Porézní materiály pro adsorpci a katalýzu

Jiří Pinkas

Ústav chemie, Přírodovědecká fakulta, Masarykova univerzita

MUNI SCI

jpinkas @chemi.muni.cz

Mezoporézní metalosilikátové, organosilikátové a metalofosfátové materiály s vysokým měrným povrchem

Sol-gelové metody - hydrolytické a nehydrolytické polykondenzační reakce

Hybridní organosilikáty

Fosforečnany křemičité

Metalokřemičitany

Hlinitofosforečnany a fosfonáty

Nehydrolytická sol-gelová metoda

Polykondenzace = eliminace malých molekul X-Z

(alkyl halogenidy, ethery, estery, alkeny,....)

M-O-X + Z-M′ → M-O-M′ + X-Z

M, M' =

monojaderné
(P, Si, AI, Ti, Y, Zr, V, Nb, Mo, W, Fe, Zn, Sn,...)

 polyjaderné klastery Ti₈O₈(O₂CR)₁₆, Si₈O₂₀R₈, Al₄P₄O₁₂R₈

Nové polykondenzační reakce

Silicon acetates + metal amides

Si-O-C(O)CH₃ + R₂N-M \rightarrow Si-O-M + R₂N-C(O)CH₃ M = AI, Ti, Zr, Sn Acetamide elimination

Silicon acetates + silyl esters

Si–O–C(O)CH₃ + Me₃Si–O–P \rightarrow Si–O–P + Me₃SiO–C(O)CH₃ Silylester elimination

Silicon acetates + polyphenols

 $Si-O-C(O)CH_3 + HO-C \rightarrow Si-O-C + HO-C(O)CH_3$

Acetic acid elimination

Silyl esters + metal amides $P_O-SiMe_3 + R_2N-AI \rightarrow P_O-AI + R_2N-SiMe_3$

Silylamine elimination

A. Styskalik, D. Skoda, C. E. Barnes, J. Pinkas The Power of Non-Hydrolytic 5 Sol-Gel Chemistry: A Review. Catalysts (MDPI) **2017**, 7, 168

Polykondenzace s eliminací HOAc

Molekulární Organosilikofosfáty

 $6 \operatorname{Ph}_{2}\operatorname{Si}(\operatorname{OAc})_{2} + 4 \operatorname{OP}(\operatorname{OSiMe}_{3})_{3} \rightarrow \operatorname{Ph}_{12}\operatorname{Si}_{6}\operatorname{O}_{16}\operatorname{P}_{4} + 12 \operatorname{Me}_{3}\operatorname{SiOAc}$

A. Styskalik, M. Babiak, P. Machac, B. Relichova, J. Pinkas* *Inorg. Chem.* **2017**, 56, 10699–10705

Adsorpce-desorpce dusíku, argonu, oxidu uhličitého a vodní páry

- Porozita velikost pórů
- Měrný povrch
- Tvar pórů
- Katalytické vlastnosti

Termogravimetrie a diferenční skenovací kalorimetrie

- Termická stabilita
- Krystalizace
- Unikající plyny

NMR spektroskopie v pevné fáziChemicky odlišné atomy

Koordinační číslo

BRUKER

Template Pluronic P123

20 nm

TEM

Wormhole structure

Surface areas: 326–615 m² g⁻¹ Pore diam: 2.6–7.4 nm

TEM - transmisní elektronová mikroskopie

- Velikost pórů
- Tvar částic a pórů

TEM Tomografie

3D model reconstruction

3D rendering of a reconstructed tomogram of zirconosilicate xerogel ¹³

Titanosilikáty jako katalyzátory

The best catalyst templated, calcined, ~10 % Ti conversion 96 %, >99 % selectivity (no alcohols)

Děkuji za pozornost

Kontakt: jpinkas@chemi.muni.cz