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Chapter 1

Space and Time

This course deals with the special theory of relativity introduced by Einstein in a famous
1905 paper. The traditional way of introducing special relativity is to derive it, in much
the same way that Einstein did, from two basic principles:

1. The principle of relativity

2. The constancy of the speed of light

From these assumptions the notion of a spacetime with (inertial) observers being connected
by Lorentz transformations follows. This is a natural way to proceed if one starts from a
knowledge of classical mechanics and Maxwell’s equations of electrodynamics. However,
it is not the best way to understand the geometrical aspects of spacetime. This is part of
the reason it took Einstein another ten years to formulate the general theory of relativity,
describing gravity, where the geometry of spacetime is the key player.

In this course we will follow a different route1 which leads more directly to a geometric
picture. Rather than starting with the principles described above we will derive the same
physics from what is known as

� The principle of maximum proper time

This approach is more in line with general relativity, and this course can be thought of as
a first step towards studying general relativity.

1.1 What is space and time?

The notions of Space and Time are central to physics. In physics we are interested in
answering questions like

Given some configuration of particles with given positions and momenta at
some initial time ti, what will the configuration look like at some later time tf?

1The approach to relativity taken here is inspired by lecture notes and a book by B. Laurent (Intro-
duction To Spacetime, World Scientific, 1994).
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For such questions to make sense we must have a precise way of defining what we mean
by time and also what we mean by a particle’s position in space. So what are space and
time? Rather than get into a philosophical discussion about the nature of space and time,
a more useful approach when faced with such deep questions in physics is to try to replace
it by a different, more down to earth, question. After all, in physics we deal only with
things that can be measured, and therefore a better question to ask is

How do we measure space and time?

We say that we define space and time operationally, by declaring how we measure them.
So how do we measure distances in space? The most basic way is to take a reference

object, say stick of a certain length, and use it to measure the distance between two points.
We will call such a reference object a ruler. Of course, a good ruler should not bend or
change its length with temperature etc., so we will assume it is always possible to find
a sufficiently good ruler (or equivalent) so that we can measure lengths to the precision
we need. How do we measure time? To measure time we need a clock. It does not have
to be what we normally think of as a clock, it can be any physical process which has a
known time dependence, e.g. a periodic process with definite period like a pendulum or a
non-periodic process like an atom in an excited state with known half-life. Again, we will
assume that there exist such clocks with good enough precision for the time measurements
we need to perform.

We allow each person, or observer, to measure time with their own clock and spatial
distances with their own ruler. We will assume that these are small enough that the
observer can carry them with her, i.e. they will be assumed to be in the same state
of motion as the observer and experience the same forces she experiences. But if each
observer makes their own measurements using their own clock and ruler, how do we relate
the measurements of two different observers? Newton and his contemporaries assumed
that there was an absolute notion of time, so that all observers clocks would tick at the
same rate. In that case it is very easy to relate the measurements of two observers. We
now know that this assumption was wrong. For example, taking two synchronized atomic
clocks, putting one on a plane circling the earth and leaving one on the ground, one finds
when comparing them at the end that they differ (by a few hundred nanoseconds). This
observation is clearly inconsistent with the Newtonian idea of an absolute time.

1.2 The principle of maximum proper time

Experiments show that time runs differently for different observers. We must therefore
assign each observer their own time, their proper time, which is the time measured on their
clock. We can now state the key principle that will allow us to compare the measurements
of different observers
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The principle of maximum proper time:

If two observers are separated and then meet again, the one that does not
experience any acceleration always measures the longest proper time.

It says that proper time is maximized for inertial, i.e. unaccelerated, observers. There
is plenty of experimental evidence to support this principle, such as the experiments with
atomic clocks on planes, or the operation of GPS satellites which requires very precise time
measurements. In this course we will take this principle as the starting point from which
we will derive the theory of special relativity.

1.3 Spacetime

We are familiar with the fact that to specify the position of an object in our three di-
mensions we need to give three numbers – the coordinates with respect to some specified
coordinate system. For positions on the earth we might for example give the longitude,
the latitude and the height above sea level. To specify an event – something happening
at a certain place at a certain instant of time – we must give one more number, namely
the time on a clock associated to the coordinate system. In our example this could be the
time GMT.

We have argued that we must allow each observer to measure distances and times using
their own coordinate system defined by their ruler and clock. Each observer will therefore
associate to a given event four numbers (t, x, y, z) – the spacetime coordinates relative to
their coordinate system. Note that we are defining an event here in an idealized way as a
single point in spacetime, i.e. something that happens at a point in space at a single instant
of time. The set of all events make up the four-dimensional spacetime. Note that each
observer will (in general) assign different coordinates to the same event because they are
using different coordinate systems, there is no preferred coordinate system in spacetime.
One of our first tasks will therefore be to understand how to relate the observations of
different observers.

1.4 Worldlines

The trajectory of an object traces out a continuous path in spacetime – a worldline (really
“worldtube” if the object is not point-like, but this distinction won’t be very important
to us). In ordinary Euclidean space we are familiar with the fact that there is a shortest
path between any two points. This path is called a straight line. It is the path an object
follows if it is not acted upon by any external forces, i.e. it is unaccelerated. Similarly, we
will assume that there is precisely one straight line connecting any two events in spacetime
and that any object not acted on by external forces, i.e. not experiencing any acceleration,
follows such a straight worldline. To a worldline connecting two events in spacetime we can
associate a number – the proper time along that worldline. Recall that this is the time an
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observer traveling along the worldline measures on her clock between the two events. The
principle of maximum proper time says that a straight worldline corresponds to the longest
proper time. Therefore the analog of shortest length in Euclidean space is longest proper
time in spacetime and a clock can be thought of as measuring distances in spacetime.
When we draw spacetime diagrams we will draw the worldlines of unaccelerated objects
as straight lines. Curved lines will correspond to worldlines of accelerated objects (Figure
1.1).
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Figure 1.1: Spacetime diagram showing an accelerated (curved worldline) and an unaccel-
erated (straight worldline) observer meeting at events A and B. The proper time measured
on their respective clocks between the meetings is τ ′AB and τAB. The principle of maximum
proper time then says that τAB > τ ′AB.

An important notion in Euclidean geometry is the notion of two lines being parallel.
In spacetime we can similarly have the notion of two observers being on the same course.
How can two observers, e.g. two spaceships traveling in outer space, determine whether
they are on the same course? One way to do this uses a construction from Euclidean space
adapted to spacetime. Imagine that the two observers each send out a probe fitted with
a clock, which travels freely until it is picked up by the other observer at some later time
(Figure 1.2). If the two probes happen to meet halfway, i.e. after half of the proper time
(from being emitted to being picked up) has elapsed on each clock, then we will say that
the observers are on the same course, or that their worldlines are parallel. From the figure
we see that this also implies that the lines AB and CD (not drawn) are parallel. Note
that to carry out the experiment we really need to send clocks that also have a recording
device that records the time they were sent and the time they met. We would also need
to do the experiment several times to get them to meet halfway.
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Figure 1.2: The worldlines of two observers are parallel if they can send out probes, at A
and B, that meet halfway before encountering the other observer at D and C.

Notice that this construction does not refer to space or time separately, only to the
full spacetime picture or the proper time measured by a particular clock. This is in sharp
contrast to how we would describe such an experiment in Newtonian physics.

Just like in Euclidean space the line AC in Figure 1.2 defines a vector, which we can
draw as an arrow starting at A and ending at C. We declare the length of the vector to
be given by the proper time elapsed from A to C. The construction in the figure gives us
a way to parallel transport vectors, i.e. moving a vector while keeping it parallel to itself.
The vector AC can be parallel transported to the vector BD. Taking the two worldlines
to approach each other we obtain the special case of parallel transport of the vector along
the worldline. A general parallel transport is obtained by a sequence of such “elementary”
parallel transports.

We will now make a very important assumption. We will assume that the vector one
obtains by such a sequence of elementary parallel transports from a point A to a point
A′ in spacetime does not depend on how one chooses the sequence of parallel transports,
i.e. it does not depend on the path taken. This assumption is actually not true close
to gravitating bodies and in that case one must use the more advanced theory of general
relativity. The assumption is true if gravity is very weak, which is the case we consider
in this course. In this case we are working with special relativity. In fact, the change of a
vector under parallel transport is directly related to the curvature of a space. In special
relativity spacetime is flat, while in general relativity it can be curved.
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Chapter 2

Spacetime vectors

In the last chapter we defined a vector on the straight worldline of an observer as an arrow
from one event to a later event on the worldline, with length given by the proper time
elapsed between the two events. The notion of vectors is familiar from Euclidean space
and we will use the same notation v̄ for a vector in spacetime. Such vectors are often called
four-vectors since spacetime is four-dimensional. Just as any point in Euclidean space R3

can be associated with a vector going from the origin to that point, any event in spacetime
can be associated to a spacetime vector from an origin (which we can choose as we please)
to the point in question. We have also seen that we can move vectors around using parallel
transport. Two vectors related by parallel transport will be considered the same vector
(this is consistent since we are assuming that the vector obtained by parallel transport is
independent of the path taken).

Spacetime vectors obey the usual axioms familiar from Euclidean space:

� Commutativity of addition: ū+ v̄ = v̄ + ū

� Associativity of addition: ū+ (v̄ + w̄) = (ū+ v̄) + w̄

� Identity element of addition: v̄ + 0̄ = v̄

� Inverse element of addition: Given v̄ there exists a vector −v̄ such that v̄+(−v̄) = 0

� Compatibility of scalar multiplication: a(bv̄) = (ab)v̄ for a, b ∈ R

� Identity element of scalar multiplication: 1v̄ = v̄

� Distributivity of scalar multiplication with respect to vector addition: a(ū + v̄) =
aū+ av̄

� Distributivity of scalar multiplication with respect to addition: (a+ b)v̄ = av̄ + bv̄

Addition of spacetime vectors can be done by the geometric construction familiar from
Euclidean space, which is illustrated in Figure 2.1. Recall that a basis for a vector space
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Figure 2.1: Geometric addition of the vectors ū and v̄ producing a third vector ū+ v̄.

is a set of linearly independent vectors v̄i with i = 1, . . . , n which span the space, so that
any vector is expressed uniquely as a linear combination

a1v̄1 + a2v̄2 + . . .+ anv̄n , (2.1)

for some numbers ai ∈ R with i = 1, . . . , n. The vector can be denoted in this basis as
(a1, a2, . . . , an) and n is called the dimension of the vector space. A basis of spacetime
vectors consists of four linearly independent spacetime vectors.

2.1 Inner product

An important notion in linear algebra is that of the inner product between two vectors.
Given two vectors their inner product is a real number. We will denote the inner product
with a dot, e.g. ū · v̄ denotes the inner product between vectors ū and v̄. The inner product
satisfies the following standard axioms

� Symmetry: ū · v̄ = v̄ · ū

� Linearity: (aū) · v̄ = a(ū · v̄) and (ū+ v̄) · w̄ = ū · w̄ + v̄ · w̄

� Non-degeneracy: If ū · v̄ = 0 for all vectors v̄ then ū = 0̄

Often the inner product is required to be positive definite, so that ū2 = ū · ū ≥ 0, which
is a stronger requirement than being non-degenerate. This is the case in Euclidean space
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where we are used to identifying ū2 with the length-squared of a vector, which is obviously
positive. We will see below that it is not possible to require this for spacetime vectors.
Instead, for a spacetime vector that goes along the straight worldline of an object from
point A to point B we will take

ū2 = −τ 2 , (2.2)

where τ is the proper time along the worldline from A to B. The minus sign seems strange
at this point but we will see shortly that it is needed if we want vectors representing lengths
in space to have positive square. All the differences between Euclidean space and spacetime
are due to the fact that the inner product in spacetime is not positive definite. As we will
see this is what makes it possible to separate the time-direction from the spatial directions.

The assumption that ū2 = −τ 2 for vectors corresponding to a segment of a straight
worldline determines also the inner product ū · v̄ of two straight worldline vectors ū, v̄. To
see this consider three such worldline vectors related by

aū = v̄ + w̄ , (2.3)

for some a ∈ R. Writing this as w̄ = aū− v̄ and squaring both sides we get

w̄2 = (aū− v̄) · (aū− v̄) = a2ū2 − 2aū · v̄ + v̄2 . (2.4)

Rearranging this we have

ū · v̄ =
1

2a

(
a2ū2 + v̄2 − w̄2

)
. (2.5)

The right-hand-side involves only squares of vectors, which are expressed in terms of the
corresponding proper times. Therefore we see that the inner product ū·v̄ is also determined
in terms of the proper times corresponding to the lengths of the vectors ū, v̄, w̄.

It is important to understand that the assumption that there exists an inner product
for spacetime vectors satisfying the above axioms is not a trivial statement. The mere
existence of this inner product has physical consequences. To see this consider the identity

(ū+ v̄)2 + (ū− v̄)2 = 2ū2 + 2v̄2 . (2.6)

Let’s assume that all these vectors are part of straight worldlines of observers. Since
the expression contains only squares it only involves the proper times measured by these
observers. With four spaceships traveling along these straight worldlines it is then possible
to arrange an experiment (see Figure 2.2) to test whether the proper times they measure
satisfy the above identity, i.e. whether τ 21 + τ 22 = 2τ 23 + 2τ 24 . One finds that it is indeed
satisfied.

2.2 Three classes of spacetime vectors

Let ū, v̄ be two straight worldline vectors. Then

ū2 = −τ 2u , v̄2 = −τ 2v . (2.7)
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Figure 2.2: Experiment involving four spaceships to test equation (2.6).

We now define a new vector which is a linear combination of ū and v̄,

ȳ = aū+ bv̄ , (2.8)

for some a, b. Its inner product with ū is

ū · ȳ = aū2 + bū · v̄ . (2.9)

Taking a = −b ū·v̄
ū2 we find

ū · ȳ = 0 . (2.10)

We say that ȳ is orthogonal to ū.
Now consider the following situation where two spaceships part and then meet again:
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Spaceship 1 is unaccelerated throughout the duration of its journey, while spaceship 2
travels unaccelerated for a while, then accelerates hard for a short time to reverse its
direction of motion and then again floats freely until it meets spaceship 1 again.

We will take the spacetime vectors corresponding to this situation as in Figure 2.3 with
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Figure 2.3: Spacetime vectors corresponding to two spaceships parting and meeting again.

v̄1 =
1

2
ū+ ϵȳ , v̄2 =

1

2
ū− ϵȳ , (2.11)
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where ȳ is the vector introduced above which is orthogonal to ū and ϵ is a small number.
Note that v̄1 + v̄2 = ū so that the spaceships indeed meet at the end. The proper time for
the journey of ship 1 is

τ1 =
√
−ū2 . (2.12)

The proper time for the journey of ship 2 is the sum of the proper time for the two segments
of the journey

τ2 =
√
−v̄21 +

√
−v̄22 . (2.13)

Since ū · ȳ = 0 we have v̄21 = 1
4
ū2 + ϵ2ȳ2 = v̄22 so that

τ2 = 2
√

−1
4
ū2 − ϵ2ȳ2 =

√
−ū2

√
1 +

4ϵ2ȳ2

ū2
= τ1

√
1− 4ϵ2ȳ2

τ 21
. (2.14)

The principle of maximum proper time says that the unaccelerated observer measures the
longest proper time, i.e. τ1 > τ2 (we assume ϵȳ ̸= 0). This in turn implies that√

1− 4ϵ2ȳ2

τ 21
< 1 ⇒ ȳ2 > 0 , (2.15)

the vector ȳ has positive square. This result was obtained assuming ū2 = −τ 21 < 0. If
we had decided instead to take the opposite convention, i.e. ū2 = +τ 21 > 0, the same
calculation would give ȳ2 < 0. We see that, in contrast to what we are used to from
Euclidean space, it is not possible for all spacetime vectors to have positive square. This
fact follows from the principle of maximum proper time. Clearly no observer can travel
along ȳ because then his clock would need to show an imaginary time, which is absurd.

Consider now the vector
w̄ = cū+ dȳ , (2.16)

with ū and ȳ orthogonal as before. Squaring this we find

w̄2 = c2ū2 + d2ȳ2 . (2.17)

If we take c2 = −d2ȳ2

ū2 (note that the RHS is positive which is consistent with c, d being
real numbers) we get w̄2 = 0! We conclude that there also exist spacetime vectors w̄ ̸= 0̄
such that w̄2 = 0.

To summarize we have learned that there are 3 classes of spacetime vectors:

� v̄2 < 0: Timelike

� v̄2 > 0: Spacelike

� v̄2 = 0: Null

Vectors that are part of a straight worldline of an observer are timelike. We have seen
above that the principle of maximum proper time implies that if ū is timelike and ū · ȳ = 0
then ȳ is spacelike (or ȳ = 0̄). This is a very useful result to remember when working with
spacetime vectors:
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ū timelike and ū · v̄ = 0 ⇒ v̄ spacelike (or v̄ = 0̄).
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Chapter 3

Simultaneity and spatial distance

An observer traveling along in a spaceship only has direct access to the interior of the
spaceship. Nevertheless they must be able to make statements and inferences about what
happens in the outside world. To be able to do this they need in particular to be able to
say when an event, which is not on their worldline, occurred. Another way to say it is that
they need to have a way to determine whether an event far away is simultaneous with an
event on their worldline, e.g. a supernova explosion far away happens when their clock
shows 10:23.

The natural way to do this is via the construction in figure 3.1. The observer sends
out a probe, which travels on a straight worldline to the event and on a straight worldline
back. She arranges it so that the probe reaches the event precisely when half the proper
time of its journey has elapsed. Then she will say that the event on her worldline halfway
between sending out and receiving the probe is simultaneous with the distant event.

From the figure we have

τ 2 = −(v̄ + r̄)2 = −(v̄ − r̄)2 ⇒ v̄ · r̄ = 0 , (3.1)

so that r̄, being orthogonal to a timelike vector, must be spacelike.
We also need a way to measure spatial distances. To see how to do this let us consider

a family of straight parallel worldlines L0, L1, . . . defined by the equation

R̄n = λnū+ nρ̄ , n = 0, 1, 2, . . . (3.2)

where ū, ρ̄ are timelike vectors and λn ∈ R parametrizes a point on the n’th worldline,
Ln. This is illustrated in figure 3.2. This could be a fleet of identical spaceships traveling
unaccelerated and arranged head to tail. Consider now an observer traveling from the front
of the fleet to the back, counting how many ships he passes. This number is a measure of
how far it is from the head of the fleet to the tail. The distance is expressed in units of
“standard spaceship”.

There is an alternative way to measure this distance. We first note that there is only

13



�
�
�
�
�
�
�
�
�
�
�
�
�
��

H
HHHHj

��������

L
L
L
L
L
L
L

�
�
�
���
�
�
�
���

s
s

s

s P
P1

P2

P3

t

t

τ

τv̄

r̄

v̄

Figure 3.1: Via this construction the observer decides that P2, halfway between P1 and P3,
is simultaneous with P .

one vector going from L0 to Ln with the property that it is orthogonal to ū.1 It is given by

r̄n = nρ̄−
(nρ̄ · ū

ū2

)
ū = n

(
ρ̄− ρ̄ · ū

ū2
ū
)
. (3.3)

Note that r̄n, and therefore also its magnitude, is proportional to n, the number of space-
ships. We can therefore use the magnitude

√
r̄2n as a measure of the distance. All we need

to do is work out the conversion factor to go between
√

r̄2n and the number of spaceships.
Looking at figure 3.1 we read off

τ 2 = −(v̄ + r̄)2 = t2 − r̄2 , or r̄2 = t2 − τ 2 . (3.4)

The advantage of this method is that we don’t need the fleet of spaceships (other than
to fix the unit of distance). Later we will find an even more practical way to measure
distance.

How we pick the unit of distance is up to us. Nothing prevents us from choosing units
such that

√
r̄2 itself is the distance. This is in fact the most natural choice to make and we

will stick to it in this course. From (3.4) we see that now space and time acquire the same
dimensions. In the theory of relativity this is as natural as say height and width having
the same dimensions and being measured in the same units.

1Proof: It is clear that at least one such vector exists. Assume there are two such vectors r̄1, r̄2. We
may assume their foot-point is the same point on L0. The fact the ū · r̄1 = ū · r̄2 = 0 implies ū ·(r̄1− r̄2) = 0.
But r̄1 − r̄2 = λū for some λ and the previous equation implies λ = 0 so that r̄1 = r̄2. □
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Figure 3.2: A family of parallel worldlines.

3.1 Orthogonal space

To every unaccelerated observer there corresponds a straight worldline. Such a worldline
is characterized by a timelike vector which we can normalize to a unit vector û. We will
always us a ‘hat’ to denote unit vectors. A timelike unit vector satisfies û2 = −1 and a
spacelike unit vector r̂2 = 1. Given an observer with worldline unit vector û there exist
orthogonal vectors r̄,

û · r̄ = 0 . (3.5)

They form the orthogonal space to the observer’s worldline. This is a vector space since
linear combinations of such vectors clearly belong to the space. In fact, since all such r̄
are spacelike (or zero), it is a Euclidean vector space. Since we are imposing one condition
on the four components of r̄ the orthogonal space is three-dimensional. Recall that

√
r̄2

is the (spatial) distance from the observer. The orthogonal space is the space used in
Newtonian physics. The difference is that in the theory of relativity each observer has
their own orthogonal space.
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Given the worldline of an observer with direction û, we can split any spacetime vector
R̄ into a component along û and a component orthogonal to it as

R̄ = tû+ r̄ with û · r̄ = 0 . (3.6)

This is illustrated in figure 3.3. According to the figure, an observer following the worldline
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Figure 3.3: Split of a spacetime vector R̄ with respect to a timelike direction û.

L measures the event corresponding to R̄ to happen at a time t and spatial position r̄. The
distance to the event is ℓ =

√
r̄2. From the equation we find t = −û·R̄ and r̄ = R̄+(û·R̄)û.

We see that t and r̄ are uniquely fixed in terms of û and R̄.

3.2 Linearly independent vectors

Consider four spacetime vectors
Ā, B̄, C̄, D̄ . (3.7)

They are linearly independent if none of them can be expressed as a linear combination of
the others, or equivalently if the equation

aĀ+ bB̄ + cC̄ + dD̄ = 0 (3.8)
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has only the trivial solution a = b = c = d = 0. Note that since spacetime is four-
dimensional we cannot have more than four linearly independent vectors.

In Euclidean space we are used to two orthogonal vectors being linearly independent.
This is not true in spacetime, e.g. a null vector is orthogonal to itself but clearly not
linearly independent of itself. What is true is that if v̄ · ū = 0 for all ū then v̄ = 0. To see
this take ū timelike. We conclude that v̄ must be spacelike, but since it is orthogonal to
all other spacelike vectors it must vanish since these form a Euclidean vector space.

To test if Ā, B̄, C̄, D̄ are linearly independent we form the determinant of the matrix
of inner products ∣∣∣∣∣∣∣∣

Ā · Ā Ā · B̄ Ā · C̄ Ā · D̄
B̄ · Ā B̄ · B̄ B̄ · C̄ B̄ · D̄
C̄ · Ā C̄ · B̄ C̄ · C̄ C̄ · D̄
D̄ · Ā D̄ · B̄ D̄ · C̄ D̄ · D̄

∣∣∣∣∣∣∣∣ (3.9)

The vectors are linearly dependent if and only if this determinant vanishes. To see this as-
sume they are linearly dependent. Then (3.8) holds for some non-zero coefficients. Taking
this linear combination of rows in the matrix we obtain a row of zeros so that the determi-
nant vanishes. Conversely, if the determinant vanishes there exists a linear combination of
the rows that gives zero. This means that there exists a vector aĀ+ bB̄ + cC̄ + dD̄, with
a, b, c, d not all zero, which is orthogonal to Ā, B̄, C̄, D̄. Assuming they are linearly inde-
pendent leads to a contradiction since this vector would then be orthogonal to all vectors
and would therefore have to vanish, therefore they must be linearly dependent.

Note that this test works only for four vectors. It does not work for lower-dimensional
subspaces of spacetime.
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