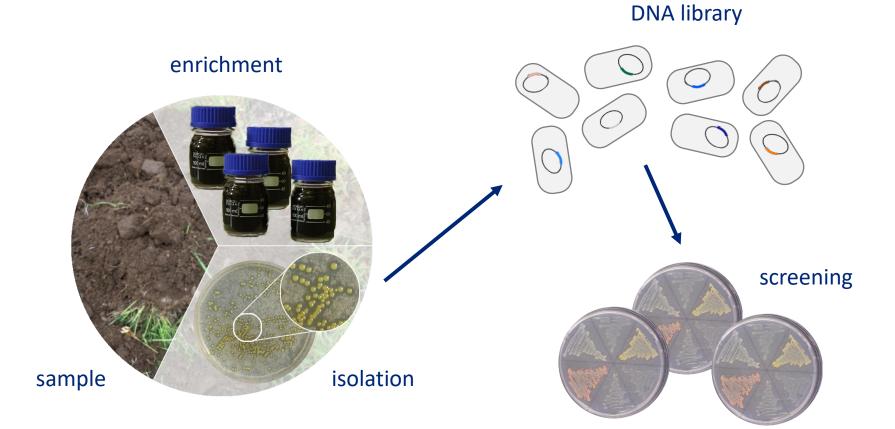


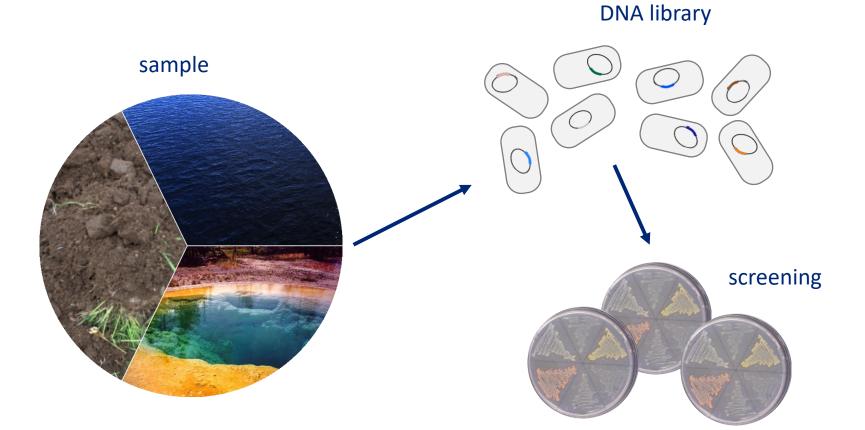
better understanding of structure-function relationships


novel properties

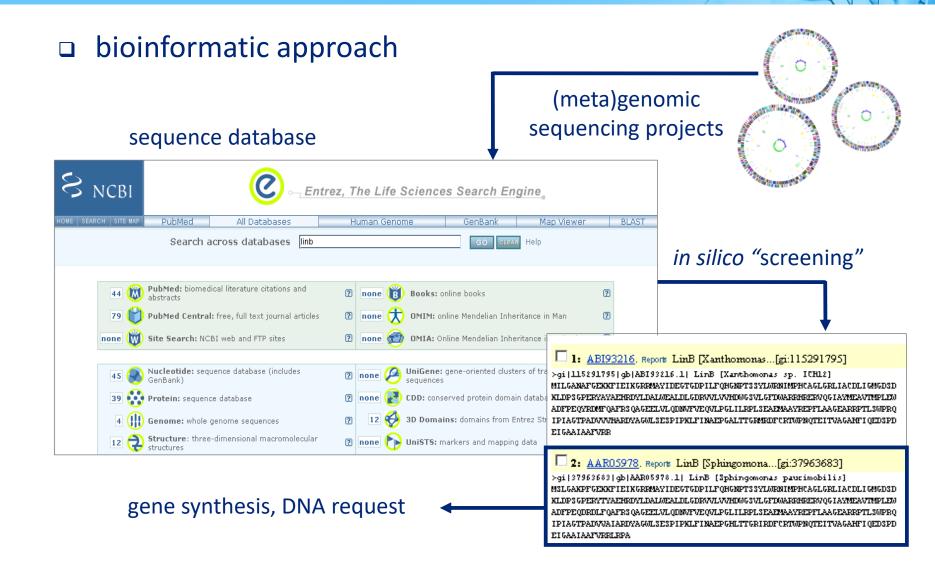
- stability
- temperature profile
- activity
- specificity
- enantioselectivity
- • •

- better understanding of structure-function relationships
- novel properties
- better starting points for protein engineering


- better understanding of structure-function relationships
- novel properties
- better starting points for protein engineering
- \rightarrow proteins with desired properties \rightarrow practical applications


- traditional approach
- metagenomic approach
- bioinformatic approach

traditional approach



- □ traditional approach
 - microorganisms possessing target activity are enriched from the environment and isolated in pure culture
 - proteins or corresponding genes are recovered from organisms by protein purification, DNA library screening, PCR with specific primers, etc.
 - majority of microorganisms (> 99 %) cannot be cultivated using standard techniques → a large fraction of the microbial diversity in an environment is lost

□ metagenomic approach

- □ metagenomic approach
 - isolation and cloning of DNA extracted directly from environmental sample (without culturing the present organisms)
 - genes recovered by DNA library screening or PCR with specific primers,...
 - enables to explore biodiversity of uncultured microorganisms

- □ bioinformatic approach
 - sequence data from genomic and metagenomic sequencing projects are stored in sequence databases
 - *in silico* searching of sequence databases

 \rightarrow fast and cheap way to identify novel proteins

 \rightarrow one cannot find what is not in the database (but there is a lot

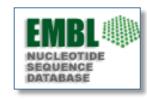
of data - more than one usually needs)

 genes are recovered by gene synthesis or obtained from sequencing consortia upon request

Where to find target sequences?

- databases of nucleotide sequences
- databases of protein sequences

Databases of nucleotide sequences


- □ GenBank
 - http://www.ncbi.nlm.nih.gov/genbank/
 - provided by NCBI (National Center for Biotechnology Information)

EMBL-BANK

- http://www.ebi.ac.uk/embl/
- provided by EBI (European Bioinformatics Institute)

DDBJ

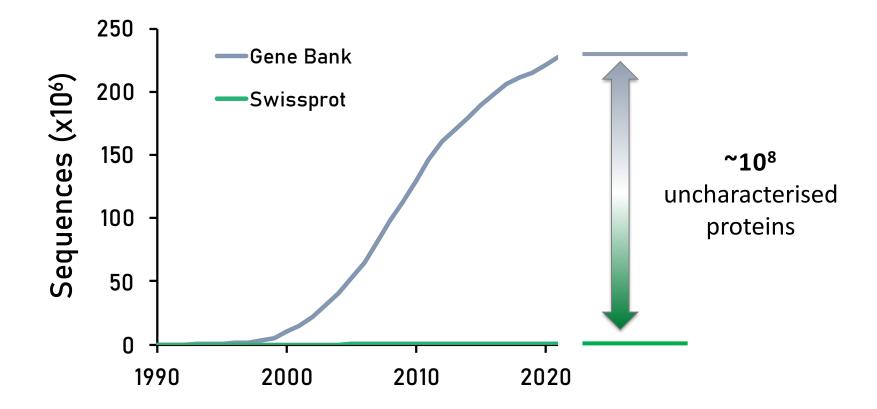
- http://www.ddbj.nig.ac.jp/
- provided by National Institute of Genetics from Japan

Databases of nucleotide sequences

- GenBank, EMBL-Bank, DDBJ
 - annotated collections of all publically available nucleotide sequences
 - freely available to the wide community
 - contain data obtained from genomic centers or research institutions
 - everyday synchronization of new or updated data
 - contain about 250,000,000 sequences (Feb 2024)
 - mostly automatic annotations lower quality, errors

- UniProtKB
 - http://www.uniprot.org/
 - provided by EBI, Swiss Institute of Bioinformatics and Protein Information Resource
- nr Protein database
 - http://www.ncbi.nlm.nih.gov/protein/
 - provided by NCBI

- UniProtKB, nr Protein database
 - annotated collections of publically available protein sequences
 - freely available to wide community
 - contain data obtained by conceptual translation of coding sequences from EMBL-Bank/GenBank/DDBJ or provided by research institutions
 - contain more than 250,000,000 sequences (Feb 2024)
 - mostly automatic annotations lower quality, errors


UniProtKB

- rich annotations (e.g., information about function of protein and individual amino acids, experimental data, biological ontologies, classifications, ...)
- clear indication of annotation quality (manual vs. automatic)

- UniProtKB/Swiss-Prot
 - high-quality annotations, i.e., manually annotated entries or expertreviewed automatic annotations
 - source of reliable information
 - contains "only" ~ 570,000 sequences (Feb 2025)
- UniProtKB/TrEMBL
 - automatic annotations lower quality, errors
 - contains ~ 250,000,000 sequences (Feb 2025)

Number of sequences Number of characterized proteins

Pitfalls of sequence databases

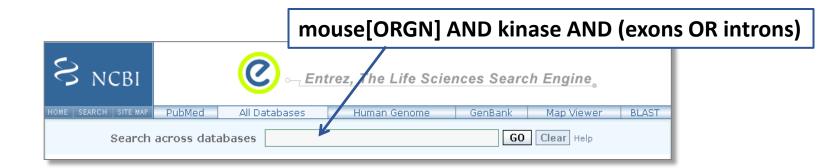
- □ large number of errors
 - errors in sequences (wrong base, frameshift errors)
 - wrong positions of genes
 - exon-intron boundary errors
 - errors and inaccuracies in annotations

How to find target sequences?

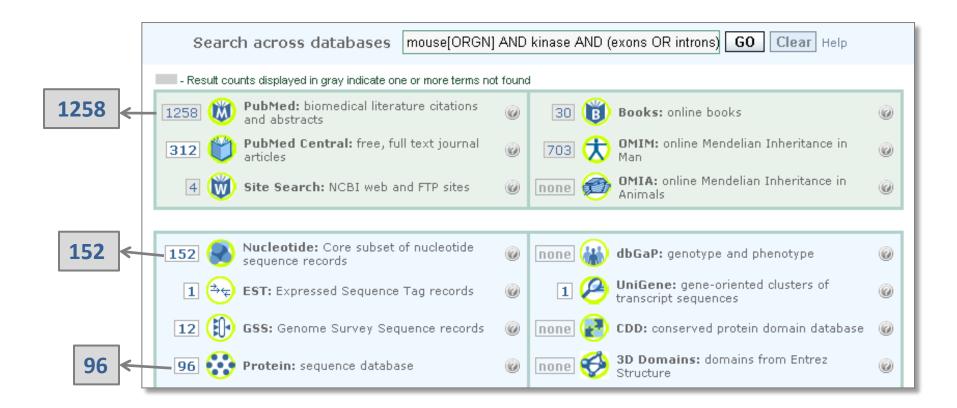
- text-based searches
- sequence-based searches

Data format

□ Fasta sequence:


- Header starting with ">" followed by the sequence description
- Sequence data are on the new line

>Haloalkane dehalogenase LinB MSLGAKPFGEKKFIEIKGRRMAYIDEGTGDPILFQHGNPTSSYLWRNIMPHCAGLGRLIACDLI GMGDSDKLDPSGPERYAYAEHRDYLDALWEALDLGDRVVLVVHDWGSALGFDWARRHRERVQGI AYMEAIAMPIEWADFPEQDRDLFQAFRSQAGEELVLQD

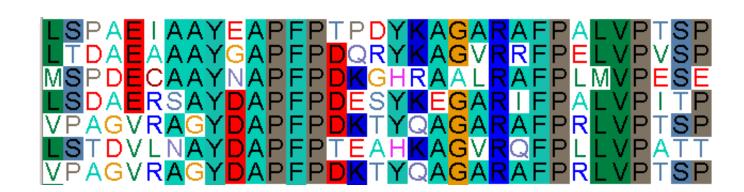

- database retrieval systems
 - enable quick and easy search of many databases at the same time
 - specification of queries using logical operators (AND, OR, NOT,...)
 - Entrez (NCBI), SRS (EBI)

- results dependent on sequence annotations
 - erroneous, inaccurate or too general annotations
 - synonyms
 - misspellings
 - ...

database retrieval systems

database retrieval systems

□ database retrieval systems

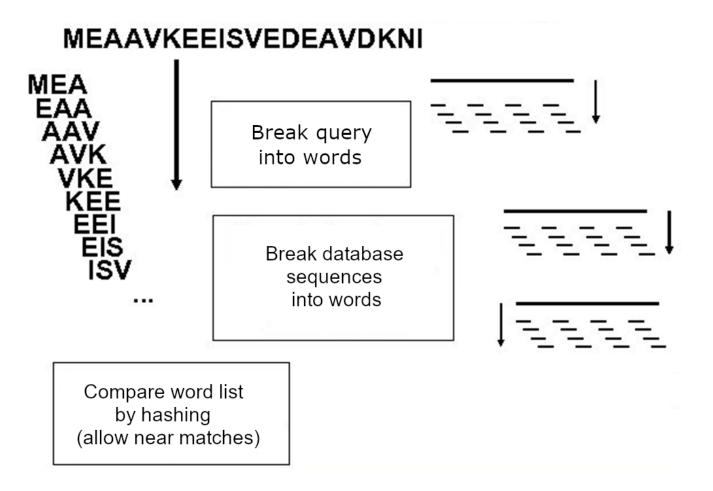

advanced search options

Advanced Search ⁱ				×
Searching in				
UniProtKB				Ŧ
			Gene Name [GN]	1
	~	Gene Name [GN] 🔻	YDJ1	Remove
			Taxonomy [OC]	
AN	D 🔻	Taxonomy [OC] 🛛 🛨	Mammalia (mammals) [40674]	Remove
			Keyword [KW]	
AN	D 🔻	Keyword [KW] 🛛 🛨	Activator [KW-0010]	Remove
Add Field			Cancel	Search

Sequence-based searches

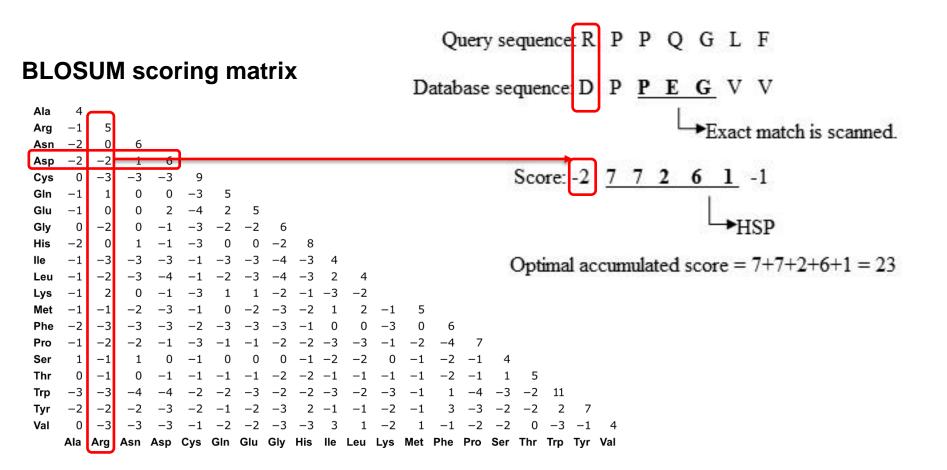
- searches based on sequence similarity
 - results not influenced by sequence annotations
- rely on the assumption that proteins with the same function have similar sequence
 - not always true close homologs vs. distant homologs vs. analogs

1234567


Sequence-based searches

BLAST

- Heuristic search of similarity on significant sequences
- Reasonable sensitivity and good speed
- Gold standard in sequence search
- □ PSI-BLAST
 - "iterative BLAST" making use of multiple sequence alignment
 - more sensitive search to detect weak but biologically significant similarities between sequences
- HMMER
 - Uses Hidden Markov Models for sensitive detection of remote homologs
 - Slower than BLAST for simple sequence similarity searches
 - Widely used in protein family classification and domain identification


BLAST

Basic Local Alignment Search Tool

BLAST

Basic Local Alignment Search Tool

□ BLAST input

	NIH National Library of Medicine National Center for Biotechnology Information	
	BLAST [®] » blastp suite	
blastn b]]
Enter Query S Enter accession	Sequence number(s), gi(s), or FASTA sequence(s) ? Clear From To	
Or, upload file Job Title	Browse) No file selected.	
Choose Sear	ch Set	
Databases	Standard databases (nr etc.): Experimental databases For more info see What is clustered nr?	
Compare	Select to compare standard and experimental database 💡	
Standard		
Database	Non-redundant protein sequences (nr)	
Organism Optional	Enter organism name or id—completions will be suggested exclude Add organism Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown ?	
Exclude Optional	Models (XM/XP) Non-redundant RefSeq proteins (WP) Uncultured/environmental sample sequences	

BLAST results

hits

				Scor	re	E-v	alue			
Sequ	iences	producing significant alignments		Download 🗠	⁄ Ma	nage (Colun	ns ~	Show	100 🗸 🔞
🗹 se	elect all	100 sequences selected		<u>GenPept</u>	Graphice	Dis	tance t	re of re	esults <u>M</u>	ultiple alignmen
			Description		Max Score	Total Score	Query Cover	E value	Per. Ident	Accession
	achaete-so	<u>cute homolog 2 [Homo sapiens]</u>			373	373	100%	2e-130	100.00%	NP_005161.1
	achaete-so	<u>cute homolog 2 [Pongo abelii]</u>			368	368	100%	3e-128	98.96%	<u>XP_002821424.1</u>
	achaete-so	cute homolog 2 [Nomascus leucogenys]			361	361	100%	2e-125	97.41%	<u>XP_003282133.1</u>
2	achaete-so	cute homolog 2 [Macaca nemestrina]			356	356	100%	1e-123	96.37%	<u>XP_011719606.1</u>
2	achaete-so	cute homolog 2 [Piliocolobus tephrosceles]			356	356	100%	1e-123	96.37%	<u>XP_023039276.1</u>
2	achaete-so	<u>cute homolog 2 [Papio anubis]</u>			297	297	100%	3e-100	95.85%	<u>XP_003909431.1</u>
2	PREDICTE	D: achaete-scute homolog 2 [Chlorocebus sabaeu	<u>s]</u>		297	297	100%	3e-100	95.34%	<u>XP_008003331.1</u>
	PREDICTE	D: achaete-scute homolog 2 [Rhinopithecus bieti]			294	294	100%	3e-99	95.34%	<u>XP_017741776.1</u>
S	PREDICTE	D: achaete-scute homolog 2 [Cebus capucinus imi	tator]		271	271	92%	4e-90	96.07%	<u>XP_017363199.1</u>
	PREDICTE	D: achaete-scute homolog 2 [Callithrix jacchus]			269	269	100%	3e-89	94.82%	<u>XP_009006952.1</u>
Z <u>a</u>	achaete-so	cute homolog 2 [Sus scrofa]			265	265	100%	1e-87	84.97%	<u>NP_001116463.1</u>
2 F	PREDICTE	D: achaete-scute homoloo 2 [Caora hircus]			261	261	92%	5e-86	85.39%	XP 017899088.1

BLAST results

Seq	uences producing significant alignments		Download >	́Ма	nage (Colum	ns ~	Show	100 🗸 🔇
2	select all 100 sequences selected		<u>GenPept</u>	Graphics	Dis	tance t	ree of re	esults <u>M</u>	<u>ultiple alignmen</u>
		Description		Max Score	Total Score	Query Cover	E value	Per. Ident	Accession
	achaete-scute homolog 2 [Homo sapiens]			373	373	100%	2e-130	100.00%	NP_005161.1
	achaete-scute homolog 2 [Pongo abelii]			368	368	100%	3e-128	98.96%	<u>XP_002821424.1</u>
	achaete-scute homolog 2 [Nomascus leucogenys]			361	361	100%	2e-125	97.41%	<u>XP_003282133.1</u>
	achaete-scute homolog 2 [Macaca nemestrina]			356	356	100%	1e-123	96.37%	<u>XP_011719606.1</u>
	achaete-scute homolog 2 [Piliocolobus tephrosceles]			356	356	100%	1e-123	96.37%	<u>XP_023039276.1</u>
	achaete-scute homolog 2 [Papio anubis]			297	297	100%	3e-100	95.85%	<u>XP_003909431.1</u>
	PREDICTED: achaete-scute homolog 2 [Chlorocebus sabaeus]			297	297	100%	3e-100	95.34%	<u>XP_008003331.1</u>
	PREDICTED: achaete-scute homolog 2 [Rhinopithecus bieti]			294	294	100%	3e-99	95.34%	<u>XP_017741776.1</u>
	PREDICTED: achaete-scute homolog 2 [Cebus capucinus imitat	tor]		271	271	92%	4e-90	96.07%	<u>XP_017363199.1</u>
	PREDICTED: achaete-scute homolog 2 [Callithrix jacchus]			269	269	100%	3e-89	94.82%	<u>XP_009006952.1</u>
	achaete-scute homolog 2 [Sus scrofa]			265	265	100%	1e-87	84.97%	<u>NP_001116463.1</u>
	PREDICTED: achaete-scute homolog 2 [Capra hircus]			261	261	92%	5e-86	85.39%	XP 017899088.1

BLAST Score

- raw score normalized on the basis of the scoring method
- sum of substitution scores and gap penalties
- higher is better, but does not adequately represent significance of alignment
- □ BLAST E-value
 - number of BLAST alignments with a given or better Score that are expected to be seen simply by chance (with random sequence)
 - indicator of alignment significance (adjusted to the database size)
 - results associated with the lowest *E*-values are the best
 - hits with an *E*-value score > 0.01 belong to the "grey zone" do not trust them

BLAST alignment

- identity and similarity level between query and aligned sequence
- alignment length and coverage of query sequence the alignment is local, therefore one should always check that the alignment covers a significant portion of the query sequence (e.g., the alignment may involve only few amino acids from the query sequence → not significant hit)

□ PSI-BLAST results

alignment

> <mark>⊟gb AAT7</mark> Length=34:	0109.1 CurN [Lyngbya majuscula]
	303 bits (777), Expect = 8e-81, Method: Composition-based stats. s = 148/297 (49%), Positives = 188/297 (63%), Gaps = 8/297 (2%)
Query 2	SEIGTGFPFDPHYVEVLGERMHYVDVGPRDGTPVLFLHGNPTSSYLWRNIIPHV-APSHR 60 I + FPF VEV G + YVD G G PVLFLHGNPTSSYLWRNIIP+V A +R
Sbjct 41	LPISSEFPFAKRTVEVEGATIAYVDEGSGQPVLFLHGNPTSSYLWRNIIPYVVAAGYR 98
Query 61	CIAPDLIGMGKSDKPDLDYFFDDHVRYLDAFIEALGLEEVVLVIHDWGSALGFHWAKRNP 120 +APDLIGMG S KPD++Y DHV Y+D FI+ALGL+++VLVIHDWGS +G A+ NP
Sbjct 99	AVAPDLIGMGDSAKPDIEYRLQDHVAYMDGFIDALGLDDMVLVIHDWGSVIGMRHARLNP 158
Query 12:	. ERVKGIACMEFIRPIPTWDEWPEFARETFQAFRTADVGRELIIDQNAFIEGVLPK- 175 +RV +A ME + P P+++ F+ RTADVG ++++D N F+E +LP+
Sbjet 159	
Query 170	5 CVVRPLTEVEMDHYREPFLKPVDREPLWRFPNEIPIAGEPANIVALVEAYMNWLHQSPVP 235 VVR L+E EM YR PF R P ++P E+PI GEPA A V WL SP+P
Sbjct 219	
Query 230	5 KLLFWGTPGVLIPPAEAARLAESLPNCKTVDIGPGLHYLQEDNPDLIGSEIARWLPG 292 KLLF PG L P L+E++PN + +G G H+LQED+P LIG IA WL
Sbjct 279	a

Optimal search strategy

- text-based search
 - good for finding evolutionary "unrelated" proteins with some specific function
 - a large number of false negatives (missed proteins with target function) and false positives (identified proteins with different function) results due to erroneous or inaccurate annotations

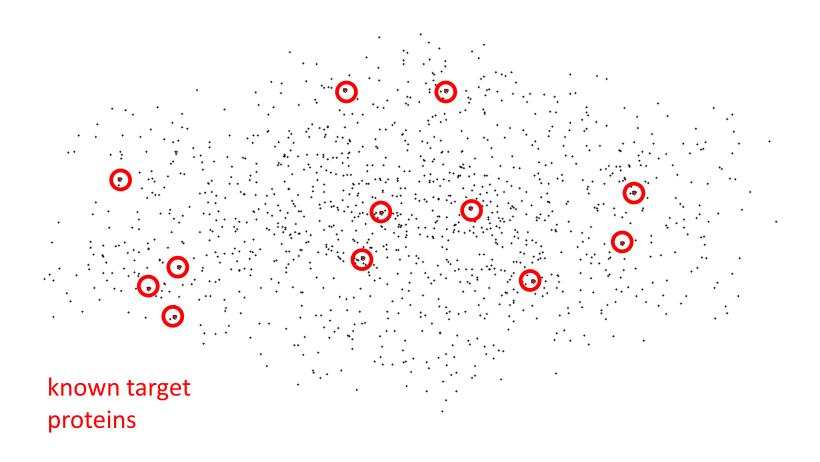
Optimal search strategy

□ text-based search

- sequence-based search
 - good for finding members of a protein family (i.e., group of evolutionary related proteins sharing some specific function) → not suitable for finding "unrelated" proteins
 - potential false positive results (i.e., proteins belonging to other evolutionary related families)
 - searches using protein sequence queries are generally more sensitive than using nucleotide sequence queries (20 different amino acids vs. 4 different nucleotides)

Optimal search strategy

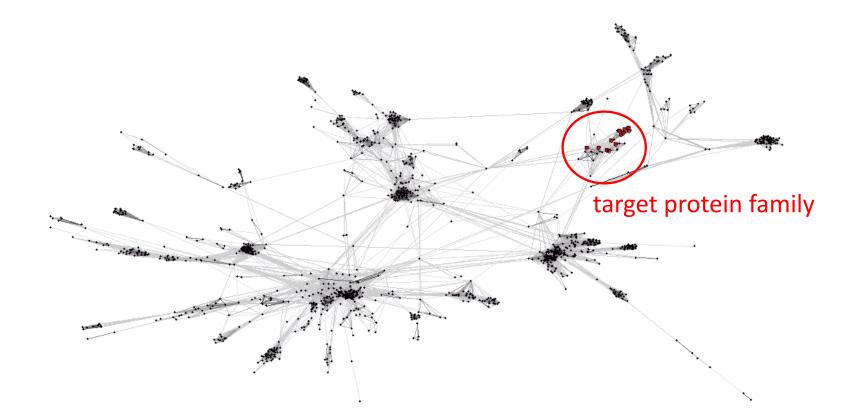
- text-based search
- sequence-based search
- combination of text-based and sequence-based approaches
 - 1. text-based search
 - subdivision of identified sequences into evolutionarily related groups
 - 3. selection of a few representatives for each group
 - 4. sequence-based searches using each representative as a query
 - potential false positive results should be filtered

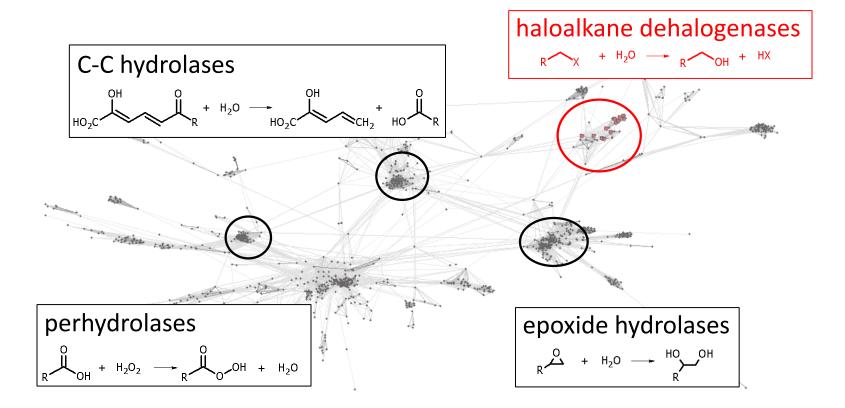


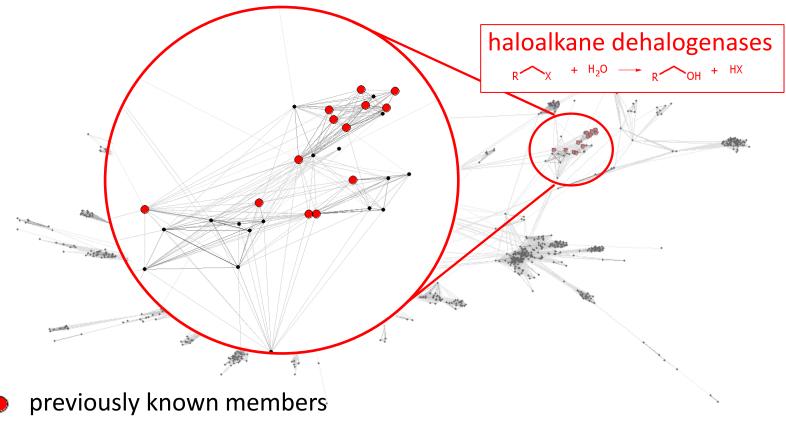
How to recognize interesting sequences?

- sequence clustering
- sequence comparison
- information about host organisms
- automated in silico enzyme identification
- reconstruction of ancestral proteins

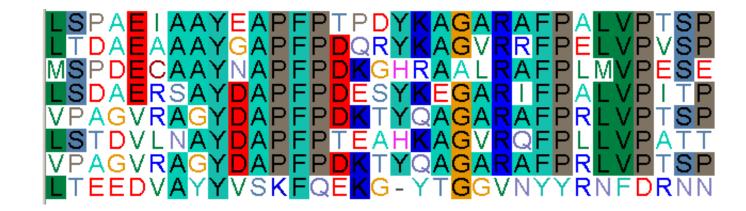
- Clustering based on pairwise sequence similarities
 - can be used for a fast and rough classification of sequences in large datasets (thousands of sequences)
 - \rightarrow effective way to filter results of database searches
 - \rightarrow identification of members of individual protein families
- □ Tools:
 - CLANS visualization of pairwise sequence similarities in threedimensional space → overview of sequence space (<u>https://toolkit.tuebingen.mpg.de/tools/clans</u>)
 - CD-HIT clustering and comparison of protein or nucleotide sequences (<u>https://sites.google.com/view/cd-hit/</u>)

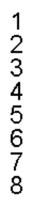

□ Clustering based on pairwise sequence similarities

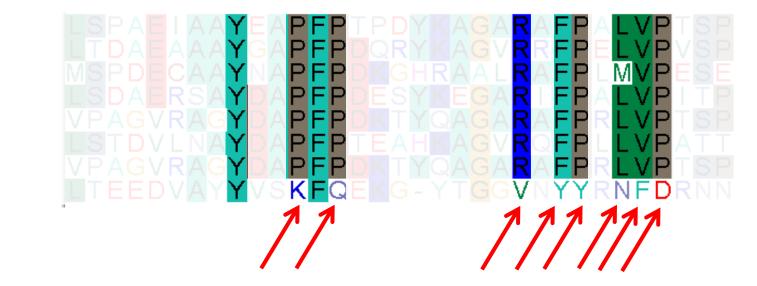

□ Clustering based on pairwise sequence similarities


Clustering based on pairwise sequence similarities

□ Clustering based on pairwise sequence similarities


Clustering based on pairwise sequence similarities


new family members


- multiple sequence alignment
 - analysis of conserved residues within protein family → identification of protein family members

12345678

- multiple sequence alignment
 - analysis of conserved residues within protein family → identification of protein family members

- multiple sequence alignment
 - analysis of conserved residues within protein family → identification of protein family members

- multiple sequence alignment
 - identification of sequences with unique features → proteins with potentially novel characteristics or problematic for production

Shesp-EAKPFP	SALWIC-RNTGFNAFSSIASYV-GVKRA	PMPKAIREAYVAI
Sheama ATKPLP	LRLKIC- <mark>R</mark> DTGF <mark>NAF</mark> AGLASVI- <mark>G</mark> CK <mark>R</mark> N	PMNAEMRAYVAI
Pelpro PGKPFP	LALRIC- <mark>R</mark> DTGFNAFSLAASFV- <mark>G</mark> CK <mark>R</mark> N	PLSRELRRLYRLI
Desace PSKPLP	SALKLC- <mark>R</mark> DSGF <mark>NAF</mark> SRGAAWV- <mark>G</mark> CKIN	P MPP <mark>A</mark> L <mark>RAAYMA</mark> I
Xanaxo AEKPMP	SQIAMG- <mark>R</mark> HWTF <mark>NAF</mark> SSGASWF- <mark>GV</mark> S <mark>R</mark> R	MPADVRRAYVAI
Xvlfas TSKKMP	WQIALG- <mark>R</mark> DWGL <mark>NAF</mark> ALGAAWL- <mark>GVET</mark> R	LPRAVRRAYLAI
Chlaur HVP	LRIAAG-KLPOLNAFAIAATTM-ANTRP	LPA <mark>AVR</mark> EGYLWI
DespsyHIP	ERISLC-RAPGLNGFAWPASFM-AMQKR	LSK <mark>EV</mark> VAGYLAI
Rhobal YMP	RIAAC- <mark>R</mark> MPGLNLFARAAVTM-AMS <mark>R</mark> T	KMKP <mark>DV</mark> A <mark>A</mark> GLL <mark>AI</mark>
Burcen NGREAP	INFQ <mark>W</mark> IM- <mark>R</mark> AAGFNILSTLK <mark>L</mark> NG-FENHA	IIADTWIAAYGAI
	NF F VERLI P A- <mark>G</mark> TEHR	
Nocfar IDALAN	NFLIDRVLLAEL <mark>R</mark> G	V L TK <mark>AH</mark> ADHYRGV
	EKLPPPLLMM <mark>R</mark> AKRLGF F ERQVMTM-ATATK	RKGPSKRAYRD]
uncbac PDVPQEVIDEIKAFRASNKKINFF	TMAKNISKMDKSKHFATKFMY <mark>W</mark> QK <mark>F</mark> SWESKNMPIGFLNSM- <u>Q</u> MEDKLAKSK	(VKAYVHLLFQGLGLEKLS <mark>P</mark> ESTDLIKAYEAI
Erylit GESPGP	GFEA <mark>W</mark> KA <mark>F</mark> NRSQP <mark>N</mark> MDVAGLFKR- <mark>G</mark> TPD	LTDALAAAYGAI
Polsp-SDVPLS	PGFRA <mark>WREMCAKNPDFDVARLFAR-</mark> GNP <u>Q</u>	
Mycavi AQRRTP	PAF YA <mark>W</mark> RA <mark>F</mark> AR YS PVLPAGR IVSV- <mark>G</mark> TV <mark>R</mark> R	
	LPFYV <mark>W</mark> RA <mark>F</mark> ARYSPVLPAGRLVNF- <mark>G</mark> TV <u>H</u> R	
Mycavi GDQEMA	DVWWRFREAITSAPQLNIGAFVQG- <mark>G</mark> CRRR VVFRL <mark>W</mark> KA <mark>F</mark> ASHSPWFPIGRIVQL- <mark>G</mark> TERS	<mark>LSDAER</mark> AGYDAI
Maraqu GDNRVP	GTERS	LSPA <mark>E</mark> IAAYEAI
Caucre GVGKS	EGFEA <mark>m</mark> LN <mark>F</mark> SQNTPELPVGFI <mark>I</mark> NG- <mark>G</mark> TA <mark>R</mark> D	
Pseatl GDHPPG		
Psycry GDHDLG	EGFRKWOOESOEIPOFHVGGTIKS- <mark>G</mark> TVTK	LSOAVIDAYNAI
Shéfri GDHPPG	EAFTK <mark>W</mark> RQ <mark>E</mark> SQ D VAIFPTGNLINS- <mark>A</mark> CVST	LTVEIIAAYDAI

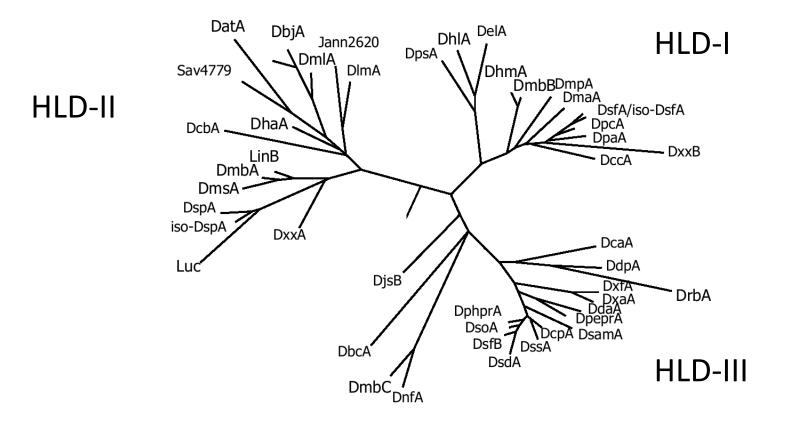
- multiple sequence alignment
 - identification of sequences with unique features → proteins with potentially novel characteristics or problematic for production

Shesp-EAKPFP	WALWIC-RNTGFNAFSSIASYV-GVKRA	
	IRLKTC-RDTGFNAFAGLASVT-GCKRN-	
Pelpro PGKPFP	LALRIC-RDTGFNAFSLAASFV-GCKRN-	
	KALKLC-RDSGFNAFSRGAAWV-GCKIN	
Desace PSKPLP	WQIAMG-RHWTFNAFSSGASWF-GVSHR	
Xanaxo AEKPMP		MPADVRRAYVAI
Xylfas TSKKMP	WQIALG-RDWGLNAFALGAAWL-GVETR	LPRAVRRAYLAI
ChlaurHVP	LRIAAG-KLPQLNAFAIAATTM-AVT P	IPAAVKLGYLWI
	LRISLC-RAPGLNGFAWPASFM-AVQKR	ISK <u>b</u> vvAgylai
Rhobal YMP	QRIAAC-RMPGLNLFARAAVTM-AMST	KMKPDVAAGLLA1
Burcen NGREAP	WFQWIM- <mark>R</mark> AAGFNILSTLK <mark>I</mark> NG- <u>F</u> ENHA	IIADTWIAAYGAI
Myctub ADT LAM	NFFVERLIPA-GTEHR	PSSAVMAHYRA
Nocfar IDALAN	·NFLIDRVLAELG	
Jansp-GVDPDK		RKGPSKRAYRD]
uncbac PDV PQEVIDEIKAFRASN	IKKINFFTMAKNISKMDKSKHFATKFMYMQKFSWESKNMPIGFLNSM-QMEDK	LAKSKVKAYVHLLFQGLGLEKLS B F S TDLIK <mark>AYEAI</mark>
uncbac PDVPQEVIDEIKAFRASN	·GFEAWKAFNRSOPNMDVAGLFKR-GTPD-·	LAKSKVKAYVHLLFQGLGLEKLS F STDLIK <mark>AYEAI</mark> TDA H AAAYGA
uncbac PDVPQEVIDEIKAFRASN Erylit GESPGP		LAKSKVKAYVHLLFQGLGLEKLS E F S TDLIK <mark>AYEAI</mark>
Iuncbac PDVPQEVIDEIKAFRASN Erylit GESIG Polsp-SDVPLS	·GFEAWKAFNRSOPNMDVAGLFKR-GTPD-·	LAKSKVKAYVHLLFQGLGLEKLS F F S TDLIK <mark>AYEAI</mark>
Uncbac PDVPQEVIDEIKAFRASN Erylit GESIG Polsp-SDVILS Mycavi AQRRT	·GFEAWKAENRSQPNMDVAGLFKR-GTPD-· ·PGFRAWREMCAKNPDFDVARLFAR-GNPQ-· ·PAFYAWRAEARYSPVLPAGRIVSV-GTV <mark>-</mark> R·	LAKSKVKAYVHLLFQGLGLEKLS F F S TDLIK <mark>AYEAI</mark>
uncbac PDVPQEVIDEIKAFRASN Erylit GESIG Polsp-SDVILS Mycavi AQRRT Myctub AQGRT	·GFEAWKAENRSQPNMDVAGLFKR-GTPD-· ·PGFRAWREMCAKNPDFDVARLFAR-GNPQ-· ·PAFYAWRAEARYSPVLPAGRIVSV-GTVMR ·LPFYVWRAEARYSPVLPAGRLVNF-GTVMR	LAKSKVKAYVHLLFQGLGLEKLS F F S TDLIK <mark>AYEAI</mark>
uncbac PDVPQEVIDEIKAFRASN Erylit GESIG Polsp-SDVILS Mycavi AQRRT Myctub AQGRT Mycavi GDQMA	GFEAWKAENRSQPNMDVAGLFKR-GTPD- PGFRAWREMCAKNPDFDVARLFAR-GNPQ- PAFYAWRAEARYSPVLPAGRIVSV-GTVMR LPFYVWRAEARYSPVLPAGRLVNF-GTVHR LPFYVWRAEARYSPVLPAGRLVNF-GTVHR DVWWRFREAITSAPQLNIGAFVQG-GCR	LAKSKVKAYVHLLFQGLGLEKLSEFSTDLIKAYEA TDAHAAAYGA
<pre>uncbac PDVEQEVIDEIKAFRASN Erylit GESSG Polsp-SDVELS Mycavi AQRRT Myctub AQRRT Myctub AQRRT Mycavi GDQEMA Maraqu GDNRV</pre>	GFEAWKAENRSQPNMDVAGLFKR-GTPD- PGFRAWREMCAKNPDFDVARLFAR-GNPQ- PAFYAWRAEARYSPVLPAGRIVSV-GTVER 	LAKSKVKAYVHLLFQGLGLEKLSFFSTDLIKAYEA TDALAAAYGA MSPDCAAYNA VPAGYDA VPAGYDA SDALBAGYDA SPALAAYEA
uncbac PDVPQEVIDEIKAFRASN Erylit GESPG Polsp- SDVPLS Mycavi AQRRT Myctub AQGRT Mycavi GDQEMA Mycavi GDQEMA Maraqu GDNRV Caucre GVGKS	GFEAWKAENRSQPNMDVAGLFKR-GTPD- 	LAKSKVKAYVHLLFQGLGLEKLSFFSTDLIKAYEA TDALAAAYGA MSPDCAAYNA VPAGYDA VPAGYDA SDALBAGYDA SPALAAYEA
uncbac PDVPQEVIDEIKAFRASN Erylit GESPG Polsp- SDVPLS Mycavi AQRRT Myctub AQGRT Mycavi GDQIMA Maraqu GDNRV Caucre GVGKS Pseat1 GDH PG	GFEAWKAENRSQPNMDVAGLFKR-GTPD- PGFRAWREMCAKNPDFDVARLFAR-GNPQ- PAFYAWRAEARYSPVLPAGRIVSV-GTVDR LPFYVWRAEARYSPVLPAGRLVNF-GTVHR 	LAKSKVKAYVHLLFQGLGLEKLSFFSTDLIKAYEA TDALAAAYGA VSPDCAAYNA VSKVRAGYDA SDABAGYDA
uncbac PDVPQEVIDEIKAFRASN Erylit GESPG Polsp- SDVPLS Mycavi AQRRT Myctub AQGRT Mycavi GDQIMA Maraqu GDNRV Caucre GVGKS Pseatl GDH PG Sycry GDH DLG	GFEAWKAFNRSQPNMDVAGLFKR-GTPD- PGFRAWREMCAKNPDFDVARLFAR-GNPQ- PAFYAWRAFARYSPVLPAGRIVSV-GTVR 	LAKSKVKAYVHLLFQGLGLEKLSFFSTDLIKAYEA TDALAAAYGA VSPDCAAYNA VSKVRAGYDA SDABAGYDA
uncbac PDVPQEVIDEIKAFRASN Erylit GESPG Polsp- SDVPLS Mycavi AQRRT Myctub AQGRT Mycavi GDQIMA Mycavi GDQIMA Maraqu GDNRV Caucre GVGKS Pseatl GDH PG Shefri GDH PG	GFEAWKAENRSQPNMDVAGLFKR-GTPD- PGFRAWREMCAKNPDFDVARLFAR-GNPQ- PAFYAWRAFARYSPVLPAGRIVSV-GTVR 	LAKSKVKAYVHLLFQGLGLEKLSFFSTDLIKAYEA TDALAAAYGA VSPDCAAYNA VSKVRAGYDA SDABAGYDA
uncbac PDVPQEVIDEIKAFRASN Erylit GESPG Polsp- SDVPLS Mycavi AQRRT Myctub AQGRT Mycavi GDQIMA Maraqu GDNRV Caucre GVGKS Pseatl GDH PG Sycry GDH DLG	GFEAWKAFNRSQPNMDVAGLFKR-GTPD- PGFRAWREMCAKNPDFDVARLFAR-GNPQ- PAFYAWRAFARYSPVLPAGRIVSV-GTVR 	LAKSKVKAYVHLLFQGLGLEKLSFFSTDLIKAYEA TDALAAAYGA VSPDCAAYNA VSKVRAGYDA SDABAGYDA

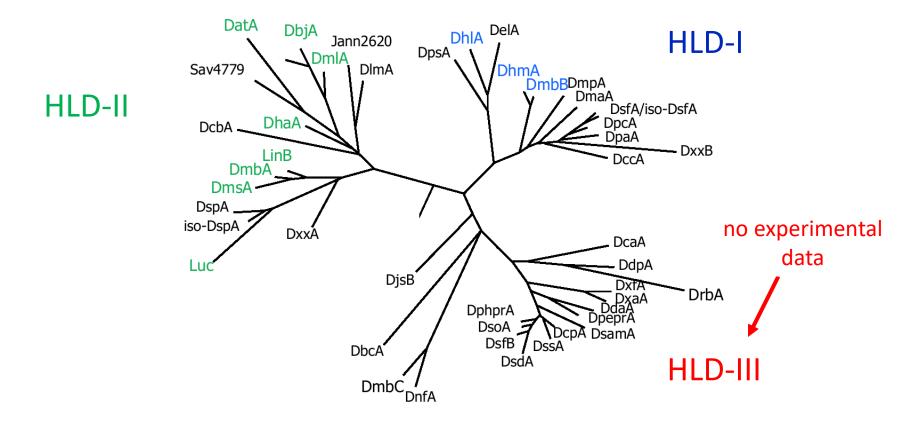
multiple sequence alignment

essential residues

- analysis of conserved residues important for function (catalytic, binding, coordinating residues, etc.)
- In UniProt/SwissProt -> Function -> Features -> list of active or binding site residues



phylogenetics


establishment of evolutionary relationships among sequences

- phylogenetics
 - classification of sequences

- phylogenetics
 - information about experimental data → selection of novel proteins

- extremophiles microorganisms living in extreme conditions
 - geochemical extremes (pH, salinity)
 - physical extremes (temperature, pressure)
- proteins from extremophiles
 - often adapted to extreme conditions → unique characteristics, useful for practical applications

- Genomes OnLine Database (GOLD)
 - http://www.genomesonline.org/
 - list of complete (>36,000) and ongoing (> 115,000) information about individual projects and source organisms (Feb 2024)
- Entrez Genome
 - http://www.ncbi.nlm.nih.gov/sites/genome
 - provided by NCBI
 - ~700,000 genome information by organism
 - information about genome, source organism, genes, encoded proteins, graphical representations, ...

GOLD

Metagenomes	Isolate Genomes
器 <u>Classification</u>	Complete Projects: 4169
• <u>Studies</u> : 370	Incomplete Projects: 17714
• <u>Samples</u> : 2642	Targeted Projects: 1500

Organism M	letadata	
MIGS 22 📀	OXYGEN REQUIREMENT	Aerobe
MIGS 37.1 0	CELL SHAPE	Rod-shaped
MIGS 37.2 0	MOTILITY	Nonmotile
<u>MIGS 37.3</u> 🥹	SPORULATION	
MIGS 37.4 0	PRESSURE	
MIGS 37.12 0	TEMPERATURE RANGE	Psychrophile
	SALINITY	Halotolerant
	РН	
MIGS 37.5 0	CELL DIAMETER	
<u>MIGS 37.6</u> 🥹	CELL LENGTH	
<u>MIGS 37.7</u> 🧿	COLOR	
<u>MIGS 37.8</u> 🧿	GRAM STAINING	
MIGS 15 📀	BIOTIC REALTIONSHIPS	Free living

Entrez Genome

Psychrobacter cryohalolentis

Psychrotolerant organism

Lineage: Bacteria[4049]; Proteobacteria[1682]; Gammaproteobacteria[750]; Pseudomonadales[122]; Moraxellaceae[51]; Psychrobacter[10]; Psychrobacter cryohalolentis[1]

Psychrobacter. These bacteria are commonly isolated from low temperature environments, *Psychrobacter* spp. are cold-adapted organisms that are often isolated from extreme environments such as permafrost or the Antarctic ice. **Psychrobacter cryohalolentis**. *Psychrobacter cryohalolentis*, formerly *Psychrobacter cryopegella* <u>More...</u>

Representative

Community selected, Calculated : Psychrobacter cryohalolentis K5

Psychrobacter cryohalolentis K5. This organism was isolated from saline liquid (12-14%) found 11-24 m below the surface within a forty thousand-year-old Siberian permafrost at the Kolyma-Indigirka lowland in Siberia. This strain will provide insight into growth at extremely low temperatures.

Human Pathogen: no

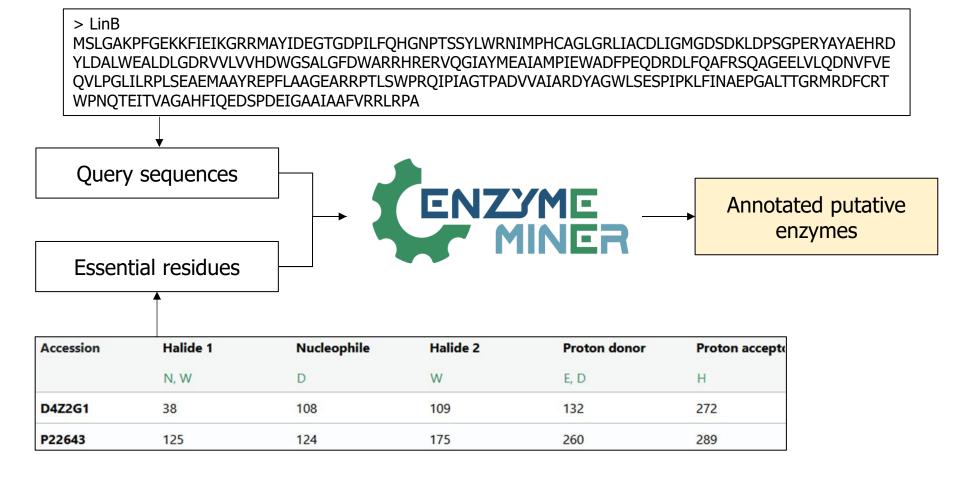
Туре	Name	RefSeq	INSDC	Size (Mb)	GC%	Protein	rRNA	tRNA	Other RNA	Gene	Pseudogene
Chr	-	NC_007969.1	CP000323.1	3.06	42.3	2,467	12	48	6	2,537	4
Plsm	1	NC_007968.1	CP000324.1	0.041221	38.3	44	-	-	-	44	-

biological properties

Biological Properties

Morphology

- Shape : Bacilli
- Motility : No
 Environment
 - Salinity : ModerateHalophilic
 - TemperatureRange : Psychrophilic
 - Habitat : Multiple


Genome Sequencing Projects

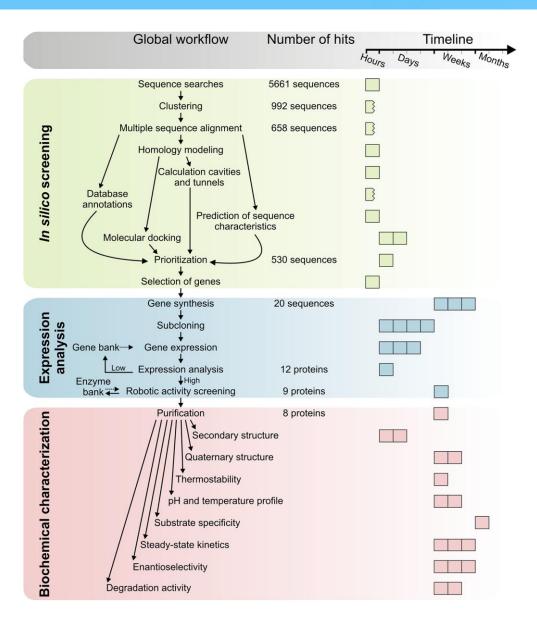
					Chromosomes [1]	Scaffolds or con	tigs [0] 🖱 SR	A or Traces [0] 🔍 No data [0]
Organism	BioProject	Assembly	Status	Chrs	Plasmids	Size (Mb)	GC%	Gene	Protein
Psychrobacter cryohalolentis K5	PRJNA58373, PRJNA13920	ASM1390v1	٠	1	1	3.1	42.2	2,581	2,511

EnzymeMiner

- https://loschmidt.chemi.muni.cz/enzymeminer/
- Search for novel enzymes with particular activity
- Only input is fasta sequence and essential residues
- Filtering of sequences using catalytic residues, MSA, clustering
- Annotations of sequences based on bioinformatics predictions, information available in sequence and genome databases
- 2D space of sequence similarity network

EnzymeMiner

				of soluble	enzymes with diverse structures, catalytic properties and stabilities	<u>A</u>
ıbmit new job He JOB INPUT	lp Ex	ample /	Acknowledgements			Job ID: e.g. xxxxxx Find
Swiss-Prot sequen	ces 🝘	Custom se	equences 🕜			 Number of visitors: 3822 Number of jobs: 628
1.1.1.1 - Alcohol deł Select sequences froi				~	Load example Select sequences from similarity network (max. 40) 🕑	CONTACT Loschmidt Laboratories enzymeminer@sci.muni.cz
Accession	ER 🝞	Length	Sequence plot 😮			<u>https://loschmidt.chemi.muni.cz/</u>
A0A075TMP0	9	340				OTHER TOOLS
A1A835	7	369				SOLUPROT
A1CFL1	7	388			•	
A1L4Y2	14	394				
A2XAZ3	14	381				
A5JYX5	1	309			305	🔶 ГІЛЕРНОТ
A6ZTT5	0	382				нотярот
A7ZIA4	7	369				WIZARD
A7ZX04	7	369				
B1J085	7	369				ACKNOWLEDGEMENT
B1LIP1	7	369				
B4M8Y0	4	254			••	elixir
E1ACQ9	8	339			Select representative sequences of clusters 🕖	

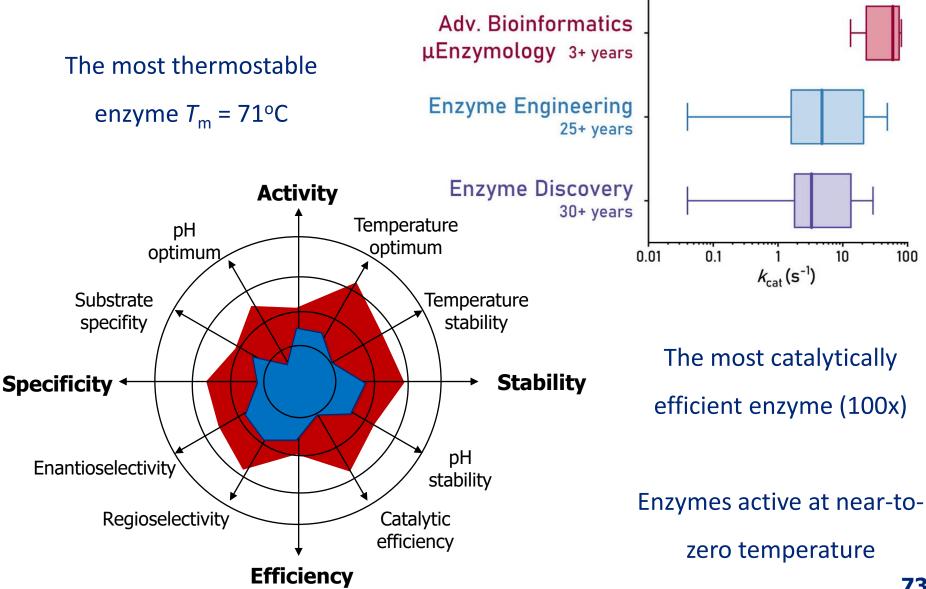

Target selection table

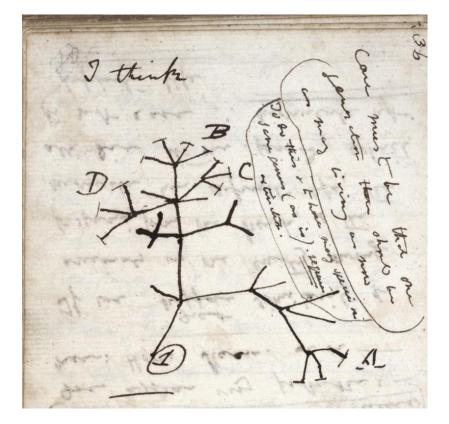
			0					
TARGE	SELECTION TABLE							
	ct all Deselect a	Il Undo Redo 0.50				25		90
	oility threshold: 🔞	-		 Identity to querie 	2S: 🕜			-
Prima	ary domains: 🕜							
PF(0561 (Abhydrolase_1	I) X						× ~
Sele	cted Full Dataset	Extra Domain Known Or	ganism Tempe	erature Salinity Biotic	Relationship	Disease 1	[ransmembrane	3D Structure
Acce	ssion	Annotation	Closest query	Identity closest qu \downarrow	Kingdom	Solubility	Sequence length	Domain annotatio
	KAB2639994.1	haloalkane dehalogena	D4Z2G1	74.1	В	0.6026	294	Abhydrolase_1
	WP_084084852.1	haloalkane dehalogena	D4Z2G1	72.7	В	0.6433	275	Abhydrolase_1
	WP_071575177.1	haloalkane dehalogena	D4Z2G1	70.8				
	AOY91276.1	haloalkane dehalogena	D4Z2G1	70.5			seque	nce simi
	TMJ55042.1	haloalkane dehalogena	D4Z2G1	70.3	SEQUENCE S	IMILARITY NETWO	DRK	
	WP_071068776.1	haloalkane dehalogena	D4Z2G1	70.2	Select net	twork: 🔞		
	WP_066929894.1	haloalkane dehalogena	D4Z2G1	70.1	Identity:	50%, Nodes: 9	94, Edges: 1466	Download Cytoscape :
	WP_096502050.1	haloalkane dehalogena	D4Z2G1	69.9				
	WP_071011817.1	haloalkane dehalogena	D4Z2G1	69.8				
	WP_015306650.1	haloalkane dehalogena	D4Z2G1	69.8				
	WP_110315832.1	haloalkane dehalogena	D4Z2G1	69.8				
	WP_064949090.1	haloalkane dehalogena	D4Z2G1	69.7				
	WP_083164861.1	haloalkane dehalogena	D4Z2G1	69.7				
	WP_057374253.1	haloalkane dehalogena	D4Z2G1	69.6		*		
	WP_015290793.1	haloalkane dehalogena	D4Z2G1	69.6				۰
	2QVB_A	Chain A, Crystal Struct	D4Z2G1	69.5				

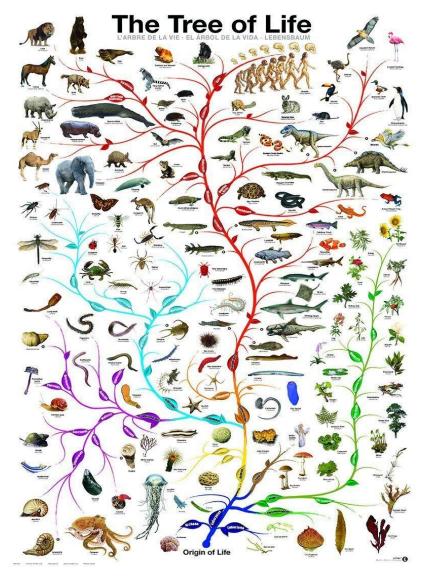
arity network

(50 %

EnzymeMiner use case

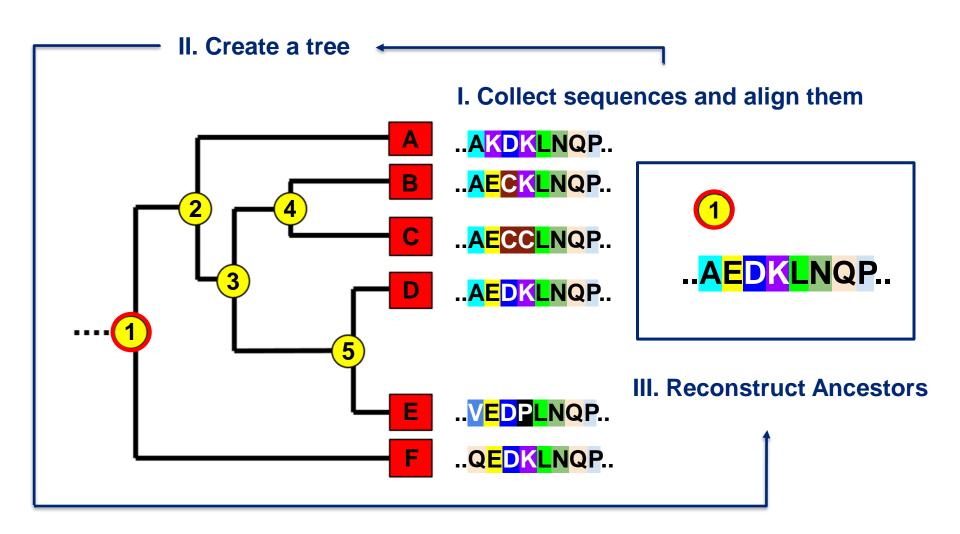



Putative dehalogenases 2,905 sequences


Gene synthesis 67 sequences

Characterization 35 proteins

EnzymeMiner use case



75

- □ FireProt^{ASR}
 - https://loschmidt.chemi.muni.cz/fireprotasr/
 - Web server for automated ancestral sequence reconstruction
 - Ancestral reconstruction, successor prediction, latent space analysis
 - Design of stable proteins with good yields and broad specificity

	Fully automated ancestral sequence reconstruction	E C
Submit new job Help Example Use cases Acknowledge	ement	Job ID: e.g. xxxxxx 🔍 Find job
SEQUENCE	USER DATA	REFERENCE Musil M, Khan R, Stourac J, Bednar D, Damborsky J, 2020: FireProI-ASR: Web Server for Fully Automated Ancestral Sequence Reconstruction. (submitted) USER STATISTICS
STARTING FROM SEQUENCE	Load example	Number of visitors: 2917 Number of jobs: 967 CONTACT Loschmidt Laboratories ifreprof@scimuni.cz http://loschmidt.chemi.muni.cz ACKNOWLEDGEMENT COUNTACT VIDEO TUTORIAL
E-mail (optional) :	Next	

□ FireProt^{ASR}

FireProt^{ASR} use case

Number of enzymes

6

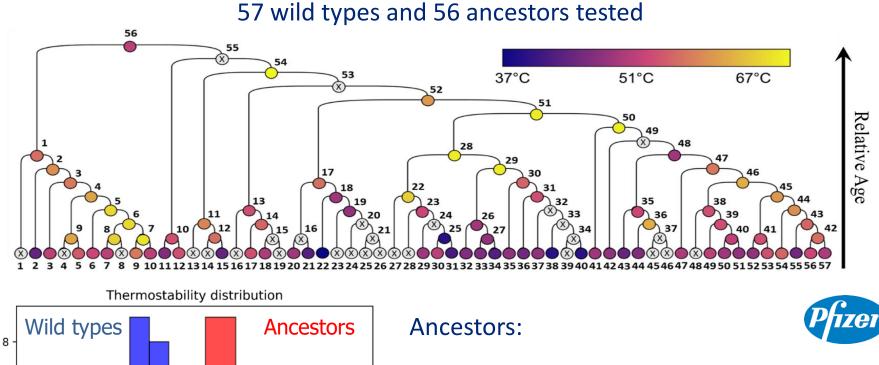
4

2

0

40

45


. 50

 $T_m(^{o}C)$

55

60

65

- Average T_m +9 °C
- 60 % have higher $T_{\rm m}$ than the best WT
- enzymes with top activity
- Slightly better yields

What to keep in mind?

What to keep in mind?

- sequence databases
 - nucleotide: GenBank, EMBL-BANK, DDBJ; protein: UniProtKB, nr Protein database
 - errors in sequences and annotations
- database searches
 - text-based: results influenced by sequence annotations
 - sequence-based: identification of family members BLAST, PSI-BLAST E-value
 - false positive results: sequences should be filtered
- □ selection of proteins for experimental characterization
 - clustering: classification and filtering of hits from database searches
 - sequence comparison: classification and identification of unique sequences
 - sequences from extremophiles: potentially adapted to extreme conditions
 - EnzymeMiner: automated identification of interesting catalysts
 - **FireProt**^{ASR}: design of stable, soluble, and broad specificity proteins

What to keep in mind?

in silico identification and analysis of sequences - fast and cheap way to identify new proteins

References

- □ Xiong, J. (2006). Essential Bioinformatics. Cambridge University Press, New York, p. 352.
- Claverie, J-M. and Notredame, C. (2006). Bioinformatics For Dummies (2nd ed.). Wiley Publishing, Hoboken, p. 436.
- Steele, H.L. *et al.* (2009). Advances in Recovery of Novel Biocatalysts from Metagenomes. *Journal of Molecular Microbiology and Biotechnoly* 16: 25–37.
- NCBI Resource Coordinators (2013). Database resources of the National Center for Biotechnology Information. *Nucleic Acids Research* 41: D8-D20.
- Magrane, M. and Consortium U. (2011). UniProt Knowledgebase: a hub of integrated protein data.
 Database 2011: bar009.
- Frickey, T. and Lupas, A. (2004). CLANS: a Java application for visualizing protein families based on pairwise similarity. *Bioinformatics* **20**: 3702-3704.
- Pagani, I. *et al.* (2012). The Genomes OnLine Database (GOLD) v.4: status of genomic and metagenomic projects and their associated metadata. *Nucleic Acids Research* 40, D571-579.
- Van den Burg, B. (2003). Extremophiles as a source for novel enzymes. *Current Opinion in Microbiology* 6: 213-218.

Protein production

Protein Engineering Lecture #3 Michal Vašina

