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cDepartment of Theoretical Physics and Astrophysics, Faculty of Science,
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1 Cosmology:Preview

1.1 Units

We mostly use the natural system of units where the Planck constant, speed of light
and the Boltzman constant are equal to one

ℏ = c = kB = 1 . (1)

Then the mass M , energy E and temperature T have the same dimensions since

[E] = [Mc2] = [M ] (2)

and also we have
[E] = [kBT ] = [T ] = [M ] . (3)

Time t and length l have in natural system dimension [M ]−1 as follows from the
fact that

[E] = [ℏω] = [ω] = [t−1] (4)

so that [t] = [M ]−1. In the same way we have

[l] = [ct] = [t] = [M ]−1 . (5)

It is useful to know coeficients that relate various units
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Quantity SI dimensions Natuaral dimensions Conversions

mass kg M 1GeV = 1.8× 10−27kg
length m M−1 1GeV −1 = 0.197× 10−15m
time s M−1 1GeV −1 = 6.58× 10−25s
energy kg ·m2 · s−2 M 1GeV = 5.39× 10−19kg ·m · s−1

momentum kg ·m · s−1 M 1GeV = 5.39× 10−19kg ·m · s−1

velocity m · s−1 1 = 2.998× 108m · s−1

cross section m2 M−2 1GeV −2 = 0.389× 10−31m2

force kg ·m · s−2 M2 1GeV 2 = 8.19× 105Newton
The traditional unit of length in cosmology is Megaparsec

1 Mpc = 3.1× 1022m . (6)

It is interesting to mention the several units of length that are used in astronomy.
Besides the metric system in use are the astronomical unit (a.u.) which is the average
distance from the Earth to the Sun

1 a.u. = 1.5× 1011m (7)

Further, there is a light year, the distance that a photon travels in one year

1 year = 3.16× 107s , 1 light year = 0.95× 1016m (8)

parsec (pc)-distance from which an object of size 1a.u. is seen at angle 1arc second

1 pc = 2.1 · 105a.u. = 3.3 light year = 3.1× 1016m (9)

It is instructive to give distances of various objects expressed in above units.
10a.u. is the average disance to Saturn, 30a.u. is the same for Pluto, 100a.u. is the
estimate of the maximum distance which can be reached by solar wind (particles
emitted by the Sun). The nearest stars-Proxima and Alpha Centauri are at 1.3pc
from the Sun. The distance to Arcturus, which is one of the brightest stars on the
night sky, is about 36 light years. The distance to Capella, which is one of the most
brightest stars on night sky, is more than 42 light years. The distances to Canopus
and Betelgeuse, which are again one of the most brightest stars on the night sky, are
about 100pc (300 l.y.) and 200pc (642 l.y.) respectively. Crab Nebula-the remnant
of supernova SN1054 is 2kpc (6523 l.y.) away from us.

The next point on the scale of distance is 8kpc. This is the distance from the
Sun to the center of our Galaxy. Our Galaxy is of spiral type, the diameter of its
disc is about 30kpc and the thickness of the disc is about 250pc. The distance to
the nearest dwarf galaxies that are satelites of our Galaxy is about 30kpc. Fifteen
of these satellites are known, the largest of them are Large and Small Magellanic
Clouds which are about 50kpc away. It is also interesting to note that only eight
Milky Way satellites were known by 1994.

The mass density of the usual matter in usual (not dwarf) galaxies is about 105

higher than the average over Universe.
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The nearest usual galaxy-the spiral galaxy M31 in Andromeda constellation-
is 800kpc away from the Milky Way. Another nearby galaxy is in Triangulum
constellation. Our Galaxy together with Andromeda and Triangulum galaxies ,
their satelites and other 35 smaller galaxies constitute the Local Group which is the
gravitationally bound object consisting of about 50 galaxies.

The next scale is the size of clusters of galaxies which is 1−3Mpc. Rich clusters
contain thounsands of galaxies. The mass density in clusters exceeds the average
density over the Universe by a factor of a hundred and even sometimes a thousand.
The distance to the center of the nearest cluster, which is the Virgo constellation
(souhvězd́ı Panny), is about 15Mpc. Clusters of galaxies are the largest gravitation-
ally bound systems in the Universe.

1.2 The Universe Today

In this subsection we give a brief overview of properties of the present Universe.

1.2.1 Homogeneity and isotropy

When we look at the night sky we see that Universe looks the same from all directions
which is sign of isotropy. Further, it is natural presume that our place in the
Universe is not exceptional. Mathematically we say that Universe is homogeneous
and isotropic on large scales. We should stress that this claim holds on the large
spatial scales only. We can obtain rough estimate how large this scale is we know
that the sizes of the largest structures in the Universe which are superclusters of
galaxies are tens of Megaparsec. Then we say that on larger scales all parts of the
Universe looks the same which is physical explanation of homogeneity.

1.2.2 Expansion

The Universe expands which means that the space stretches out. This expansion is
characterized by scale factor a(t) which is growing function of time. Now the distance
between two objects is proportional to a(t) and the number density of particles is
proportional to a−3(t). The rate of the cosmological expansion is characterized by
Hubble parameter

H(t) =
ȧ(t)

a(t)
(10)

It is clear that this parameter depends on time t where its present value is denoted
by H0. The expansion of the Universe implies that the wavelength of the photon
emitted in the past is growing. This fact is known as redshifht and denoted as z
and it corresponds to the ration of photon wavelengths at absorption and emission

λab
λem

= 1 + z . (11)

Clearly this expression depends on time of emission which means that it depends on
the distance to source. Further, which is very important, it is directly measurable
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quantity when the wavelength of emission is determined by the physics of emission
process while λab is measured wavelength.

For z ≪ 1 the distance to the source r and the redshift are related by Hubble
law

z = H0r , z ≪ 1 . (12)

For large z the dependence is more complicated and we will analyse it in more details
in this lecture. The present value of the Hubble constant is

H0 = (70, 5± 1.3)
km

s ·Mpc
. (13)

It is also convenient to use following parameterization of the constant H0 as

H0 = h · 100 km

s ·Mpc
. (14)

Hubble constant is directly related to the age of the Universe and to the size of its
observable part. In fact, Hubble constant has physical dimension [t−1] and hence
the present Universe is characterized by time scale

H−1
0 =

1

h · 100
s ·Mpc

km
= h−1 · 3 · 1017s ≈ 1.4 · 1010 years . (15)

Further,H−1
0 is roughly the size of the observable part of the Universe. These notions

suggest that it is natural to trace the evolution of the Universe back in time and we
reach the time event known as Big Bang which is the moment when the classical
evoluiton begins. Then the size of observable part of the Universe is the distance
traveled by signals emitted at the Big Bang that move with the speed of light. At this
place it is important to stress that the actual size of the Universe ls larger than the
horizon size. In act, according to General Relativity the spatial size o the Universe
could be infinite. This claim is directly related to the notion of Spatial flatness. As
we will see later, homogenity and isotropy does not imply that the 3−dimensional
spatial subspace of the Universe is flat (Euclidean) or equivalently, it has zero spatial
curvature. We can also find solutions that are homogenneous and isotropic even for
3−sphere with positive spatial curvature and 3− hyperboloid with negative spatial
curvature. In order to decide which of these possibilities is realized in nature we have
to perform appropriate observation. Fundamental observation result of the recent
years is the fact that the spatial curvature of our Universe is very small or even equal
to zero. Further, data from Cosmic microwave background (CMB) measurement are
consistent with the fact that the Universe has trivial spatial topology. Note that the
flat space-time could have non-trivial topology as for example torus S1 × S1 × S1.
However if it were true we should observe some regular pattern in the CMB. However
such pattern is absent.

1.2.3 Hubble Tension

As we know, Universe is expanding and in fact, its expansion is accelerating. Gen-
erally the rate of expansion is given by function H(z) where the Hubble factor H0
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gives the rate at which the scale factor a(z) in a Friedmann equation is chang-
ing today, corresponding to z = 0. There are several methods how we can find
value of H0 but we are not going into details. The determination of H0 from
the cosmic microwave background corresponds to the early time z = 1000 yields
H0 = 67.36 ± 0.54 kms−1Mpc−1 . On the other hand measurements based on
late-time observables z ≤ 10, for example, on type Ia supernovova, give the value
H0 = 73, 3 ± 0.8 kms−1Mpc−1. This disagreement between high-redshift and low-
redshift measurements is known as Hubble tension which was discovered rather re-
cently. Indeed, this tension has existed since the first release of results from Planck
in 2013 and has grown in significance with the improvement of the data. The res-
olution of this tension is not known and it is remarkable that there are about 102

theories that want to explain Hubble tension that however require untested mod-
ifications of the standard model of particle physics or general relativity. On the
other hand there is more conservative possibility that is based on the idea that the
treatment of systematic errors is inadequate.

1.2.4 Warm Universe

It is well known that the present Universe is filled by the gas of non-interacting pho-
tons which is known as Cosmic Microwave Background (CMB) which was discovered
in 1964. The number density of CMB photons is about 400 in cubic centimeter. It
is also very remarkable that the energy distribution of photons is thermal and has
Planckian spectrum with present temperature

T0 = 2.726± 0.001K . (16)

Further, the temperature of photons as we measure on celestian sphere is the same
at the level o accurency 10−4 which mean that the photons come from different
directions have the same properties which is again evidence of the homogeneity and
isotropy of the Universe. On the other hand the temperature still depend on the
direction in the sky where it was shown that the angular anisotropy is of order

δT

T0
∼ 10−4 − 10−5 . (17)

It is very remarkable fact that this anisotropy gives us important information about
early Universe and also can serve as the check of the validity all cosmological models.
Another important fact about cosmic microwave background is that its presence
defines special reference frame in the Universe which is the frame where the gas of
photons is at rest. Further, Solar system moves with respecct to this frame towards
to Hydra constellation. The velocity of this motion determines the dipole component
of the measured CMB anisotropy

δTdipol = 3.346 mK . (18)

CMB temperature T depends on the direction n on celestial sphere. Then it is
natural to perform decomposition over spherical harmonics Ylm(n). These functions
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define a basis of function on a sphere. Let us now define the temperature fluctuation
δT in the direction n in the form

δT (n) = T (n)− T0 − δTdipole . (19)

According to the previous discussion it is natural to perform following decomposition

δT (n) =
∑
l,m

al,mY (n) , (20)

where the coeficients al,m obey the codition a∗l,m = (−1)mal,−m that ensrure that δT
is real. The observation data show that temperature fluctuations δT (n) are Gaussian
random field that means that the coeficients al,m are statistically independent for
different l and m 〈

al,ma
∗
l′,m.

〉
= Clmδll′δmm′ , (21)

where brackets mean averaging over an ensemble of Universes. The coefificents Clm

do not depend on m in isotropic Universe so that Clm = Cl. Then we obtain

⟨δT (n1)δT (n2)⟩ =
∑
l

2l + 1

4π
ClPl(cos θ) .

(22)

where Pl are the Legendre polynomials which are functions of the angle θ between
two vectors n1 and n2. For example, in case of the temperature fluctuation when
n1 = n2 and hence θ = 0 we obtain〈

δT 2
〉
=
∑
l

2l + 1

4π
Cl (23)

When we measure CMB anisotropy we get large set of date which are the values of Cl

for different l. It is important that this set is determined by numerous paraemeters
of the present and early Universe and hence we gain many informations about early
Universe.

1.2.5 The Energy Balance in the Present Universe

Today the present energy density in spatial flat Universe is given by the formula

ρc =
3

8π
H2

0M
2
pl , (24)

which is the energy density in our Universe today

ρc = 1.04 · h2 · 10−5GeV

cm3
≈ 0.52 · 10−5GeV

cm3
. (25)

It is very remarkable that the cosmological observations imply that the contribution
of baryons (protons and nuclei) into the present energy density is

ΩB =
ρB
ρc

= 0.046 . (26)
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It is also very interesting that only 10 % of baryons are in the stars. Remaining
90% are in hot gas. Further, the contribution of relic neutrinos of all types is even
smaller and it is restricted as

Ων ≡
∑
ρνi
ρc

< 0.004− 0.02 , (27)

where the sum runs over three species of neutrinos νe, νµ, ντ and anti-neutrinos
ν̄ e , ν̄µ , ν̄τ . It is also important to stress that cosmological observations do not bring
contribution to the debate about the mass of neutrinos so that the contribution given
above could be even smaller. Finally other known stable particles give very small
fractions to the total energy content of the Universe. In other words, the dominant
material in the present Universe is unknown. The unknown form of the matter can
be divided into two fractions where one part can cluster while the second one not.
The matter that clusters is known as dark matter.

It is remarkable that the results of Big Bang Nucleosynthesis, CMB anisotropy
and structure formation suggest that the dark matter cannot consist of known par-
ticles. The most popular scenario is that it is made from new stable particles that
were non-relativistic in the past and remain non-relativistic today. We cal such a
form of matter as cold dark matter. Unfortunately such a particle has not been
detected yet and hence the origin of dark matter is unsolved problem of particle
physics.

Even more serious problem is the problem of the reamining 75% of energy in the
present Universe that is homogeneously spread over space. This form of matter does
not contain known or unknown particles but rather some unknown form of energy
of vacuum type. At present we do not know the origin of this misterious matter and
there are many conjectures, for example, we can imagine that this vacuum energy
corresponds to cosmological constant which is constant in time and space. Another
possibility is that the dark energy corresponds to the energy density of some specific
scalar field which is called as quintessence. In this case the vacuum density is not
constant while it weakly depends on time.

As we mentioned above one of the candidates to dark energy is vacuum. In
particle theory we often ignore vacuum energy since it is always possible to consider
this vacuum energy as the reference point for energy while we are interested in the
masses and energies of particles which are excitations above vacuum. The situation
changes when we take general relativity into account since every form of energy is
source of gravity. The problem with the vacuum energy is that the energy density
has to have dimension M4 where M is some energy or mass scale. It is natural that
this mass scale corresponds to the mass scale that characterizes given interaction.
These scales are 1GeV for strong interactions, 100 GeV for electroweek interactions
andMpl ∼ 1019 GeV for gravitational interactions. Hence we have following estimate

ρvac ∼ 1 GeV 4 , strong interactions ,

∼ 108 GeV 4 , electroweek interactions ,

∼ 1076 GeV 4 , gravitational interactions .

(28)
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It is fundamental problem of contemporary physics that these estimates exceeds by
many orders of magnitude of the experimental value of dark energy density

ρΛ ∼ ρc ∼ 10−5 ,
GeV

cm3
∼ 10−46GeV 4 . (29)

This problem is known as cosmological constant problem. It is not known why this
experimental value is so different from theoretical estimates and it is also great
mistery why it is different from zero. Further, if we imagine that the vacuum
energy density is larger than the previous one that this scale would be incompatible
with our existence since large and positive vacuum energy would lead to very fast
cosmological expansion. Such a formation would not allow formation of galaxies
and stars. On the other hand the Universe with large and negative vacuum energy
would recolapse very quickly so that no structure could form. It is also interesting
problem that the three different energy components-dark energy, dark matter and
baryons are of the same order of magnitude in the present Universe.In fact, these
components have different origins so that we should expect that they would give
contributions of different orders of magnitude.

Another possibility is that the dark matter could be formed from black holes
even it is not clear whether total mass of all black holes could be sufficient for all
the dark matter. In fact, new analysis of suparnovae implies that this is unprobably.
Let us outline mechanism how we could detect such a black hole. A black hole of
sufficient mass that passes in front of supernova acts as magnifying lens due to its
gravitational field. As a result the the star should appear brighter and hence this
black hole could be spotted as a dark dot in bright region. However the search for
such an effect in over a thousand of supernovae brought empty result. This analysis
was performed for black holes with masses greater than 0.01 times that our Sun and
show that such objects can account for at most 40% of dark matter in Universe.

We should stress that the idea that the dark matter is consist from black holes
is not new. In fact, S. Hawking was the first who proposed it alreadly in 1974 and it
attracted an attention of other physicists since it does not require some new particles
in order to explain dark matter. As we know black hole are formed when massive
stars implode however there are not enough stars that could be responsible for the
generation of black holes in such an amount to consist dark matter. On the other
hand current theories predict that black holes could be formed in early Universe
(primordial black holes) from the gravitational colapse of dense regions of matter.
Moreover, it turns out that the total mass of these black holes could be enough to
account for dark matter.

There is a crucial difference between black holes that originate from the colapse
of star and primordial black holes. In the first case the black holes have visible
halo of gas remnants of collapsed star that swirl around them. In case of the
primordial black holes the situation is different since they were formed before the
first atoms were created and hence there are no disc around them and they are
completely dark. Then in order to detect such black hole we should search for their
gravitational effect on light. Previous studies of primordial black holes with the help
of gravitational effects ruled out the large number of primordial black holes with the
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massess in the ranges 10 − 10−8 times that of our Sun. Then in 2015 LIGO-Virgo
collaboration detected the first gravitational signal from two merging black holes
and their analysis showed that the black holes they detected each had a mass more
than 25 time greater than that of our Sun. This mass is much heavier than the
mass expected for a black hole that is a result of dying star. Then it was natural to
presume that LIGO collaboration has detected primordial black hole.

In order to detect black holes using the effect of gravitational lensing we have
to analyze an effect when the path of light that is emitted by an object is bent by
gravity or some massive object, as for example black hole, that is localized between
the star and observers living on Earth. The black hole acts as lens since it focuses
light rays closer and hence star appears brighter. Clearly more massive black hole
makes the star to appear brighter. The similar analysis can be performed in case
of supernovae that can serve as standard candle. However recent analysis of signals
from over 1300 supernovae that are spread across most of the sky in the Nothern
hemisphere did not find supernovae that are brighter than expected. The conclusion
from this calculation is that the cumulative mass of these black holes can account
for only 40% of dark matter. In other words, we should abandon the idea that dark
matter could be formed from the black holes only even if there is still a possibility
that black holes are responsible for some small fraction of dark matter while the rest
is coming from some other potential candidates as are for example weakly interacting
massive particles (WIMP), sterile neutrinos.

1.2.6 Future of the Universe

As we will see in more details in following section, the future of the Universe is
determined by its geometry and properties of dark energy. In more details, Einsten
equations predict that the contribution of the spatial curvature into effective density
is proportional to a−2 so that even if the spatial curvature is non-zero so that it will
dominate over energy density of the non-relativistic matter that is proportional to
a−3. In other words at late times the main contribution to the energy is given by
spatial curvature and dark energy which could be time dependent. Let us imag-
ine situation that this dark energy depends on time and goes to zero sufficiently
rapidly in future and the Universe has possitive curvature (closed model). Then
the expansion will slow down and eventually the Universe will ends in singularity.
On the other hand when the Universe has spatial negative curvature it will expand
forever even if its expansion will slow down. The remarkable property of this model
is that all distances will be larger and larger. For example, all systems that are not
gravitatinally bound disappear.

The situation is different in case when dark energy does not depend on time.
Then the dark energy determines future of the Universe. In case of the positive
energy the Universe will expand exponentially. On the other hand in case, even
rather exotic, that the dark energy will become negative in future, the dark energy
will slow the expansion down and the Universe will collapse to singularity.

It is important to stress that it is in principle impossible to predict the future
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of Universe on the basis of cosmological observations that are performed at present.
The reason for this claim is that these observations can determine the dependence or
independence of dark energy on time in the past but cannot predict its dependence
in future. In order to know future of the Universe we should know the nature of dark
energy. However from present observations we can extrapolate the future evolution
of the Universe in 10-20 mld years. During this period the Universe will expand
at rate comparable to the present Hubble rate. To complete this discussion it is
good to mention another possibility that the dark energy will grow in future. If this
growth will be sufficiently fast the Universe will end in Big Rip. In this case the
scale factor becomes infinite in finite time. As a result the interaction (for example,
electromagnetic) will not be sufficient to keep them in the bound states that means
that all bound states, as for example nuclei and atoms will disintegrate.

1.3 Universe in the Past

The fact that the Universe expands implies that it was denser and warmer in the
past. Then the time evolution of the Universe can be described using GR and
standard thermodynamics with the main outcome that matter had higher and higher
temperature and density when we approach the beginning of the Universe. It is also
important that at most stages of its evolution matter was in thermal equilibrium.
The Hot Big Bang Theory is theory of this time evolution of the Universe.
However it turns out that there are some exceptional moments in the evolution of
the Universe.

1.3.1 The Recombination

At very early times when the temperature was high enough, the binding energy was
not able to keep electrons in atoms and the electron was in the state of baryon-
electron- photon plasma. The temperature of recombination-where recombination
means transition from plasma to gas-is determined by bnding energy in hydrogen
atom which is 13.6 eV . However this is only rough estimate and it can be shown
taht the recombination occurs at lower temperature T ∼ 0.3eV . Before the epoch of
recombination the photons actively interact with electrons and they are scatered by
these electrons. On the other hand after recombination the neutral gas is transparent
for photons. This is an important consequence since CMB that we observe today is
a consequence of the recombination epoch and hence it gives us information about
the properties of the Universe at the epoch when its temperature as about 0.26 eV
that corresponds to temperature T = 3000K and the age of the Universe was about
370 000 years. We also saw that high degree of isotropy of CMB shows that the
Universe was homogenneous at recombination. Further, the density perturbations
δρ
ρ
were comparable to the temperature fluctuations and were of order 10−5. However

these small pertubations were crucial for the origin of structures that were the first
stars, then galaxies and clusters of galaxies.
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1.3.2 Big Bang Nucleonsynthesis(BBN)

Another important epoch occurs at higher temperatures whose temperature is roughly
determined by binding energies in nuclei which is 1 − 10 MeV . At higher temper-
atures protons and neutrons were free in cosmic plasma. However in the process
of expansion of the Universe the temperature decreases and hence neutrons were
bounded into nuclei. Then there are following light nuclei in primordial plasma:
hydrogen, helium-4 (formed from two protons and two neutrons) and small amount
of deuterium (one proton and one neutron in atomic nucleus), helium-3 (two protons
and one neutron in atomic nucleus) and lithium-7 (three protons and four neutrons
in atomic nucleus). In other words, heavier elements were not formed in the early
Universe. In fact, heavy elements were produced during stellar evolution. For ex-
ample, carbon, which is an important element in the nucleosynthesis, arises in the
fucion of three 4He-nuclei. It is important that this process occurs at high densities
that are reached in stellar interiors after hydrogen was burned out. Then all other
elements are produced from carbon. For example, iron is produced in thermonuclear
reaction in star. Iron is relatively light element so that in case of heavier elements
can be produced during supernova explosions. It is important to stress that the BBN
is the epoch that can be studied directly since it can be calculated with the help of
GR and known microscopic physics which is physics of nuclei and weak interactions.
As a consequence the good agreement between BBN theory and observation is one
of the key arguments for the support of our theory of early Universe. FInally, BBN
epoch lasted from 1− 100 seconds after the Big Bang that corresponds to energies
from 1 MeV to 50 keV .

1.3.3 Neutrino Decoupling

Neutrinos are very interesting particles with many remarkale properties. One of
the most interesting facts is that they decouple from cosmic plasma at temperature
2 − 3 MeV as opposite to the case of photons when it happens at temperature
0.26 eV . Before this temperature the neutrinos are in thermal equilibrium with the
rest of matter and after temperature of decoupling they freely propagate through
the Universe. However we should stress that it is very difficult to detect these
relic neutrinos. Further, even if the role of neutrinos in present Universe is not
important, they played very significant role in the BBN theory. More precisely,
neutrino components affect the expansion rate and hence cooling rate of plasma at
the time of BBN. In summary, success of BBN theory gives decisive evidence for
the existence of relic neutrinos.

1.3.4 Cosmological phase transitions

If we go back in time we come to the epochs whose results were not probed by
observations so far. Then in order to describe these epochs we have to use our
models of high energy physics beyond Standard model. As we will see in more
details below, General Relativity predicts that at early times the Universe was much
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hotter. In fact, in very short time intervals after Big Bang the temperature was of
order of hundreds GeV. In fact, if we extrapolate time evolution as it is described by
standard GR to the beginning of the Universe we find that the temperature diverges.
However there we are beyond domain of our current physical theories and certainly
physics beyond standard model is necessary. It turns out that very early times in
the evolution of Universe can be called as epochs of phase transitions. Before we
proceed to the description of these phenomena let us give simple example of phase
transitions in solid state physics which is change of properties some material around
Curie temperature Tc. For T < Tc there are ordered magnetic moments in material
and hence it has ferromagnetic properties while for T > Tc these moments have
chaotic positions and magnetic properties are lost.

• Transition from quark-gluon plasma to hadronic matter

This phase transition is determined by the energy scale of strong interaction
and it is about 200 MeV . At much higher temperatures quark and gluons
behave as individual particles even if they are strongly interacting when the
temperature decreases. For temperatures lower than 200 MeV they are con-
fined in colorless bound states known as hadrons. Hadrons are divided into
two groups. The first one, baryons which are formed from three quarks (an-
tibaryons from three antiquarks) and they have half-integer spins and hence
are fermions. The second one are mesons which are formed from quark and
anti-quark and hence they have integer spin so that they are bosons.

• Electroweak transition

At temperatures above 100 GeV which is an energy scale of electroweak inter-
action the Higgs condensation is zero and henceW− and Z− bosons have zero
masses. The present phase corresponds to situation when the temperature is
lower than 100 GeV , Higgs field has non-zero vacuum expectation value (in
other words, Higgs field condensates) and W− and Z− bosons are massive.

• Grand Unified Transition

Physics strongly believe (and there are strong arguments for that) that at en-
ergies and temperatures above 1016 GeV the strong, weak and electromagnetic
interactions unify into single force. In other words, there is a phase transition
at temperature TGUT ∼ 1016 GeV . However there is still a possibility that the
maximum temperature at Universe is below TGUT so that the phase of Grand
Unification may not exist in the early Universe. Such a possibility occurs in
many models of inflation where the reheat temperature is below TGUT .

1.3.5 Baryon Asymmetry

The present Universe contains baryons which are protons (two u-quarks and one
d-quark), neutrons (formed from two d-quarks and one u-quark) and practically no
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antibaryons 2. Anti-baryons are particles that have the same properties as baryons
with exceptional property that they have opposite charges. In order to describe
this abundance of baryons over anti-baryons we introduce a ration of baryon over
photon densities. It is given as

ηB ≡ nB

nγ

= 6.2 · 10−10 . (30)

The baryon number is conserved at sufficiently low energies and temperatures and
that in the early Universe nB/nγ was of the same order o magnitude.

The situation changes at temperatures that are higher than hunderds MeV. In
this case there were many quarks and anti-quarks that were continuously pair created
and annihilated. In other words there were almost as many particles with negative
baryon number (antiquarks) as those with positive baryon number (quarks). It can
be shown that the number of quark-antiquark part at high energies was the same
order as the number of photons so the baryon asymmetry is determined by the
following ratio

ηB ∼ nq − nq̄

nq + nq̄

∼ 10−10 . (31)

where nq an nq̄ are number densities of quarks and antiquarks. The previous ration
can be manipulated to nq ∼ (1+10−10)nq̄ that means that there was very tiny excess
of baryons over anti-baryons. It is remarkable that this fact has origin of baryonic
asymmetry since as the Universe expands and cools down antiquarks annihilate with
quarks while uncompensated quarks remain and they form protons and neutrons.

Key problem of cosmology is to explain the very existence of the baryon asym-
metry and also to understand its value which is given in the formula above. It
turns out that this asymmetry existed in the Universe from the beginning which
means that this is one of the initial date of the cosmological evolution. In fact,
physicists feel that it is more natural to presume that the Universe was baryon sym-
metric at the beginning of its existence. The assymetry given in (30) was generated
in the course of the cosmological evolution due to processes with baryon number
non-conservation. There are many models that explain generation of the baryon
assymetry. Unfortunatelly there is not unique answer to the problem of its origin.
Most probably the baryon asymetry was generated at very high temperature at least
100 GeV . Further, the problem of baryon asymetry cannot be solved in with the
help of Standard model of particle model.

1.3.6 Generation of Dark Matter

Today we do not know the origin of non-baryonic clustered dark matter. One
possibility that the content of the dark matter is formed by stable particles that
exist in models beyond Standard Model. In other words an existence of Dark Matter
is strong argument for incompletness of the Standard Model. However the fact that
there is no experimental evidence of the properties of these particles that form

2Note that electic charge of u−quark is 2/3 while electric charge of d−quark is −1/3.

13



the dark matter makes very difficult to answer the question how dark matter was
generated in the early Universe.

1.3.7 Structure Formation in the Universe

As we said above there are many important stages of the cosmological evolution
of the Universe. The characteristic properties of these stages, nucleosynthesis or
recombination is that they have finite time of duration. However it is important to
stress that there is process in the Universe that began at a very early epoch but
continues at present. This is the process of the formation of structures which were
first stars, galaxies, clusters of galaxies and superclusters, where the order in which
they are written means that smaller objects were formed earlier.

The theory that describes structure formation is based on the Jeans instabil-
ity which is gravitational instability of matter density perturbations. However the
crucial point is that these perturbations should exist at the very early stage of the
cosmological evolutions even if they were very small in amplitude. Further, Hot
Big Bang theory cannot explain an existence of these perturbations and predict
their properties. In fact, inflation conjecture predicts the mechanism of generation
of perturbations. What it is even more remarkable inflation is consistent with all
cosmological data. The density of perturbations grows at the stage of the expansion
of the Universe when the dominant component of energy is contained in the non-
relativistic matter. The transition to this stage occurs 80000 years after Big Bang.
Before this transition the Universe was so hot that the dominant contribution to the
energy was hidden in the relativistic matter known as radiation. The transition from
radiation to matter occurs at the epoch which is known as radiation matter equality.
At this time the ratio of density perturbation to matter density is δρ

ρ
∼ 10−3−10−5.

Due to the fluctuation of matter there are regions of the higher density and they
are sources o gravitational potential that attract surrounding matter. As a conse-
quence matter flow to this region and hence the density becomes even higher which
is physical description of gravitational instability. In case when the density is suffi-
ciently high these regions become gravitationaly bound and effectively they are not
affected by cosmological expansion. For example, the size of this region does not
grow despite of the expansion of the Universe. In fact, the gravitational interaction
in this region implies its collapse to an object of even smaller size. This is the origin
of the formation of protostars and protogalaxies. First stars were formed at z ∼ 10
and somewhat earlier and first galaxies somewhat later.

As it is clear from the analysis performed above the mass of object as galaxy
or clusters of galaxies is determined by the size of the primordial overdense region.
As a result number densities of galaxies and clusters and their mass distribution
are consequences of the spectrum of primordial perturbations. Experimental data
that are determined on structures in the Universe are consistent with the simplest
flat primordial spectrum known as Harrison-Zeldovich spectrum. When we say
flat we mean that the spectrum is scale invariant which means that in some sense
perturbations of different sizes have one and the same amplitude.
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There are another kind of perturbations which are perturbations in cosmic
medium at recombination. These perturbations give famous CMB temperature
anisotropy and polarization. In other words primordial spectrum can be also deter-
mined from CMB observations. It is very nice consistency check that the spectra
found from CMB and structures are in good agreement with each other.

It is also very remarkable that structure formation gives an argument for the
presence of the dark matter. In the absence of dark matter density perturbations
would start to grow after recombinations only and hence they would not have de-
veloped to the structures. Further, the theory of structure formation implies that
the major part of dark matter must be cold which means that they have to consist
particles that become non-relativistic at very early epoch. Say differently, if the
dark matter were hot which means that they consist particles that remain relativis-
tic until late times, then the formation of object of relatively small sizes would be
suppressed which is in contradiction with observation.

1.3.8 Inflationary Epoch

As we will show in more details further, standard Hot Big Bang Theory has own
problems. The most important issue is related to initial conditions that should be
fine tuned appropriately in order to describe present Universe.

Let us be more precise. Since we work with hot Universe it means that it has
to be warm. Then it is natural to introduce its entropy, or more precisely, entropy
density. It can be shown that entropy density is of order of photon number density
which, at present Universe, is

s ∼ 103cm−3 . (32)

Then the entropy in the observable part of the Universe with the sizeR0 ∼ 104Mpc ∼
1028cm is

S ∼ sR3
0 ∼ 1088 . (33)

This is certainly very huge number and one can ask the question why our Universe
has such a large entropy. The problem with Hot Big Bang Theory is that entropy
is almost conserved durng the hot stage. Then it is clear that such a huge entropy
has to be introduced into theory as one of the initial data. This is certainly not
very satisfactory and it is known as entropy problem. It turns out that there are
more problems with standard cosmological theory and which are related to the fact
that theory cannot explain why Universe is so large, spatially flat, homogeneous and
isotropic.

It turns out that solution of these problems can be found in inflationary theory.
The main idea of inflation is simple. Before the standard cosmological epoch as is
known in Hot Big Bang theory there is an epoch of exponential expansion known as
inflation. The remarkable property of inflation is that during exponential expansion
initial small region of the Universe with the spatial size comparable to the Planck
length expans to very large size of many order of magnitude larger than the size of
the part of the Universe we see today. This naturally explain flatness homogeneity
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and isotropy of observable part of the Universe. Further, the duration of inflationary
epoch can be very short. It can be shown that problems of the Hot Big Bang Theory
can be solved when the duration is greate than (50 − 70)H−1

infl, where Hinfl is the
Hubble parameter at inflation, for example Hinfl ∼ 10−6Mpl. As a result minimum
duration of inflation is of order 10−35s.

Inflation is possible when the energy density is almost constant during its epoch.
However this can be ensured when we introduce new field known as inflation, since
conventional matter does not have this property. This field has to change slowly dur-
ing inflation. Also its potential energy changes slowly making expansion exponential
character.

Since we know that standard cosmological description given by hot big bang
model goods excelent description it is clear that inflation has to terminate at some
point. Then inflation is followed by post-inflanationary reheating when inflaton
energy is transferred to the energy of conventional matter. At the same time the
Universe heats up to very high temperature and Hot Big Bang epoch begins.

It is remarkable that inflation can answer all problems of standard cosmological
theory.

1.4 Quantum Mechanics and Cosmology

The standard text book interpretation of Quantum Mechanics is known as Copen-
hagen interpretation. It is very important for our understanding many physical
phenomena including atoms, moleculs, chemistry and also solid state physics. To-
day’s general picture is that the Copenhagen interpretation of quantum mechanics,
where there is sharp separation between measurement apparature and measured
object. However this fact implies that we can consider Copenhagen intepretation as
an approximation suitable for laboratory applications. More precisely, we give four
reasons for this strong claim.

• There are no classical realm, no observables and no meassurements
in the Early Universe

Standard quantum mechanics is based on presumption that there are instru-
ments that are used as measurement aparature. In other words they transform
microscopic phenomena to macroscopic which are determined by classical laws
of physics. In other words orthodox Copenhagen formulation of quantum me-
chanics ask for boundary between classical and quantum words. However there
is clearly no such a division in cosmology.

• Observers are Physical Systems that exist in the Universe

As is well known Copenhagen quantum mechanics predicts probabilities ot the
results of measurements that are performed on subsystems of the Universe by
another subsystem which we call as observer or as apparatus. This subsystem
is outside the system which is measured.
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Certainly this description could be useful for experiments performed in labo-
ratory. However the question is can be useful for early Universe where there
is no measurements and where are no observers. Does it mean that quantum
mechanics cannot be applied to the physical processes that occured before
first observes emerge? Certainly this is not true and hence we need more gen-
eral formulation of quantum mechanics than Copenhagen interpretaion is and
where observers is inside the Universe. However one can argue that such a
generalizition is not necessary since present observers measure present records
that are results of the processess that performed in the past and whose time
evolutions is governed known quantum mechanics deterministic law. However
the question is what record exactly means. As we argued above record is phys-
ical quantity that is correlated with physical processes in the past with high
probability. However such a probability depends on two times, one correspond-
ing to the formation of the event in the past and the second one corresponding
to the time when a consequence of this event is recorded. Such a probabilities
do not follow from standard Copenhagen interpretation and hence we should
search for its generalization.

• Fixed Classical Space-time

It is well known that quantum mechanics needs fixed space-time structure that
defines possible direction of time evolution. States are defined on space-like
suraces (surfaces at constant t) at fixed space-times and evolve according to
Schrödinger equations through family such a space-like surfaces.

However at the early Universe we are at very small distances where quan-
tum gravity becomes important. It is not exactly known what means that
the geometry fluctuates at the Planck scale however it is believed that our
description of this realm should change in some way.

2 The Expansion of the Universe

If we look at the night sky we see that it seems the same from all directions. More
precisely, we know that the visible universe seems to be the same in all directions
at least if we analyze distances larger than 300 million of light years. The more
precise support for this claim follows from the analysis of the cosmic microwave
background that we will discuss below. The main outcome of this analysis is that
the radiation has been traveling to us for 14 billion years and this radiation is the
same in all directions which support the claim that the universe at large distances
seems to be the same at all directions. Certainly there is no reason why we should
presume that something special is with our position at the Universe, as for example
we could imagine that we are in the centre of the sphere so that the universe will
look isotropic from all directions naturally. Then we should accept the fact that
the universe should appear isotropic to observers in the whole universe. Of course,
this is not precisely true as we know that for observes that are moving with hight
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velocity through our galaxy the universe will not be the same in all directions due to
the famous Dopler effect. Explicitly, for such observes the starlight coming toward
them from the direction where they are traveling is much more intensive that the
starlight that they see from behind. In other words when we say that the universe
is isotropic we should specify which observers we mean. We say that the universe
is isotropic for the family of freely falling observers which we mean observers that
move with the average velocity of typical galaxies in ther neighbourhoods. We say
that the conditions have to be same at the same time at any points that can be
mapped each other by rotation about typical galaxies. However then it is clear that
any point can be mapped to any other by sequence of rotations about various typical
galaxies and consequencly the universe has to be homogeneous. In other words the
properties of the universe at all point at the same time looks to be the same. This
crucial presumption allows us to choose simple form of the space-time metric which
was firstly discovered by Friedmann as solution of the Einstein equations and then
derived by Robertson and Walker from the requirement of homogenity and isotropy.
As far as we know current modern cosmology is based on this (FRW) metric. Let
us discuss properties of this metric in more details.

2.1 Spacetime geometry

Let us consider three dimensional homogeneous and isotropic space and its geometry
which is characterized by a metric gij(x) where i, j = 1, 2, 3 and x ≡ (x1, x2, x3)
where xi label spatial coordinates of points in three dimensional space time. The
line element is defined as

ds2 = gijdx
idxj (34)

where ds is proper distance between x and x+ dx which means that it is a distance
measured in a coordinate system that is cartesian in a small neighborhood of the
point x. The simplest possibility of the homogeneous and isotropic three dimensional
space is flat space where

ds2 = dx2 . (35)

The transformations that leave this line element invariant are three dimensional
rotations

x′i = Λi
jx

j ,Λi
kΛ

j
mδij = δkm (36)

and translations
x′i = xi + bi . (37)

Another more interesting possibility of the homogeneous and isotropic space is spher-
ical surface embedded in four-dimensional Euclidean space with radious a. The four
dimensional Euclidean space has line element

ds2 = dx2 + dz2 (38)

while the spherical surface is described by the equation

z2 + x2 = a2 (39)
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This space is invariant under four dimensional rotation or it is invariant under three
dimensional rotation that leaves the point z invariant.

The last possibility is hyperspherical sufrace in four dimensional pseudo-Euclidean
space with line element

ds2 = dx2 − dz2 , z2 − x2 = a2 , (40)

where a2 is an arbitrary positive constant. This space is left invariant by four-
dimensonal pseudo-rotation that has the form of Lorentz transformations where the
time t is replaced by z.

Let us now perform rescaling

z = az′ , x = ax′ (41)

and we obtain that the spherical and hyperspherical line elements and surfaces have
the form

ds2 = a2(dz′2 ± dx′2) , z′2 ± x′2 = 1 (42)

In what follows we drop primes on z′ and x′ and use ordinary symbols z and x.

Let us perform diferential of the equation z2 ± x2 = 1 and we obtain

zdz = ∓x · dx (43)

so that we can write the line element as

ds2 = a2
(
dx2 ± (x · dx)2

z2

)
= a

(
dx2 ± (x · dx)2

1∓ x2

)
(44)

We can use common notation for all three spaces when we introduce parameter K
equal to

K=


+1 spherical
−1 hyperspherical
0 Euclidean

(45)

and hence we can write the spatial line element as

ds2 = a2(t)

[
dx2 +K

(x · dx)2

1−Kx2

]
(46)

As the final step we extend this geometry to the full spacetime when we include the
spatial line element with a now arbitrary function of time and hence we obtain

dτ 2 ≡ −gµνdxµdxν = dt2 − a2
[
dx2 +K

(x · dx)2

1−Kx2

]
(47)

where τ is the proper time that obeys well known relation

ds2f.d. = −dτ 2 (48)
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where ds2f.d. is line element in four dimensional space-time defined as

ds2f.d. = gµνdx
µdxν . (49)

where xµ = (x0,x) label points in four dimensional space-time. It is important
to stress that (47) contains the scale factor a which is arbitrary function of time
(known as Robertson-Walker scale factor).

We are not going to prove it but it can be shown that the metric (47) is the
unique metric if the universe is spherically symmetric and isotropic to a set of freely
falling observers. Note that the components of metric have the form

g00 = −1 , g0i = 0 , gij = a2(δij +K
xixj

1−Kx2
) (50)

where i, j, k = 1, 2, 3 and x0 = t

2.2 Alternative derivation of the metric

As argued before there is observation evidence for isotropy and the Copernican
principle says that we are not the center of the Universe and therefore observers
elsewhere should also observe an isotropy all cosmological models are based on the
existence of homogeneity and isotropy of manifold. However it is important to
stress that this claim is not certainly true. The Universe is apparently not static,
but changing in time. Therefore the cosmological models are based on the idea that
the Universe is homogeneous and isotropic in space but not in time. This means
that the Universe can be foliated into space-like surfaces such that each slice is
homogeneous and isotropic. Then it is natural to consider our space-time to be
R×Σ where R represents the time direction and Σ is a homogeneous and isotropic
three-manifold. Since we may think of isotropy as invariance under rotation and
homogeneity as invariance under translation we get that Σ must be a maximally
symmetric space. More precisely, the homogeneity and isotropy imply that the space
has its maximum possible number of Killing vectors. Therefore we can write the
metric in the form

ds2 = −dt2 + a2(t)γij(x)dx
idxj . (51)

Here t is time-like coordinate and (x1, x2, x3) are the coordinates on Σ where γij is
the maximally symmetric metric on Σ. The function a(t) is known as scale factor
that tells us how big the space-like slice Σ is at the moment t. The coordinates used
here in which the metric is free of cross terms dtdxi and the space-like components
are proportional to a single function of t are known as comoving coordinates and
an observer who stays at constant xi is also called as “comoving”. Only comoving
observer will think that the Universe looks isotropic.

It is important to stress that these observers, that are at rest to this frame are
geodesic which means that they are free. Note that for these particles (observers)
we have ds2 = −dt2 as follows from the fact that dxi = 0 which implies that t has
the meaning of the proper time for particles at rest.
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We show that the world-line xi = const obeys the geodesic equation in the metric
(277). Note that the geodesic equation takes the form

duµ

dλ
+ Γµ

νλu
νuλ = 0 , (52)

where uµ is 4− velocity
dxµ

dλ
(53)

and where λ is the parameter along the world-line of the particle. To begin with we
calculate the Christoffel symbols

Γµ
νλ =

1

2
gµσ(∂νgλσ + ∂λgνσ − ∂σgνλ) . (54)

For the metric (277) we have following non-zero components

g00 = −1 , gij = a2(t)γij (55)

with the inverse components

g00 = −1 , gij =
1

a2(t)
γij , (56)

where
γijγjk = δik . (57)

Explicitly, for the metric in the form (50) the metric γij is equal to

γij = δij +K
xixj

1−Kx2
. (58)

It can be shown that the only non-zero components of Γµ
νλ are

Γi
0j =

1

2
gik∂0gjk =

ȧ

a
δij ,Γ

0
ij = aȧγij ,Γ

i
jk =

(3)Γi
jk , (59)

where (3)Γi
jk are the Christoffel symbols for metric γij.

Let us now again consider the equation (278). The only non-zero component of
the 4−velocity uµ = dxµ

dλ
of the particle at rest is

u0 =
dx0

dλ
(60)

Now the on-shell condition implies

uµuνgµν = −1 ⇒ dx0

dλ
= 1 . (61)

Then clearly (278) is obviously satisfied since du0

dλ
= 0 and Γµ

00 for all µ. In other
words the world-lines of particles which are at rest in our reference frame are indeed
geodesic.
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As we have shown in introduction the maximally symmetric Euclidean three-
metric γij obey

R
(3)
ijkl = k(γikγjl − γilγjk) , (62)

where k is some constant and the superscript on the Riemann tensor reminds to us
that it is associated with the three metric γij not to the metric of entire space-time.
Then the Ricci tensor is

R
(3)
jl = γikR

(3)
ijkl = 2kγjl . (63)

Since the space is maximally symmetric then it will certainly be spherically sym-
metric as well. For such a space-time the metric can be put in the form

ds2 = γijdx
idxj = e2βdr2 + r2(dθ2 + sin2 θdϕ2) . (64)

The Ricci tensor for the metric given above has components

R
(3)
11 =

2

r
∂rβ ,

R
(3)
22 = e−2β(r∂rβ − 1) + 1

R
(3)
33 = [e−2β(r∂rβ − 1) + 1] sin2 θ .

If we compare these expressions to (288) we can solve for β(r):

2

r
∂rβ = 2ke2β ⇒ 2dβe−2β = 2kr ⇒ β = −1

2
ln(C − kr2) ,

e−2β(r∂1β − 1) + 1 = 2kr2 ⇒ e−2β(r2ke2β − 1) + 1 = 2kr2 ⇒
⇒ −e−2β + 1 = kr2 ⇒ C = 1

(65)

and the third equation is identically solved. Then we obtain following metric on
space-time:

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

]
. (66)

This form of metric is known as Friedman-Robertson-Walker metric (FRW).
Then the Einstein equations will determine the behavior of the scale factor a(t). We
can also easily see that the metric is invariant under the scaling transformations:

k → k

|k|
,

r →
√
|k|r ,

a→ a√
|k|

.

(67)

Therefore it is clear that the only relevant parameter is k/|k| and there are three
cases of interest: k = −1 , k = 0 and k = 1. The case k = −1 corresponds to
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constant negative curvature on Σ and is called open, the case k = 0 corresponds no
curvature on Σ and is called flat ; the case k = 1 corresponds to positive curvature
on Σ and is called closed. Now we will examine these possibilities in more details:

• For k = 0 the metric on Σ is

dσ2 = dxidx
i , i = 1, 2, 3 (68)

that is simply the Euclidean space. Globally, it could describe R3 or more
complicated manifold, as for example three torus S1 × S1 × S1.

• For k = 1 we define
r = sin ξ , dr = cos ξdξ (69)

and hence the metric on Σ can be written as

dσ2 = dξ2 + sin2 ξdΩ2 (70)

which is the metric of three sphere. In this case the only possible global
structure is actually three sphere.

• The case k = −1 we can write

r = sinhψ (71)

and the metric on Σ is

dσ2 = dψ2 + sinh2 ψdΩ2 (72)

which is the metric of three dimensional space of constant negative curvature.
Globally such a space can extend forever but it can also describe a non-simply
connected compact space.

Now we have to explain the meaning of the scale factor a(t). To do this we
calculate the proper distance at time t from the origin to a comoving object at
radial coordinate r

d(r, t) = a(t)

∫ r

0

dr′√
1−Kr′2

= a(t)×


sin−1r K = 1
sinh−1 r K = −1

r K = 0
(73)

We see that that the proper distance from us to a comoving object increases with
a(t). Generally we say that the proper distance between any two comoving observes
in the universe is proportional a(t). The rate of change is equal to

dr

dt
=
ȧ

a
d (74)
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3 Probe Dynamics in Expanding Background

In this section we will analyze dynamics of probe particle, massive or massless, in
general background. The massive particle in general gravitational field is described
by the action

S = −m
∫
dλ
√
−gµν ẋµẋν , ẋµ =

dxµ

dλ
, (75)

where λ is parameter that labels the world-line. We see that this action cannot
describe massless particle (m = 0) since in this case the action naively vanishes. In
order to describe massless particle we use a standard trick and introduce an einbain
e(τ) so that the action (75) takes the form

S =
1

2

∫
dλ

(
1

e
gµν ẋ

µẋν −m2e

)
. (76)

To see an equivalence between these two formulations we perform the variation of
the action (76) with respect to e that gives

− 1

e2
gµν ẋ

µẋν −m2 = 0 (77)

which can be solved for e as

e =
1

m

√
−gµν ẋµẋν . (78)

Inserting (78) into (76) we obtain the action (75).

that inserting back to the action we obtain the original action. Finally note that
the action (76) can describe massless particle as well since we can easily take the
limit m→ 0 in (76). We return to this problem below.

Let us now derive equations of motion from (76). Since gµν generally depend on
xµ we should perform its variation as well and we obtain

−2
d

dλ
(
1

e
gµν ẋ

ν) +
1

e
∂µgρσẋ

ρẋσ = 0 , (79)

while the equation of motion for e gives the condition (77). Note that the equation
of motion (79) can be written as

2
ė

e2
gµν ẋ

ν − 2
1

e
gµν ẍ

ν − 2
1

e
∂ρgµσẋ

ρẋσ +
1

e
∂µgρσẋ

ρẋσ = 0

(80)

To proceed further we use the fact that

− 2∂ρgµσẋ
ρẋσ + ∂µgρσẋ

ρẋσ =

= −(∂ρgµσẋ
ρẋσ + ∂σgµρẋ

σẋρ − ∂µgρσẋ
ρẋσ) = −2gµνΓ

ν
ρσ

(81)
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Then (80) can be rewritten into the form

ẍµ + Γµ
ρσẋ

ρẋσ − ė

e
ẋµ = 0 .

(82)

Let us now study consequence of the fact that the action (76) is invariant under
reparametrization

λ′ = f(λ) , x′µ(λ′) = xµ(λ) , e′(λ′) =
e(λ)

ḟ
,

dx′µ(λ′)

dλ′
=
dxµ(λ)

dλ

1

ḟ
. (83)

Using this invariance of the action we have a freedom in identification of λ with
another physical quantity. A particular useful choice is to impose condition ϵ = 1

m

so that we obtain on-shell condition

gµν ẋ
µẋν = −1 (84)

which can be written as
gµνdx

µdxν = −dλ2ϵ=m−1 (85)

Comparing this relation with the definition of the proper time we see that we should
identify λϵ=m−1 with proper time τ . In this case it is convenient to introduce vector
of four velocity defined as

uµ =
dxµ

dτ
, uµuνgµν = −1 . (86)

It is also important to stress that we could idenfity λ with proper time after ex-
tremization of the action. Then of course the equation of motion for xµ take the
familiar form

d2xµ

dτ 2
+ Γµ

ρσ

dxρ

dτ

dxσ

dτ
= 0 . (87)

Note that this form of the equation of motion is invariant under transformations

τ ′ = aτ + b , (88)

where a and b are constants known as affine parameters. This statement follows
from the fact that

dx′µ

dτ ′
=
dxµ

dτ

1

a
,
d2x′µ

dτ ′2
=

1

a2
d2xµ

dτ 2
(89)

Note however that this is true only for constant a and b. To see this we will prove
the covariance of the general equations of motion. To see this let us start with the
equations of motion in the form

d2x′µ(λ′)

dλ′2
+ Γµ

ρσ

dx′ρ

dλ′
dx′σ

dλ
−

de′(λ′)
dλ′

e′(λ′)

dx′µ

dλ′
= 0 (90)
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and use the transformation rules

λ′ = f(λ) , x′µ(λ′) = xµ(λ) , e′(λ′) =
e(λ)

ḟ
,

dx′µ(λ′)

dλ′
=
dxµ(λ)

dλ

1

ḟ
. (91)

so that we can write

dx′µ

dλ′
=
dxµ

dλ

dλ

dλ′
=
dxµ

dλ

1

ḟ
,

d2x′µ

d2λ′
=
d2xµ

dλ2
(
1

ḟ
)2 − dxµ

dλ

f̈

ḟ 3
,

de′(λ′)
dλ′

e′(λ′)

dx′µ

dλ′
=

d
dλ
( e
ḟ
) 1
ḟ

e
ḟ

dxµ

dλ

1

ḟ
=
dxµ

dλ

ėḟ − ef̈

ḟ 3e

(92)

using the fact that

λ = f−1(λ′) ,
dλ

dλ′
=
df−1

dλ′
=

1

ḟ(f−1(λ′))
(93)

Note that in equation (92) we did not write explicitly the dependence of ḟ on f−1(λ′).
Then (90) has the form

d2x′µ(λ′)

dλ′2
+ Γµ

ρσ

dx′ρ

dλ′
dx′σ

dλ
−

de′(λ′)
dλ′

e′(λ′)

dx′µ

dλ′
=

=
d2xµ

dλ2
1

ḟ 2
− dxµ

dλ

f̈

ḟ 3
+ Γµ

ρσ

dxρ

dλ

dxσ

dλ

1

ḟ 2
− dxµ

dλ

ė

e

1

ḟ 2
+
dxµ

dλ

f̈

f 3
=

=
d2xµ

dλ2
1

ḟ 2
+ Γµ

ρσ

dxρ

dλ

dxσ

dλ

1

ḟ 2
− dxµ

dλ

ė

e

1

ḟ 2
= 0

(94)

and this result proves the covariance of the equations of motion.

Let us now consider massless particle (m = 0). Performing the same calculations
as above we find that the equations of motion for xµ have the same form as in (82)
since m only affect the equation of motion for ϵ in that now have the form

1

e2
gµν ẋ

µẋν = 0 . (95)

Of course, in this case we cannot identify λ with proper time since proper time is
not well defined due to the fact that dτ = 0 for massless particle. On the other
hand we will argue that it is always possible to choose such parameter ( affine) so
that the equation of motion for massless particle has the form (87). To see this let
us proceed as follows. Let tµ ≡ dxµ

dλ
obeys the geodesic equations

dtµ

dλ
+ Γµ

ρσt
ρtσ = κtµ , κ =

ė

e
. (96)
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Let us define vector uµ = dxµ

dλ∗ = tµ dλ
dλ∗ and calculate

duµ

dλ∗
+ Γµ

ρσu
ρuσ =

d

dλ
(tµ

dλ

dλ∗
)
dλ

dλ∗
+ Γµ

ρσt
ρtσ(

dλ

dλ∗
)2 =

=

(
dtµ

dλ
+ Γµ

ρσt
ρtσ
)(

dλ

dλ∗

)2

+ tµ
d

dλ
(
dλ

dλ∗
)
dλ

dλ∗
=

= κtµ
(
dλ

dλ∗

)2

++tµ
d

dλ
(
dλ

dλ∗
)
dλ

dλ∗

(97)

which is equal to zero when

− dλ

dλ∗
κ =

d

dλ

(
dλ

dλ∗

)
(98)

or equivalently

−dλκ(λ) =
d( dλ

dλ∗ )
dλ
dλ∗

(99)

This equation has the solution (up to integration constant)

dλ

dλ∗
= exp(−

∫ λ

dλ′κ(λ′)) ,
dλ∗

dλ
= exp(

∫ λ

dλ′κ(λ′)) . (100)

We see that it is possible to define affinely parametrized null geodesic that obeys
the equation

duµ

dλ∗
+ Γµ

ρσu
ρuσ = 0 . (101)

Let us now return to the case of massive particle with the mass m0 and consider the
gauge fixed form where the parameter λ = τ . In this case the equation of motion
for e allows us to write

−1 = (g00 + gij
dxi

dt

dxj

dt
+ 2g0i

dxi

dt
)(
dt

dλ
)2

(102)

so that we obtain an important relation

dt

dλ
=

1√
−g00 − 2g0ivi − gijvivj

, vi ≡ dxi

dt
.

(103)

It is also interesting to insert the solution of the equation of motion ϵ into the action
so that it takes the form (e = 1

m0

√−gµνuµuν)

S =
1

2

∫
dλ[

1

ϵ
gµνu

µuν −m2
0ϵ] =

= −m0

∫
dt
√
−g00 − 2g0ivi − gijvivj .

(104)
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It is instructive to find corresponding Hamiltonian. From the action above we obtain
conjugate momenta

pi =
∂L

∂vi
= m0

g0i + gijv
j√

−g00 − 2g0ivi − gijvivj
(105)

and hence

H = piẋ
i − L = m0

−g00 − g0iv
i√

−g00 − 2g0ivi − gijvivj
(106)

that, of course, we have to express using canonical variables. Using definintion of
momenta we obtain

pig
ijpj = m2

0

g0ig
ijgj0 + 2g0iv

i + gijv
ivj

−g00 − 2g0ivi − gijvivj

(107)

where we introduced gij which is metric inverse to gij so that gijg
jk = δki . From the

previous equation we obtain

2g0iv
i + gijv

j = −
1
m2

0
pig

ijpjg00 + g0ig
ijgj0

1 + 1
m2

0
pigijpj

(108)

so that

pi =
g0i + gijv

j√
−g00 + g0igijgj0

√
m2

0 + pigijpj (109)

and finally

vi = gij

(
pi
√

− det gµν√
det gij

√
m2

0 + pigijpj
− gj0

)
(110)

using also the fact that

− det gµν = −(g00 − g0ig
ijgj0) det gij (111)

Now we are finally ready to find corresponding Hamiltoinian

H =

−g00 + g0ig
ijgj0 −

g0ig
ijpj

√
− det gµν√

det gij
√

m2
0+pigijpj√

−g00 − 2g0ivi − gijvivj
=

=
1

m0

√
− det gµν√
det gij

√
m2

0 + pigijpj −
1

m0

g0ig
ijpj

(112)

Now using this Hamiltonian we can derive canonical equations of motion

ẋi =
{
xi, H

}
,

ṗi = {pi, H} ,

(113)
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where Poisson bracket between two functions on the phase space is defined as

{F,G} =
∂F

∂xi
∂G

∂pi
− ∂F

∂pi

∂G

∂xi
. (114)

Generally the equations of motion for pi are rather complicated due to the fact that
metric components generally depend on xi. The situation simplifies considerabily
in flat FRW background

ds2 = −dt2 + a2(t)δijdx
idxj . (115)

when det gµν = −a6 , det gij = a6, g0i = 0 and hence the Hamiltonian is equal to

H =
1

m0

√
m2

0 +
1

a2
piδijpj . (116)

Now the equation of motion takes the form

ẋi =
{
xi, H

}
=

1

m0a2
δijpj√

a−2piδijpj +m2
0

,

ṗi = {pi, H} = 0 ⇒ pi = ki .

(117)

We see that the momentum pi is constant. On the other hand the norm of state
slows since the norm is given as pig

ijpj =
1
a2
kiδ

ijkj.

On the other hand let us proceed in slightly different way and introduce following
variable

X i = axi , ẋi =
1

a
(Ẋ i −HX i) . (118)

Note that this procedure is suitable for the flat FRW background. Using these
variables we find the action in the form

S = −m
∫
dt

√
1− (Ẋ i −HX i)δij(Ẋj −HXj) . (119)

The meaning of the variables X i can be found when we take the non-relativistic
limit where we replace

√
1− A = 1− 1

2
A2 so that the action

Snonrel = −m
∫
dt+

∫
dt
m

2
(Ẋ i −HX i)δij(Ẋ

j −HXj) =

=

∫
dt
m

2
Ẋ iẊi + . . . ,

(120)

where we neglected the remaining terms. Comparing this expression with the stan-
dard form of the non-relativistic Lagrangian we can interpret X i = a(t)xi as the
physical variable even if we mean that both variables are physical.
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Now from (368) we determine the momenta conjugate to X i

Pi =
δL

δẊ i
= m

δij(Ẋ
j −HXj)√
(. . . )

(121)

and hence the Hamiltonian takes the form

H = Ẋ iPi − L =
m√
(. . . )

+ PiX
iH =

√
m2 + PiP i + PiX

iH

(122)

Using this Hamiltonian we derive the equation of motion

Ẋ i =
{
X i, H

}
=

P i

√
m2 + PiP i

+X iH ,

Ṗi = {Pi, H} = −PiH .

(123)

The last equation can be integrated as

dPi = −Pi
da

a
⇒ lnPi = − ln a+ lnKi ⇒ Pi =

Ki

a
. (124)

We see that the ”physical” momentum Pi is red shifted as the universe expands.
Note that we can also find the time dependence of X i by integrating the first equa-
tion since it takes generally of the form

Ẋ i = F i(t) +G(t)X i , G(t) =
ȧ

a
, F i =

P i

√
m2 + PiP i

. (125)

We solve this equation in an standard way. First of all we solve the homogeneous
equation

Ẋ i = G(t)X i ⇒ X i = Ci exp(

∫
dt′G(t′)) (126)

Note that we have∫
dt′G(t′) =

∫
da

dt

1

a
dt =

∫
da

a
= ln a⇒ e

∫
dtG(t) = eln a = a (127)

and hence
X i = aCi . (128)

This is solution of homogeneous equation. In order to find solution of non homoge-
neous equation we promote Ci to depend on time and hence

Ẋ i = Ċi exp(

∫
dt′G(t′)) + CG exp(

∫
dt′G(t′)) = Ċi exp(

∫
dt′G(t′)) +GX i (129)
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Comparing this equation with the right side of equation (125) we obtain that Ci

has to obey the equation

dCi

dt
= e−

∫
dt′G(t′)F (t) ⇒ dCi

dt
=

Ki

a
√
m2a2 +KiKi

(130)

that can be in principle integrated if we know the time dependence of a. There
is a particulary simple solution corresponding to the particle with zero physical
momentum when Ki = 0. From upper equation we immediately find that Ci =
Ci = const and hence

X i = Cia (131)

that is an expected result. The physical interpretation of this result is that particle
slows down with respect to comoving coordinates as the Universe expands (since
a→ ∞). In fact this is an actual slowing down, in the sense that a gas of particles
with initially high relative velocities will cool down as the Universe expands.

3.1 Fields and Currents in the Universe

As we will show below the matter content od the Universe is described with the help
of various vector and tensor fields instead of an action for one particle or collection
of particles. Examples of these fields is the current of galaxies and the energy-
momentum tensor whose mean values have to satisfy the requirements of isotropy
and homogeneity. Isotropy requires that the mean value of any three vector has
to vanish while the requirement of homogeneity means that any three scalar(which
is quantity invariant under spatial coordinate transformations) can depend on time
only. More explicitly, let us consider a system of particles that are labeled by index
n where each particle has space-time coordinates xµn(λ) where λ parameterizes the
particle trajectory. Let us each particle has electric charge en. Then we can define
electric current four-vector as

Jµ(x) ≡ 1√
−g(x)

∫
dλ
∑
n

enδ
4(xn(λ)− x)

dxµn
dλ

=

=
1√

−g(x)

∫
dλ
∑
n

enδ
3(xn(u)− x)δ(tn(u)− t)

dxµn
dtn

dtn
dλ

=

=
1√

−g(x)

∑
n

en

∫
dλδ3(xn(λ)− x)

δ(λ− λn)
dtn
dλ

dxµ

dtn

dtn
dλ

=

=
1√

−g(x)

∑
n

enδ
3(xn(t)− x)

dxµ

dt
,

(132)

where δ4 is four-dimensional delta function that is normalized as∫
d4xf(y)δ(y − x) = f(x) . (133)
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Note that δ3(z) is delta function in three spatial dimensions. We also used the fact
that

δ(g(x)) =
∑
i

δ(x− xi)

|g′(xi)
(134)

where xi are roots of the equation g(x) = 0. Then λn is root of the equation
tn(λn) = t. For example, let us consider a integral of

√
− det gJ0 over finite three

dimensional volume∫
d3x
√

− det gJ0 =
∑
n

en

∫
d3xδ(xn(t)− x) =

∑
n

en (135)

which is clearly total electric charge in that volume. Of course, we can consider
another type of current, as for example baryon current where the baryon number of
n−th particle of n−th galaxy appears instead of en. It is also important to explain
why we introduced the factor 1√

−g
in the definition of current. The reason is that

the delta function is not a scalar. To see this note that under change of coordinates
x′µ = x′µ(xν) we have

d4x′ = |∂x
′

∂x
|d4x (136)

where |x′

x
| is Jacobian of the coordinate transformations. On the other hand we

know that the metric transform us

g′µν(x
′) = gρσ

∂xρ

∂x′µ
∂xσ

∂x′ν
. (137)

Taking the determinant of this expression we obtain

det g′µν ≡ g′ = | ∂x
∂x′

|2g = |∂x
′

∂x
|−2g . (138)

and we see that d4x
√
−g transforms as a scalar. Let us consider definition of the

delta function

f(y) =

∫
d4xf(x)δ4(x− y) =

∫
(d4x

√
−g)f(x)(δ

4(x− y)√
−g

) . (139)

Now since f(y), d4x
√
−g, f(x) are scalars we find that δ4(x−y)√

−g
is scalar rather than

the delta function itself. Returning to our current we find that it obeys the conser-
vation law

∂µ(
√
−gJµ) =

∫
dλ
∑
n

en
∂

∂xµ

(
dxµn
dλ

δ(xµn − xµ)

)
=

−
∫
dλ
∑
n

en
∂

∂xµn
δ4(xµn − x)

dxµn
dλ

= −
∫
dλ
∑
n

en
d

dλ
δ4(xn − x) = 0

(140)

using
∂

∂xµ
δ4(xn − x) = − ∂

∂xµn
δ4(xn − x) (141)
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Note that this conservation law can be written into the form

∂µ(
√
−gJµ) = ∂µJ

µ
√
−g + 1

2
∂µgρσg

σρ
√
−gJµ =

√
−g(∂µJµ + Γµ

µνJ
ν) =

√
−g∇µJ

µ = 0

(142)

using the fact that

Γµ
ρσ =

1

2
gµω(∂ρgωσ + ∂σgωρ − ∂ωgρσ) ,

Γµ
µν =

1

2
gµω(∂µgων + ∂νgωµ − ∂ωgµν) =

1

2
gµω∂νgωµ .

(143)

In other words the covariant conservation law for the current Jµ in general curved
space-time has the form

∇µJ
µ =

1√
−g

∂µ(
√
−gJµ) = 0 . (144)

Another important object that characterises the matter content of the Universe is
the stress energy tensor T µν where the conservation law has the form

∇νT
µν = ∂νT

µν + Γµ
κνT

κν + Γν
κνT

µκ = 0 . (145)

Let us now write the form of this stress energy tensor for an ideal gas of particles
that move freely the stress energy tensor has the form

T µν(x) =
1√
−g

∫
du
∑
n

δ4(xn(u)− x)
dxmun(u)

du
pνn(u) =

=
1√

−g(x)
∑
n

δ3(xn(t)− x)pµn(t)
pνn(t)

En(t)
,

(146)

where

pµn = m
dxµn
du

= m
dxµn
dtn

dtn
du

= m
dxµn
dtn

En , p0n = En = m
dtn
du

. (147)

A perfect fluid is defined as a medium for which at every point we can introduce a
locally inertial Cartesian frame that moves with the fluid. In this frame of reference
the fluid appears the same at all directions. In this reference frame the components
of the energy momentum tensor must take the form

T ij = pδij , T 0i = T0i = 0 , T 00 = ρ . (148)

We have to demand that T i0 = 0 since in the opposite case the non-zero value of T 0i

would determine special directions in space as the direction of T 0i which would be
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in clash with the presumption of the spatial isotropy. For the same reason we have
to demand that T ij is proportional to the unit matrix δij. The functions p and ρ
are known as the pressure and energy density evaluated at the rest frame. Then in
locally inertianl Cartesian frame with an arbitrary celocity the energy momentum
tensor takes the form

Tαβ = pηαβ + (p+ ρ)uαuβ , (149)

where ρ and p are defined to be the same as in the co-moving inertial frame. Further,
uα is defined by the condition that it transforms as a four-vector under Lorentz
transformations. Since locally Cartessian co-moving inertial frame is the frame that
moves with the fluid it is clear that it is determined by the condition u0 = 1 and
ui = 0. Note that for this form of the four vector (149) reduces to (148) since

T 00 = −p+ (p+ ρ) = ρ , T ij = pδij , T 0i = 0 . (150)

The four-vector uα is normalized so that in any inertial frame has the form ηαβu
αuβ =

−1. Now since we have determined the form of the stress energy tensor in locally
inertial frame we have to proceed to the next step and find its form in the general
frame defined by the metric gµν . The straightforwad generalization leads to the
following form of the stress energy tensor for the perfect fluid in general background

T µν = pgµν + (p+ ρ)uµuν , uµuνgµν = −1 . (151)

It is important that p and ρ correspond to the pressure and the energy density in
a locally co-moving inertial coordinate frame. Since apparently they do not change
when we move from one frame to another they are scalars from the space-time
transformations as opposite to the four vector uµ that transforms as

u′µ(x′)
∂

∂x′µ
= uν(x)

∂

∂xν
⇒ u′µ(x′) = uν(x)

∂x′µ

∂xν
. (152)

The formula (151) is apparently correct since it is manifestly covariant and since it
reduces to (148) in local rest frame. Further, using the form of the stress energy
tensor (151) we can derive the equations of motion of relativistic hydrodynamics
for ideal fluid simply from the requirement of the conservation of the stress energy
tensor

∇µT
µν = 0 . (153)

It is also important to stress that there is another conservation law which expresses
the conservation of some quantity, as for example the number of baryons. In local
inertial frame such a conservation law has to have to form of the divergence of four
vector that for the density n has the form

∂

∂xα
(nuα) = 0 . (154)

The generalization to the general gravitation fields is straightforward when we re-
place ordinary partial derivative with covariant one

∇µ(nu
µ) = 0 . (155)

34



Now we can ask the question how the situation changes when the fluid is not perfect.
Generally this is very difficult problem as the full theory of dissipative relativistic
hydrodynamics is not known however we can gain some interesting physical results
as follows. Let us presume that the effect of dissipation is small so that we can
describe it by small corrections △Tαβ and △N to the stress energy tensor and
current in the locally inertial frame. Explicitly, we have

Tαβ
dis = pηαβ + (ρ+ p)uαuβ +△Tαβ ,

∂

∂xα
Tαβ
dis = 0 . (156)

In case of the current we have

∂

∂xα
Jα
dis =

∂

∂xα
(nuα +△Nα) = 0 . (157)

We define ρ as the scalar that corresponds to the energy density that is observed in
the co-moving frame where ui = 0. In this frame we have

T 00 = ρ+△T 00 (158)

and since T 00 corresponds to the energy density we imediately see that in this frame
△T 00 = 0. Clearly this relation can be written as

u0u0△T 00 = 0 (159)

since in the local rest frame ui = 0 , u0 = −1. Hence the covariant form of this
relation in any locally inertial Cartan frame is

uαuβ△Tαβ = 0 . (160)

In case of the scalar n, we define it as the value of some conserved density which
is observed in co-moving frame. In this frame we again find △N0 = 0 that using
the same arguments as above implies that in all locally inertial Cartesian frames we
have

uα△Nα = 0 . (161)

On the other hand there is a freedom in the definition of the four-velocity uα. The
first possibility is to say that ui is the velocity of the particle transport, so that in
the comoving frame where ui = 0 we would have △N i = 0 together with △N0 = 0.
However this result implies that in general local inertial Cartesian frame we have
△Nα = 0. This option is known as Eckart gauge. The second possibility is to define
ui as the velocity of the energy transport so that in the comoving frame we have
T i0 = △T i0 = 0 that implies

uβ△T βα = △Tα0 = 0 (162)

which implies that in all local Cartesian inertial frames we have the condition

uβ△T βα = 0 (163)
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but generally △Nα ̸= 0. Note that this definition of the velocity is convenient
in the cosmology since it imposes the maximum possible constraint on the energy-
momentum while it puts less constraints on the current of conserved quantities since
in cosmology we have situations where there are either no non-zero conserved quan-
tities at all. Such an example is the early Universe before cosmological leptongenesis
or baryongenesis. Or there is the second possibility where there are conserved quan-
tities with small values so that they cannot affect the relation between pressure and
density, as in radiation-dominanted era at temperatures above about 104K. Now
with this definition of the velocity we can determine the corrections terms △Tαβ

and △Nα using the second law of thermodynamics. We are not going into details
of this procedure.

3.1.1 Action Principle and Stress Energy Tensor

In previous section we derived stress energy tensor for the ideal fluid using rea-
sonable physical arguments. On the other hand we should be able to define stress
energy tensor for any physical system. The fundamental physical principle says
that we should be able to introduce an action for all physical systems and that the
equations of motion that govern the evolutions of these systems are determined by
extremization of this action. Clearly this situation holds in case of general relativity
as well where the stress energy tensor appears on the right side of Einstein equations
and that determines the matter content in the Universe. In other words the stress
energy tensor is related to the infinitesimal change δgµν 3 in the metric in the matter
part of the action Sm. Explicitly we have

δSm = −
∫
d4x

√
−gTµνδgµν , (164)

Since δgµν is symmetric we immediately see from the expression above that T µν is
symmetric as well and we identify this tensor with the stress energy tensor.

3.2 Gravitational Field Equations

As we know in General Relativity (GR) the metric tensor is dynamical field and the
equations of GR arise as extremum conditions for the action functional. The princip
equivalence means that all equations has to have the same form in all reference
frames. In other words we require that the action function has to be same in all
reference frames which means that the action is scalar. Since the action is given as
the integral over time of the Lagrangian we find also that the Lagrangian has to be
given as the integral over space section of the spacetime. In summary we postulate
thath the gravity action has the form

Sgr =

∫
d4x

√
−gLgr , (165)

3It is slightly easier to use the variation δgµν instead of δgµν even if it is clear that these two
variations are related due to the fact that gµνg

νρ = δρµ and hence δgµνg
νρ + gµνδg

νρ = 0 which
implies δgµν = −gµρδgρσg

σν .
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where the Lagrangian density Lgr(x) transforms as under coordinate transforma-
tions x′µ = xµ(x)

L′(x′) = L(x) (166)

and due to the fact that d4x′
√

−g′(x′) = d4x
√
−g(x) we really see that Sgr does

not change under diffeomorphism transformations.

The simplest possibility is to take the Lagrangian density to be equal to constant
L = −Λ so that

SΛ = −Λ

∫
d4x

√
−g . (167)

However this action does not contain the time derivatives of the metric and hence
the dynamics that would follow from this action is trivial. For that reason we should
search more complicated form of the Lagrangian density.

The Lagrange density is a tensor density, which can be written as
√
−g times a

scalar that is function of the metric and its derivatives. The question is the form
of given scalar. Since we know that the metric can be set equal to its canonical
form and its first derivatives set to zero at any one point, any nontrivial scalar
must involve at least second derivatives of the metric. The Riemann tensor is of
course made from second derivatives of the metric, and we argued earlier that the
only independent scalar we could construct from the Riemann tensor was the Ricci
scalar R. What we did not show, but is nevertheless true, is that any nontrivial
tensor made from the metric and its first and second derivatives can be expressed in
terms of the metric and the Riemann tensor. Therefore, the only independent scalar
constructed from the metric, which is no higher than second order in its derivatives,
is the Ricci scalar. Hilbert figured that this was therefore the simplest possible
choice for a Lagrangian, and proposed

LH =
√
−gR . (168)

The equations of motion should come from varying the action with respect to the
metric. In fact let us consider variations with respect to the inverse metric gµν ,
which are slightly easier but give an equivalent set of equations. Using R = gµνRµν ,
in general we will have

δS =

∫
dnx

[√
−ggµνδRµν +

√
−gRµνδg

µν +Rδ
√
−g
]
=

= (δS)1 + (δS)2 + (δS)3 . (169)

The second term (δS)2 is already in the form of some expression times δgµν ; let’s
examine the others more closely.

Recall that the Ricci tensor is the contraction of the Riemann tensor, which is
given by

Rρ
µλν = p(λ)Γ

λ
νµ + Γρ

λσΓ
σ
νµ − (λ↔ ν) . (170)

We perform the variation of the Riemann tensor in such a way that we firstly perform
variation of the connection coefficients and then we substitute into this expression.
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In fact, after some calculations we find the variation of the Riemann tensor in the
form

δRρ
µλν = ∇λ(δΓ

ρ
νµ)−∇ν(δΓ

ρ
λµ) . (171)

Therefore, the contribution of the first term in (169) to δS can be written

(δS)1 =

∫
d4x

√
−g gµν

[
∇λ(δΓ

λ
νµ)−∇ν(δΓ

λ
λµ)
]

=

∫
d4x

√
−g ∇σ

[
gµσ(δΓλ

λµ)− gµν(δΓσ
µν)
]
, (172)

where we have used metric compatibility. However the integral above is an integral
with respect to the natural volume element of the covariant divergence of a vector;
by Stokes’s theorem, this is equal to a boundary contribution at infinity which we
can set to zero by making the variation vanish at infinity. Therefore this term does
not contribute to the total variation.

In order to calculate the (δS)3 term we have to use the variation

δ(g−1) =
1

g
gµνδg

µν . (173)

and consequently

δ
√
−g = −1

2

√
−ggµνδgµν . (174)

If we now return back to (169), and remembering that (δS)1 does not contribute,
we find

δS =

∫
d4x

√
−g

[
Rµν −

1

2
Rgµν

]
δgµν . (175)

However this should vanish for arbitrary variations and consequently we derive Ein-
stein’s equations in vacuum:

1√
−g

δS

δgµν
= Rµν −

1

2
Rgµν = 0 . (176)

However we would like to get the non-vacuum field equations as well. In other words
we consider an action of the form

S =
1

8πG
SH + Sm , (177)

where Sm is the action for matter, and we have presciently normalized the gravita-
tional action (although the proper normalization is somewhat convention-dependent).
Following through the same procedure as above leads to

1√
−g

δS

δgµν
=

1

8πG

(
Rµν −

1

2
Rgµν

)
+

1√
−g

δSm

δgµν
= 0 , (178)

and we recover Einstein’s equations if we set

Tµν = − 1√
−g

δSm

δgµν
. (179)
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In fact (179) turns out to be the best way to define a symmetric energy-momentum
tensor.

Einstein’s equations may be thought of as second-order differential equations
for the metric tensor field gµν . There are ten independent equations (since both
sides are symmetric two-index tensors), which seems to be exactly right for the
ten unknown functions of the metric components. However, the Bianchi identity
∇µGµν = 0 which we prove below represents four constraints on the functions Rµν ,
so there are only six truly independent equations. In fact this is appropriate, since
if a metric is a solution to Einstein’s equation in one coordinate system xµ it should
also be a solution in any other coordinate system xµ

′
. This means that there are

four unphysical degrees of freedom in gµν (represented by the four functions xµ
′
(xµ)),

and we should expect that Einstein’s equations only constrain the six coordinate-
independent degrees of freedom.

It is important to stress that as differential equations, these are extremely compli-
cated; the Ricci scalar and tensor are contractions of the Riemann tensor, which in-
volves derivatives and products of the Christoffel symbols, which in turn involve the
inverse metric and derivatives of the metric. Furthermore, the energy-momentum
tensor Tµν will generally involve the metric as well. The equations are also nonlinear,
that implies that two known solutions cannot be superposed to find a third. It is
therefore very difficult to solve Einstein’s equations in any sort of generality. Then
in order to solve them we have to perform some simplifying assumptions. The most
popular sort of simplifying assumption is that the metric has a significant degree of
symmetry, and we will talk later on about how symmetries of the metric make life
easier.

An important property of the energy momentum tensor is that it is conserved.
In the flat background the conservation equation takes the form

∂µT
µν = 0 , (180)

where the first equation ∂µT
µi = 0 expresses the conservation of the energy den-

sity while the remaining three equations ∂µT
µi = 0 defines the conservation of the

momentum density. In general relativity the conservation equation takes the form

∇µT
µν = 0 . (181)

This equation can be proved using the equation of motion for the metric when we
apply the covariant derivative on both sides of this equation

∇µ

(
Rµν −

1

2
gµνR

)
= 8πG∇µTµν . (182)

We show that the left side of this equation is identically zero. Note that generally
the matter fields do not have to be on shell since this equation follows from the
variation of the action with respect to the metric. To see this we recall the Bianchi
identity for the Riemann tensor

∇ρR
λ
σµν +∇νR

λ
σρµ +∇µR

λ
σνρ = 0 . (183)
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Now we contract λ and µ indices and by definition Rµ
σµν = Rσν we obtain the

identity
∇ρRσν −∇νRρσ +∇λR

λ
σνρ = 0 . (184)

Then we contract this equation with gρσ and we obtain

0 = ∇ρR
ρ
ν −∇νR +∇λRλν = 2∇µ(Rµν −

1

2
gµνR) = 0 . (185)

which implies that the covariant conservation law of the stress energy-tensor is a
necessary condition for the consistency of the Einstein equation.

On the other hand the stress energy tensor is determined by the matter action.
Clearly when we search the extremum of the action we perform the variation of the
action with respect to the matter fields so that the energy momentum tensor should
be conserved as the consequence of the matter equations of motions as well. Alter-
natively, we can presume the evolution of the matter fields on the fixed background
and in this case the energy-momentum tensor should be conserved as well.

To proceed note that the matter action is diffeomorphism invariant so that the
conservation of the energy momentum tensor should follow from the invariance of the
action under general diffeomorphism transformation. In fact, under transformation

x′µ = xµ + ξµ . (186)

Then

g′µν(x′) = gρσ
∂x′µ

∂xρ
∂x′ν

∂xσ
⇒

g′µν(x′) = gµν(x) + gνλ(x)∂λξ
µ + ∂λx

µgλν(x)

(187)

If we expand

g′µν(x′) = g′µν(x+ ξ) = g′µν(x) + ∂λg
′µνξλ = g′µν(x) + ∂λg

µνξλ (188)

we find the variation gµν as

δgµν(x) = g′µν(x)− gµν(x) = −∂λgµν(x)ξλ + gµλ∂λξ
ν + ∂λξ

µgλν . (189)

Now we proceed to the transformation property of the matter fields. Their form
depends on the character of these fields, whether they are scalars, vectors,..... For
example, in case of the scalar field we find

ϕ′(x′) = ϕ(x) ⇒ ϕ′(x)− ϕ(x) = −∂λϕξλ (190)

Since the action is invariant under the diffeomorphism invariance we obtain

δξSm =
1

2

∫
d4x

√
−gTµν(∇µξν +∇νξµ) +

∫
d4x

√
−g δLm

δψ
δψξ = 0 , (191)
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where we also used the fact that the variation of the metric can be written as

g′µν − gµν = ∇µξν +∇νξµ (192)

Note that the equation (191) has to be zero of shell. Let us now presume that
the matter field equations are satisfied which implies that the second term in (191)
vanishes. Then using integration by parts we can rewrite (191) into the form

δξSm(on shell) = −
∫
d4x

√
−gξµ∇µTµν = 0 (193)

that using the fact that ξµ is arbitrary implies the conservation of the stress energy
tensor.

We continue with the study of the Einstein equations where we now discuss the
possibility of the introduction of a cosmological constant. In order to introduce it
we add it to the conventional Hilbert action. We therefore consider an action given
by

S =

∫
d4x

√
−g(R− 2Λ) , (194)

where Λ is some constant. The resulting field equations are

Rµν −
1

2
Rgµν + Λgµν = 0 , (195)

and of course there would be an energy-momentum tensor on the right hand side if
we had included an action for matter. Λ is the cosmological constant. In order to
find its meaning it is convenient to move the additional term in (195) to the right
hand side, and think of it as a kind of energy-momentum tensor, with Tµν = −Λgµν
(it is automatically conserved by metric compatibility). Then Λ can be interpreted
as the “energy density of the vacuum,” a source of energy and momentum that is
present even in the absence of matter fields. This interpretation is important because
quantum field theory predicts that the vacuum should have some sort of energy and
momentum. In ordinary quantum mechanics, an harmonic oscillator with frequency
ω and minimum classical energy E0 = 0 upon quantization has a ground state
with energy E0 = 1

2
ℏω. A quantized field can be thought of as a collection of an

infinite number of harmonic oscillators, and each mode contributes to the ground
state energy. The result is of course infinite, and must be appropriately regularized,
for example by introducing a cutoff at high frequencies. The final vacuum energy,
which is the regularized sum of the energies of the ground state oscillations of all
the fields of the theory, has no good reason to be zero and in fact would be expected
to have a natural scale

Λ ∼ m4
P , (196)

where the Planck mass mP is approximately 1019 GeV, or 10−5 grams. Observations
of the universe on large scales allow us to constrain the actual value of Λ, which turns
out to be smaller than (196) by at least a factor of 10120. This is the largest known
discrepancy between theoretical estimate and observational constraint in physics,
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and convinces many people that the “cosmological constant problem” is one of the
most important unsolved problems today. On the other hand the observations do
not tell us that Λ is strictly zero, and in fact allow values that can have important
consequences for the evolution of the universe.

Now it is time to give a concrete example of the stress energy tensor. Very
natural situation occurs when we have a gas of particles with massess mn, charges
en and trajectories xµn(λ) that interact with electromagnetic field Aµ. This system
also propagates on the manifold with the metric gµν . Then principles of equivalence
implies that the action of the matter part of the action has the form

Im = −1

4

∫
d4x
√

− det gFµνFρσg
µρgνσ −

−
∑
n

mn

∫
dλn

√
−gµν(xn(λ))

dxµn(λ)

dλ

dxνn(λn)

dλn
+

+
∑
n

en

∫
dλ
dxµn(λ)

dλ
Aµ(x

n(λ)) .

(197)

where Fµν = ∂µAν −∂νAµ. Note that the n− th particle couples to the electric field
evaluated at her position xµn. Finally note that λn is the parameter that labels the
world-line of n− th particle. Now the variation of the action with respect to xµn(λn)
gives

mn
1

2
√

−gµν(xn(λn))dx
µ
n(λn)
dλn

dxν
n(λn)
dλn

∂µgρσ(xn)
dxρn
dλn

dxσn
dλn

−

−mn
d

λn

 1√
−gµν(xn(λn))dx

µ
n(λn)
dλn

dxν
n(λn)
dλn

gµν(xn)
dxνn
dλn

+ enFµν(xn(λn))
dxνn
dλn

= 0

(198)

As the next step we explicitly perform the derivative with respect to λn at the first
expression on the second line and after some steps we obtain

− mn√
−gµν(xn(λn))dx

µ
n(λn)
dλn

dxν
n(λn)
dλn

1

2
[∂ρgµν + ∂νgµρ − ∂µgρν ]

dxρn
dλ

dxνn
dλ

−

−mn
1√

−gµν(xn(λn))dx
µ
n(λ)
dλn

dxν
n(λ)
dλn

gµν(xn)
dxνn
dλn

−

−mn
d

dλ
[

1√
−gµν(xn(λ))dx

µ
n(λ)
dλ

dxν
n(λ)
dλn

] + enFµν(xn)
dxνn
dλn

= 0

(199)
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Now we multiply this equation with gωµ and perform relabeling indices. Further,
there is still square root factor. On the other hand we know that proper time of
n− th particle is defined as

dτ 2n = −gµν(xn)dxνndxνn (200)

that implies

dτn
dλn

=

√
−gµν(xn(λn))

dxµn

dλn

dxνn
dλn

(201)

Due to the world-line reparameterization invariance we can choose the parameter
λn in such a way that dτn

dλn
= 0. Then we have

dxµn
dλn

=
dxµn
dτn

dτn
dλn

(202)

and the equation of motion above takes final form

mn

[
dxµn
dτn

+ Γµ
νρ(xn)

dxν

dτn

dxρ

dτn

]
= eng

µνFνσ
dxνn
dτn

. (203)

With the help of the action we can determine stress energy tensor for the elec-
tromagnetic field and for the collections of particles. Since Tµν = − 1√

−g
δSm

δgµν we

obtain (using also the fact that δ
√
−g = −1

2

√
−ggµνδgµν) for the action in the form

S = −
∫
d4x

√
−gL

Tµν = −1

2
gµνL+ fracδLδgµν . (204)

In case of the electromagnetic field we find

T e.f.
µν = −1

8
gµνFρσFγδg

ργgσδ +
1

2
FµσFνρg

σρ . (205)

Observe that this stress energy tensor obeys the condition

gνµT e.f.
µν = −1

8
gµνgνµFρσFγδg

ργgσδ +
1

2
Fµνg

µρgνσFρσ = 0 . (206)

In other words the stress energy tensor of the electromagnetic field is traceless. In
case of the collection of particles we write the relevant part of the action as

−
∑
n

mn

∫
dλn

√
−gµν(xn(λ))

dxµn(λ)

dλ

dxνn(λn)

dλn
=

= −
∑
n

mn

∫
d4x

∫
dλn

√
−gµν(x))

dxµn(λ)

dλ

dxνn(λn)

dλn
δ4(x− xn)

(207)
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so that we obtain

T µν = − 1√
− det g

δIm
δgµν

=

=
1√

− det g

∑
n

mn

∫
dλn

1√
−gµν(x))dx

µ
n(λ)
dλn

dxν
n(λn)
dλn

dxµn
dλn

dxνn
dλn

δ4(x− xn) .

(208)

3.3 Currents in Cosmology

Due to the principles of homogeneity and isotropy we require that the mean value
of any three vector has to vanish while homogeneity requires that the mean value of
any three scalar is function of time only. In other words we require that the current
of galaxies, or baryons has components

J i = 0 , J0 = n(t) . (209)

Since this current is conserved it obeys the equation

∇µJ
µ = ∂µJ

µ + Γµ
µνJ

ν ==
dn

dt
+ Γi

i0n =
dn

dt
+ 3

da

dt

n

a
= 0 . (210)

since the non-zero components of the Chritoffel symbols are

Γi
j0 =

ȧ

a
δij ,Γ

0
ij = aȧγij ,Γ

i
jk =

(3)Γi
jk . (211)

so that Γµ
µ0 = Γi

i0 = 3 ȧ
a
. From (210) we obtain following time dependence of the

scalar density
dn

n
= −3

da

a
(212)

that can be easily integrated with the result

n =
n0a

3
0

a3
, (213)

where n0 is density at the value of the scale factor a0.

Let us now consider the case of the stress energy tensor. The principle of spatial
isotropy means that the mean value of any three vector tij at x = 0 to be propor-
tional to δij which however means that it is proportional to gij that is equal to

1
a2
δij

at x = 0. Further, homogeneity requires that this tensor cannot depend on spatial
coordinates and the only dependence is on time t. Further, since this proportion-
ality is the relation between two spatial tensors clearly it is preserved under any
transformations of space coordinates that include also transformations that trans-
form the origin into any other point. In other words the principles of homogeneity
and isotropy requires that the stress energy tensor has the form

T 00 = ρ(t) , T 0i = 0 , T ij =
1

a2(t)
γij(x)p(t) . (214)
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Let us now analyze the conservation equation ∇νT
νµ = 0 for this stress energy

tensor. First of all we have

∇νT
ρµ = ∂νT

ρµ + Γρ
νλT

λµ + Γµ
νλT

ρλ = 0 (215)

that implies
∇νT

νµ = ∂νT
νµ + Γν

νλT
λµ + Γµ

νλT
νλ = 0 (216)

Let us start with the case µ = i. Then the conservation equation has the form

∂0T
0i + ∂jT

ji + Γµ
µjT

ji + Γi
jkT

jk = ∂jT
ji + (3)Γk

kjT
ji + (3)Γi

jkT
jk =

=
p(t)

a2(t)
(∂jγ

ji + (3)Γk
kjγ

ji + (3)Γi
jkγ

jk) = 0

(217)

using the fact that non-zero components of affine connection in FRW metric have
the form

Γi
j0 =

ȧ

a
δij , Γ0

ij = aȧγij ,Γ
i
jk =

(3)Γi
jk . (218)

and using the fact that the expression in the bracket is the covariant derivative
compatible with the metric γij so that it is equal to zero. Let us now consider more
interesting case when µ = 0 so that we have

∇νT
ν0 = ∂0T

00 + Γν
0λT

λ0 + Γ0
νλT

νλ =

= ∂0T
00 + Γi

i0T
00 + Γ0

ijT
ij = ∂0ρ+ 3

ȧ

a
ρ+

ȧ

a
γijγ

jip =

= ∂0ρ+ 3
ȧ

a
(ρ+ p) = 0

(219)

In other words we obtain famous equation

∂0ρ+ 3
ȧ

a
(ρ+ p) = 0 (220)

This equation can be easily integrated when we know an state equation that ex-
presses pressure as function of energy density p = p(ρ) so that we obtain differential
equation

dρ

ρ+ p(ρ)
+ 3

da

a
= 0 (221)

that can be integrated, at least in principle. The most simplest examples however
correspond the situation where we have linear dependence of pressure on energy
density

p = wρ , (222)

where w is time-independent. In this case the equation (221) implies

ρ = ρ0
a
3(1+w)
0

a3(1 + w)
, (223)

45



where ρ0 is energy density at the time t0 when the scale factor is equal to t0.

In fact, this symple relation can be applied for the most important cases in
modern cosmology:

• Cold Matter

Cold matter corresponds non-relativistic matter when we can neglect its pres-
sure p = 0. In this case we have w = 0 and hence

ρ = ρ0
a30
a3

.

• Hot Matter This is the case of relativistic matter when we can neglect the
rest mass. In this case we have

p =
ρ

3
, w =

1

3

and hence

ρ = ρ0
a40
a4

.

• Vacuum Energy This is the sort of matter where the stress energy tensor
is proportional to gµν and hence p = −ρ. In this case we have w = −1
and hence the energy density is constant known as cosmological constant or
vacuum energy.

It is important to stress one subtle point. The conservation of the stress energy
tensor holds for the whole system including all components, as for example radiation,
matter and cosmological constaint. On the other hand we derived the time evolution
of corresponding components with the help of the presumption that each component
is conserved separately. In other words we implicitely introduced presumption that
there is no interchange of energy between the different components.

There is another important point that we have to discuss in more details. It
is clear from previous analysis that all equations and their solutions describe local
properties of space-time. On the other hand it is certainly very instructive to know
more informations about global properties of space-time. For K = +1 space is finite
since it is spherical surface which does not have a boundary.

The situation is different in case K = 0 or K = −1. Common practise is to
consider these spaces as infinite but there is a possibility to have finite spaces with
the same local geometry. We can find very nice example in two dimensional geometry
when we consider torus which is topologically the space S1 × S1. This is the space
with flat metric but which is finite with non-trivial topology. The simipar situation
can occur in case of the space K = 0 as well when we could identify the points x and
x+ n1L1 + n2L2 + n3L3, where n1, n2, n3 are integers and L1,L2,L3 are fixed three
vectors. Then the space is finite with volume a3L1 · (L2×L3). However such a finite
space proposal should have a consequence on the pattern of distribution of matter
and radiation where we should see some periodicity. On the other hand the fact
that there is no sign of periodicity in our observation implies that any periodicity
lengths as |Li| have to be larger than 1010 light years.
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3.4 The cosmological redshift

The analysis presented above is certainly valid for any derivative ȧ which, of course,
it is crucial to determine which is the physical one. In other words, we have to
determine whether Universe is expanding, contracting or whether it does not change
at all (ȧ = 0). The way how we extract this information follows from the spectral
lines that come to us from distant galaxies when we compare shift in frequencies
with frequencies that we measure at terrestrial laboratories.

In order to calculate shift in frequencies let us presume (without lost of gen-
erality) that we are in the center of FRW coordinate system and consider a light
ray that comes to us along radial direction. Since the light ray obeys the equation
dτ 2 = 0 we obtain from the invariance of the line element following equation

0 = −dt2 + a2
1

1−Kr2
dr2 (224)

that implies differential equation

dt

a(t)
= ± dr√

1−Kr2
(225)

This equation determines the propagation of the photon in expanding Universe. On
the other hand we are mainly interested in the shift of the frequencies of the light.
To see the origin of this phenomena let us consider an action of free electromagnetic
field

S = −1

4

∫
d4x

√
−ggµρgνσFµνFνσ , Fµν = ∇µAν −∇νAµ = ∂µAν − ∂νAµ . (226)

Consider now the propagation of a photon in the homogeneous isotropic Universe.
Since the photon wavelength is small compared to the spatial curvature radius even
if the Universe is open or closed. Then we can consider the metric that is spatially
flat with the metric

ds2 = −dt2 + a2(t)δijdx
idxj . (227)

Let us introduce conformal time η instead of t that is defined as

dt = adη (228)

or equivalently

η =

∫
dt

a(t)
. (229)

This result can be generally integrated so that we have η = η(t) and we presume
that this relation can be inverted so that t = t(η) and consequently a = a(η). Now
the metric has the form

ds2 = a2(η)[−dη2 + δijdx
idxj] (230)
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and we see that the metric element in FRW spacetime is conformally flat in the
sense that

gµν = a2(η)ηµν , (231)

where the Minkowski metric is spanned by coordinates (η, xi). Then we clearly have

gµν = a−2ηµν ,
√
g = a4 (232)

and we find that in η, xi coordinates the action of the electromagnetic field has the
form

S = −1

4

∫
d4xηµρηνσFµρFνσ . (233)

Now it is clear that the solution of the equation of motion for the free electromagnetic
field in the Universe is given as the superposition of the plane waves

A(α)
µ = e(α)µ eikη−ikx , (234)

where k is constant vector, |k| = k and e
(α)
µ is the standard polarization vector of

photons with α = 1, 2. Note that k is not the physical frequency as follows from
following arguments. The quantity △x = 2π

k
is the coordinate wavelength of a

photon while the physical wavelength at time t is

λ(t) = a(t)△x = 2π
a(t)

k
. (235)

In the same way we define period △η = 2π
k

of electromagnetic wave in conformal
time while the period of the physical time is

T = a(t)△η = 2π
a(t)

k
. (236)

Then we see that the frequency is equal to

ω(t) =
2π

T
=

k

a(t)
(237)

and since we know that the frequency is equal to the magnitude of the physical
momentum of photon we obtain

p =
k

a(t)
. (238)

This relation implies that the physical momentum either decreases or increases with
dependence on the fact whether Universe is expanding or contracting. We see that
in the expanding universe the scale factor a(t) is growing and hence the physical
wavelength grows. On the other hand the physical momentum is decreasing function
of time. The phenomena when the wavelength is growing during the expansion of
the Universe is named as the redshift. Explicitly, if the photon was emitted at
time ti with physical wave length λi in the physical process as for example when the
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electron in the excited state in the atom drops to the ground state which is certainly
physical process. Now we know that the state propagates freely as in (387) and then
it is again detected in time t0 where t0 we means the present time in the reversed
physical process when its physical wave length now is

λ(t0) = a(t0)
2π

k
(239)

Now expressing 2π
k

using the physical wave length at time of emission we find the
famous relation

λ(t0) =
a(t0)

a(ti)
λi ≡ λi(1 + z(ti)) . (240)

The quantity

z(ti) =
a(t0)

a(ti)
− 1 (241)

is called redshift. The earlier the object emits the photon then this photon has to
travel longer and consequently a(ti) is smaller and hence object at larger distances
have the larger redshifts.

Note that these formulas are valid in general for all z. Let us now consider
objects that are not in large distance. Then the difference t − t0 is not very large
and we can expand

a(ti) = a(t0)− ȧ(t0)(t0 − ti) (242)

Using the present value of the Hubble parameter H0 =
ȧ(t0)
a(t0)

≡ ȧ0
a0

we can write

a(ti) = a0[1−H0(t0 − ti)] (243)

so that to the linear order we find following expression for the redshift

z(ti) =
1

1−H0(t0 − ti)
− 1 ≃ H0(t0 − ti) . (244)

Finally the travel time is equal to

0 = −dt2 + a(t)2dr2 = −dt2 + (a0 − ȧ0(t0 − t))2dr2 ≈
−dt2 + a20dr

2 ⇒ (t0 − t) = a0(ri − r0) ≡ R

(245)

where R is the physical distance of the object from the our observer. Inserting this
expression into (397) we derive famous Hubble law

z = H0R , z ≪ 1 . (246)

The redshift of light from other galaxies was firstly observed in the 1910’s by
Vesto Melvin Slipher at the Lowell Observatory in Flagstaff, Arizona. From 1918
to 1925 C. Wirtz and K. Lundmark discovered a number of spiral nebulae with
redshifht that seem to increase with distance. On the other hand these earler date
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do not have have clear linear relation between redshift and distance. The origin
of this fact is the problem that has not been solved until present which is the fact
that real galaxies generally do not move only with general expansion of unverse but
they typically have additional velocities of nudreds of kilometers per second that is
caused by gravitational fields of near galaxies. Then in order to see linear relation
between redshift and distance we have to analyze galaxies with |z| ≫ 10−3. For
these galaxies their cosmological velocities are thousends of kilometers per second
and hence their additional velocities can be neglected.

In 1929 Hubble published his result that he had found almost linear relation
between redshift and distance. The problem was that at that time redshifts and
distances had been measured only for galaxies in the constallation Virgo. In this
case the redshift was about 1000km/sec which is not much larger than typical
peculiar velocities. For that reason these dates did not really support a linear
relation. However by the early 1930′s he measured redshifts and distances out to
the Coma cluster with redshift z ∼ 0.02 that corresponds to a velocity of about
7000km/sec where now linear relation between redshift and distance was clear with
the main conclusion that the universe really is expanding.

The research of the redshift of galaxies has continued until today and we observe
galaxies with even larger redshift where however we have to take into account rel-
ativistic effects and hence the linear dependence is not fully valid. Currently, the
object with the highest known redshifts are galaxies that produce gamma ray burst.
The highest confirmed spectroscopic redshift of a galaxy is that of GN − z11 galaxy
in constallation Ursa Major (Great Bear) with a redshft z = 11.1 corresponding
to 400 millions years after the Big Bang. The cosmic microwave background has a
redshifht of z = 1089 corresponding to 379000 years after the Big Bang.We are also
still waiting for the observation of the light from the oldest Population III stars,
which are stars formed not long after fist atoms were formed, may have a redshift
20 < z < 100.

3.5 Distances at small redshift

We met the notion of distance in previous section. Even if this notion can be
intuitively clear from everyday life we should be more careful when we work in
cosmology. To see this let us start with simpler case when we consider objects
that are relatively close with z < 0.1. In this case we can neglect the effects of
the space-time curvature and we can also neglect an effect of cosmic expansion
on the determinations of distances. These measurements are also very important
since they allow us to determine the value of the Hubble constant H0. Further,
distance measurements at larger redshifts that determine the shape of the curve
a(t) , depend on the observations of standard candles, which are objects of known
intrinsic luminosity that has to be identified and calibrated at these small redshifts.

Today it is convenient to separate the objects that we use for the determination of
distances in cosmology into two categories known as primary and secondary distance
indicators. The absolute luminosities of the primary distance indicators in our local
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group of galaxies are mainly measured directly with the help of kinematic methods
that do not depend on a priori knowledge of absolute luminosities. The problem
with these primary distance indicators is that they are not bright enought so that
it cannot be studied at distances where z ≥ 0.01. At these distances cosmological
velocities cz are larger than typical random velocities of galaxies. For that reason
primary indicators cannot be used directly for the analysis of function a(t). For
that reason we have to use secondary distance indicators that are bright enough to
be studied at these large distances and whose absolute velocities are known when
we associate the closer ones with primary distance indicators.

Primary distance indicators We are not going into details of the description
of the primary distance indicators and we restrict ourselves to their list. These
indicators are

• Trigonometric parallax

• Proper motions

• Apparent luminosity The measurement of the apparent luminosity is the most
common method of determining distances in cosmology. It is based on the
measurement of apparent luminosity of objects where we know or suppose
that we know they absolute luminosity.

3.6 Brief Review of General Relativity

1. The Equivalence Principle

3.7 Local Flatness

For a given point P in spacetime it is always possible to find a coordinate system
x′α such that

gα′β′(P ) = ηα′β′ ,Γα′

β′γ′(P ) = 0 . (247)

where ηα′β′ = diag(−1, 1, 1, 1). SUch a coordinate system are called local Lorentz
frame at P . It is important that it is not possible to have the derivatives of the
connection to zero when the space-time is curved. The physical meaning of the local
flatness is that free faling observes see no effect of gravity in his immediate vicinity.

Proof of the theorem Let xα is an arbitrary coordinate system and we presume
that P is at the origin of both coordinate systems. Then the coordinates of the point
near P are related by

xα
′
= Aα′

βx
β +O(x2) , xα = Aα

β′xβ
′
+O(x′2) , (248)

where Aα′
α, A

α
β′ are constant matrices. Using these two expression we find

xα
′
= xβ

′
δα

′

β′ = Aα′

γ A
γ
β′x

β′ ⇒ δα
′

β′ = Aα′

γ A
γ
β′ (249)
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so that these two matrices are inverse. Note that the metric components in the
coordinate system xα

′
are gα′β′ so that

gα′β′dxα
′
dxβ

′
= gαβdx

αdxβ ⇒ gα′β′ = gαβ
dxα

dxα′

dxβ

dxβ′ = gαβA
α
α′A

β
β′ (250)

Now we demand that the left-hand side is equal to ηα′β′ . The question: what
happens when we demand that the left side is equal to Rindler Space-
time. This gives 10 equations for 16 unknown components of the matrix Aα

β′ .
Solutions can be found with 6 undetermined components. This corresponds to the
freedom of performing a Lorentz transformation (3 rotation parameters and 3 boost
parameters) that leave the Minkowski metric invariant.

Let us presume that we choice the particular form of Aα
α′ . Then we also know

Aα′
α by inverting the matrix and the coordinate transformation is known to the first

order. Then we can proceed to the second order as

xα
′
= Aα′

βx
β +

1

2
Bα′

βγx
βxγ (251)

Now we can study the transformation properties of the connections

Γα′

β′γ′ = Aα′

αA
β
β′A

γ
γ′Γ

α
βγ(P )−Bα′

βγA
β
β′A

γ
γ′ (252)

If we demand that left side is equal to zero we find the equation

Bα′

βγ = Aα′

αΓ
α
βγ (253)

These equations determine B uniquely.

3.7.1 Geodesic deviation

Consider two geodeics γ0, γ0 each described by relations xα(t) where t is an affine
parameter. Let us develop the notion of deviation vector. To do shis we introduce
family of geodesics xα(s, t), where s ∈ [0, 1] where s = 0 corresponds to γ0 and
s = 1 corresponds to γ1. Note that the affine parameter along the specific geodesic
is t. The vector field is uα = ∂xα

∂t
that is tangent to the geodesics and it satisfies the

geodesic equation
∇βu

αuβ = 0 . (254)

Keeping t fixed and vary s instead we obtain family of curves that are generally not
geodesics. We denote these curves as

ζα =
∂xα

∂s
(255)

and its restriction to this vector γ0 is ζα(s = 0) and its gives a clear notion of
deviation from γ0 to γ1. We would like to derive an expression for its acceleration
along geodesics

D2ζα

dt2
=

d

dt
(∇βζ

αuβ) = ∇γ(∇βζ
αuβ)uγ (256)
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where these quantities are evaluated at γ0. In flat space-time geodesics are straight.
Now we show an important relations

Luζ
α = Lζu

α = 0 ⇒ ∇βζ
αuβ = ∇βu

αζβ (257)

as follows from the fact that uα = ∂xα

∂t
, ζα = ∂xα

∂s
and ∂su

α = ∂2xα

∂s∂t
= ∂tζ

α. Then

d

dt
(ζαuα) = ∇β(ζ

αuα)u
β =

= ∇βζ
αuβuα + ζα∇βuαu

β =

= ∇βu
αζβuα =

1

2
∇β(u

αuα)ζ
β = 0

(258)

due to the fact that uαuα is constant. Then we can choose the parameterization of
the geodesic where ζα is everywhere orthogonal to uα

ζαuα = 0 . (259)

This equation implies that curves t = const cross γ0 orthogonally. Let us now
calculate the relative acceleration of γ1 with respect to γ0

D2ζα

dt2
= ∇γ(∇βζ

αuβ)uγ =

= ∇γ(∇βu
αζβ)uγ =

= ∇γ∇βu
αζβuγ +∇βu

α∇γζ
βuγ =

= (∇β∇γu
α −Rα

µβγu
µ)ζβuγ +∇βu

α∇γu
βζγ =

= ∇β(∇γu
αuγ)ζβ −∇γu

α∇βu
γζβ −Rα

µβγu
µζβuγ +∇βu

α∇γu
βζγ =

= −Rα
βγδu

βζγuδ .

(260)

which is geodesic deviation equations. It shows that curvature produces a relative
acceleration between two neighbouring geodesic.

3.7.2 Fermi normal coordinates

This is related to the problem of the local fletness when we extend given theorem
from single point P to an entire geodesic γ. Let us presume that the geodesic is
time-like.

We show that we can introduce coordinates xα = (t, xa) such that near γ the
metric can be expressed as

gtt = −1−Rtatb(t)x
axb +O(x3) ,

gta = −2

3
Rtbac(t)x

bxc +O(x3) ,

gab = δab −
1

3
Racbd(t)x

cxd +O(x3) .

(261)
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These coordinates are known as Fermi normal coordinates and t is proper time along
the geodesic γ on which all spatial coordinates xa are all zero. In previous expression
the components of the Riemann tensor are evaluated on γ and they depend on t
only. We see from the previous expression that gαβ|γ = gαβ(x = 0) = ηαβ along
geodesic. We also see that the first derivative of g evaluated at γ are zero so that we
also obtain Γµ

αβ = 0 on γ. In other words we have local flatness theorem everywhere
on the geodesic.

Let us give the proof. Let xα = (t, xa) are the Fermi normal coordinates and xα
′

are arbitrary coordinate system. Let us imagine that we have a space-time with a
metric gα′β′ in these coordinates. Let us consider time-like geodesic γ in this space-
time. Its tangent vector is uα

′
and let t is the proper time along γ. Let us choose a

point O at this geodesic where we set t = 0. We also introduce an orthonormal basis
êα

′
µ at this point where index µ serves to label the four basis vectors. We identify

êα
′

t with the tangent vector uα
′
at O. From this we consctruct a basis everywhere

on γ by parallel transporting êα
′

µ away from O. The basis vector satisfy

∇β′ êα
′

µ u
β′
= 0 , êα

′

t = uα
′

(262)

and also
gα′β′ êα

′

µ ê
β′

ν = ηµν , (263)

everywhere on γ.

Consider now a space-like geodesic β that has origin at a point P on γ at which
t = tP . This geodesic has a tangent vector vα

′
and let s is proper distance along

β and we set s = 0 at P . We assume that at P vα
′
is orthogonal to uα

′
so that it

admits the decomposition

vα
′

γ = Ωaêα
′

a (264)

in order to have vα
′
vα′ = 1 we has to have

vα
′
vα′ = Ωaêα

′

a gα′β′ êβ
′

b Ω
b = ΩaδabΩ

b = 1

(265)

The Fermi normal coordinates of a point Q located away from the geodesic γ ae
constructed as follows. First we find the unique geodesic that passes through Q
and intersects γ orthogonally. We labe the intersection point P and we call this
geodesic β(tP ,Ω

a
Q) with tP denoting proper time at the intersection point and Ωa

Q the

expansion coefficients of vα
′
at that point. We then assign to Q the new coordinates

x0 = tP , xa = Ωa
QsQ , (266)

where SQ is proper distance from P to Q. These are the Fermi normal coordinates
of the point Q. We therefore have xα = (t,Ωas) and we have to find how they are
related to xα

′
the original system.

Coordinate Transformation Our goal is to describe the family of geodesics
β(t,Ωa) by relations of the form xα

′
(t,Ωa, s). In these parameters t and Ωa specify
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which geodesic and s is proper distance along this geodesic. The tangent to the
geodesics β(t,Ωa) is

vα
′
=

(
∂xα

′

∂s

)
t,Ωa

, (267)

where the notation indicates explicitly that the derivative with respect to s is taken
while keeping t and Ωa fixed. This vector is solution to the geodesic equation subject
to the initial condition

vα
′ |s=0 = Ωaêα

′

a . (268)

3.8 The Rindler horizon in flat space-time

Consider flat space-time with Cartesian coordinates in the X − T plane given by

ds2 = −dT 2 + dX2 + dL2
⊥ , (269)

where dL2
⊥ means line element in the transverse space. The lines X = ±T divide

X−T plane into four quadrants that we denote as right (R), left (L) wedges as well
as the past (P) and future (F) of the origin. Let us now introduce two coordinates
(t, l) instead of (T,X) in all the four quadrants through the transformations

κT =
√
2κl sinh(κt) , κX = ±

√
2κl cosh(κt) (270)

for |X| > |T | with positive sign in R and negative sign in L and

κT = ±
√
−2κl cosh(κt) , κX =

√
−2κl sinh(κt) (271)

for |X| < |T | with the positive sign in F and negative sign in P , where clearly l < 0
in F and in P .

In fact, for |X| > |T | we have

|X| > |T | ⇒ X2 > T 2 ⇒ 2l

κ
(cosh2(κt)− sinh2(κt)) =

2l

κ
> 0 for l > 0

(272)

In the same way we can show the situation in |X| < |T |. With the help of these
transformations we obtain

κdT =

√
2κ

2
√
l
dl sinh(κt) +

√
2κlκ cosh(κt)dt ,

κdX =

√
2κ

2
√
l
dl cosh(κt) +

√
2κlκ sinh(κt)dt

ds2 = −dT 2
dX

2 + dL2
⊥ = − 1

κ2
(

√
2κ

2
√
l
sinh(κt)dl +

√
2κlκ cosh(κt)dt)2 +

+
1

κ2
(

√
2κ

2
√
l
dl cosh(κt) +

√
2κlκ sinh(κt)dt)2 + dL2

⊥ =

= −2κldt2 +
1

2κl
dl2 + dL2

⊥

(273)

55



For l > 0 that corresponds to R and L we have that the coordinate t is timelike
and l is space-like, while their role reverses in F and P where l < 0. A given value
of (t, l) corresponds to a pair of point in R and L for l > 0 and to pair of point in
F and P for l < 0. The surface l = 0 acts as a horizon for observers in R. Let us
consider stationary observers in the new coordinates with

l = const , x⊥ = const (274)

will have the trajectory
X2 − T 2 = 2l/κ (275)

that are trajectories of observers moving with constant proper acceleration in the
inertial frame. In other words, Rindler observer is defined as an observer that is
at rest in Rindler coordinates. We see that the closer to the horizon is the greater
proper acceleration he has.

Coordinates for the Accelerated Frame We mean frame with proper accel-
eration. Let us consider fixed inertial frame S with coordinates x, t and the observer
in his frame S ′. We want to fidn world-line of this observer in the inertial frame S so
that we wat to find the S coordinates t, x of our motion parameterized as function
τ that is shown on our clock. In our local frame we want to fee a constant force so
in this frame we have

dx′2

dt′2
= g (276)

Now we have to find the relations between these two frames.

Since there is observation evidence for isotropy and the Copernican principle
says that we are not the center of the Universe and therefore observers elsewhere
should also observe an isotropy all cosmological models are based on the existence
of homogeneity and isotropy of manifold. However it is important to stress that this
claim is not certainly true. The Universe is apparently not static, but changing in
time. Therefore the cosmological models are based on the idea that the Universe is
homogeneous and isotropic in space but not in time. This means that the Universe
can be foliated into space-like surfaces such that each slice is homogeneous and
isotropic. Then it is natural to consider our space-time to be R × Σ where R
represents the time direction and Σ is a homogeneous and isotropic three-manifold.
Since we may think of isotropy as invariance under rotation and homogeneity as
invariance under translation we get that Σ must be a maximally symmetric space.
More precisely, the homogeneity and isotropy imply that the space has its maximum
possible number of Killing vectors. Therefore we can write the metric in the form

ds2 = −dt2 + a2(t)γij(x)dx
idxj . (277)

Here t is time-like coordinate and (x1, x2, x3) are the coordinates on Σ where γij is
the maximally symmetric metric on Σ. The function a(t) is known as scale factor
that tells us how big the space-like slice Σ is at the moment t. The coordinates used
here in which the metric is free of cross terms dtdxi and the space-like components
are proportional to a single function of t are known as comoving coordinates and
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an observer who stays at constant xi is also called as “comoving”. Only comoving
observer will think that the Universe looks isotropic.

It is important to stress that these observers, that are at rest to this frame are
geodesic which means that they are free. Note that for these particles (observers)
we have ds2 = −dt2 as follows from the fact that dxi = 0 which implies that t has
the meaning of the proper time for particles at rest.

We show that the world-line xi = const obeys the geodesic equation in the metric
(277). Note that the geodesic equation takes the form

duµ

dλ
+ Γµ

νλu
νuλ = 0 , (278)

where uµ is 4− velocity
dxµ

dλ
(279)

and where λ is the parameter along the world-line of the particle. To begin with we
calculate the Christoffel symbols

Γµ
νλ =

1

2
gµσ(∂νgλσ + ∂λgνσ − ∂σgνλ) . (280)

For the metric (277) we have following non-zero components

g00 = −1 , gij = a2(t)γij (281)

with the inverse components

g00 = −1 , gij =
1

a2(t)
γij , (282)

where
γijγjk = δik . (283)

It can be shown that the only non-zero components of Γµ
νλ are

Γi
0j =

1

2
gik∂0gjk =

ȧ

a
δij ,Γ

0
ij = −aȧγij ,Γi

jk =
(3)Γi

jk , (284)

where (3)Γi
jk are the Christoffel symbols for metric γij.

Let us now again consider the equation (278). The only non-zero component of
the 4−velocity uµ = dxµ

dλ
of the particle at rest is

u0 =
dx0

dλ
(285)

Now the on-shell condition implies

uµuνgµν = −1 ⇒ dx0

dλ
= 1 . (286)
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Then clearly (278) is obviously satisfied since du0

dλ
= 0 and Γµ

00 for all µ. In other
words the world-lines of particles which are at rest in our reference frame are indeed
geodesic.

As we have shown in introduction the maximally symmetric Euclidean three-
metric γij obey

R
(3)
ijkl = k(γikγjl − γilγjk) , (287)

where k is some constant and the superscript on the Riemann tensor reminds to us
that it is associated with the three metric γij not to the metric of entire space-time.
Then the Ricci tensor is

R
(3)
jl = γikR

(3)
ijkl = 2kγjl . (288)

Since the space is maximally symmetric then it will certainly be spherically sym-
metric as well. For such a space-time the metric can be put in the form

dσ2 = γijdx
idxj = e2βdr2 + r2(dθ2 + sin2 θdϕ2) . (289)

The Ricci tensor for the metric given above has components

R
(3)
11 =

2

r
∂rβ ,

R
(3)
22 = e−2β(r∂rβ − 1) + 1

R
(3)
33 = [e−2β(r∂rβ − 1) + 1] sin2 θ .

If we compare these expressions to (288) we can solve for β(r):

2

r
∂rβ = 2ke2β ⇒ 2dβe−2β = 2kr ⇒ β = −1

2
ln(C − kr2) ,

e−2β(r∂1β − 1) + 1 = 2kr2 ⇒ e−2β(r2ke2β − 1) + 1 = 2kr2 ⇒
⇒ −e−2β + 1 = kr2 ⇒ C = 1

(290)

and the third equation is identically solved. Then we obtain following metric on
space-time:

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

]
. (291)

This form of metric is known as Friedman-Robertson-Walker metric (FRW).
Then the Einstein equations will determine the behavior of the scale factor a(t). We
can also easily see that the metric is invariant under the scaling transformations:

k → k

|k|
,

r →
√
|k|r ,

a→ a√
|k|

.

(292)
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Therefore it is clear that the only relevant parameter is k/|k| and there are three
cases of interest: k = −1 , k = 0 and k = 1. The case k = −1 corresponds to
constant negative curvature on Σ and is called open, the case k = 0 corresponds no
curvature on Σ and is called flat ; the case k = 1 corresponds to positive curvature
on Σ and is called closed. Now we will examine these possibilities in more details:

• For k = 0 the metric on Σ is

dσ2 = dxidx
i , i = 1, 2, 3 (293)

that is simply the Euclidean space. Globally, it could describe R3 or more
complicated manifold, as for example three torus S1 × S1 × S1.

• For k = 1 we define
r = sin ξ , dr = cos ξdξ (294)

and hence the metric on Σ can be written as

dσ2 = dξ2 + sin2 ξdΩ2 (295)

which is the metric of three sphere. In this case the only possible global
structure is actually three sphere.

• The case k = −1 we can write

r = sinhψ (296)

and the metric on Σ is

dσ2 = dψ2 + sinh2 ψdΩ2 (297)

which is the metric of three dimensional space of constant negative curvature.
Globally such a space can extend forever but it can also describe a non-simply
connected compact space.

In order to solve the Einstein’s equations of motion we have to calculate the Christof-
fel’s symbols for the metric ansatz (291). If we denote ȧ ≡ da

dt
then these symbols

are given by

Γ0
11 =

aȧ

1− kr2
, Γ0

22 = aȧr2 , Γ0
33 = aȧr2 sin2 θ ,

Γ1
01 = Γ2

02 = Γ2
20 = Γ3

03 = Γ3
30 =

ȧ

a
,

Γ1
22 = −r(1− kr2) , Γ1

33 = −r(1− kr2) sin2 θ ,

Γ2
12 = Γ2

21 = Γ3
13 = Γ3

31 =
1

r
,

Γ2
33 = − sin θ cos θ ,Γ3

23 = Γ3
32 = sin θ .

(298)
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After simple calculations we can find following nonzero components of the Ricci
tensor

R00 = −3
ä

a
,

R11 =
aä+ 2ȧ2 + 2k

1− kr2
,

R22 = r2(aä+ 2ȧ2 + 2k) ,

R33 = r2(aä+ 2ȧ2 + 2k) sin θ .

(299)

Then the Ricci scalar is equal to

R = gµνRνµ =
6

a2
(aä+ ȧ2 + k) . (300)

Since Universe is not empty we are not interested in the vacuum Einstein equations.
Rather we must study the solutions of the Einstein’s equations that contain the
nontrivial right hand side. The standard model with we begin is the Universe filled
by a perfect fluid that is defined as fluids that are isotropic in their rest frame. The
energy momentum tensor for a perfect fluid can be written

Tµν = (p+ ρ)UµUν + pgµν , (301)

where p and ρ are energy density and pressure as measured in the rest frame and
Uµ is the four-velocity of the fluid. It is clear that if a fluid which is isotropic
in some frame leads to a metric which is isotropic in some frame, the two frames
will coincide, that is the fluid will be in rest frame in comoving coordinates. The
four-velocity is then

Uµ = (1, 0, 0, 0) , (302)

and the energy tensor is

Tµν =


ρ 0 0 0
0
0 gijp
0

 . (303)

If we raise its index we obtain

T µ
ν = gµκTκν = diag(−ρ, p, p, p) (304)

and note that the trace is equal to

T ≡ T µ
µ = −ρ+ 3p . (305)

For letter purposes it is also instructive to consider the zero component of the
conservation of the stress energy tensor

0 = ∇µT
µ
0 = ∂µT

µ
0 + Γµ

µ0T
0
0 − Γλ

µ0T
µ
λ =

= −∂0ρ− 3
ȧ

a
(ρ+ p) .

(306)
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To proceed it is necessary to choose the equation of state, the relation between ρ and
p. It appears that all perfect fluids relevant to cosmology obey the simple equation
of state

p = wρ , (307)

where w is constant independent on time. Then the conservation of energy becomes

ρ̇

ρ
= −3(1 + w)

ȧ

a
(308)

that can be integrated and we obtain

ρ = a−3(1+w) . (309)

The most interesting examples of cosmological are dust and radiation. Dust is
characterized with w = 0. Examples include ordinary stars and galaxies where the
pressure is negligible in comparison with the energy density. Dust is also known as
matter and Universes whose energy is mostly due to dust are known as matter-
dominated. The energy density in matter falls as

ρ ∼ a−3 (310)

that can be interpreted as the decrease in the number density of particles as the
Universe expands. (For dust the energy density is dominated by the rest energy
that is proportional to the number density.)

The second form of the fluid, Radiation may be used to describe either ac-
tual electromagnetic radiation, or massive particles moving at relative velocities
sufficiently close to the speed of light so that they become indistinguishable from
photons. The stress energy tensor of the radiation can be expressed in terms of the
field strength as

T µν =
1

4π

(
F µλF ν

λ − 1

4
gµνF λσFλσ

)
. (311)

Then the trace of this stress energy tensor is

T = T µνgνµ =
1

4π

[
F µλFµλ −

(4)

4
F λσFλσ

]
= 0 (312)

Since this should be also equal to (305) we get that

p =
1

3
ρ . (313)

An Universe in which most of the energy density is in the form of radiation is known
as radiation-dominated. The energy density in radiation then falls off as

ρ ∼ a−4 . (314)

This result implies that the energy density of radiation falls of faster than that in
matter. It is believed that today the energy density of the Universe is dominated by
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matter with ρmat/ρrad ∼ 106. However in the past the Universe was much smaller
and the energy density in radiation would have dominated at very early times.

There is also one important form of energy density that is sometimes considered,
namely that of the vacuum itself. Introducing energy into the vacuum is equivalent
to introducing a cosmological constant so that Einstein’s equations with cosmolog-
ical constant are

Eµν = 8πGTµν − Λgµν (315)

that is clearly the same form as the equations with no cosmological constant but an
energy-momentum tensor for the vacuum

T vac
µν = − Λ

8πG
gµν . (316)

This has form of the perfect fluid with

ρ = −p = Λ

8πG
(317)

that implies that w = −1 and from (309) we see that the energy density is inde-
pendent on a. Since the energy density of matter and the radiation decreases as the
Universe expands, if there is nonzero vacuum energy it tends to wind over the long
term. If this happens we say that the Universe became vacuum-dominated.

Now we turn to the Einstein’s equations. Recall that they can be written in the
form

Rµν = 8πG

(
Tµν −

1

2
gµνT

)
. (318)

The µν = 00 components is

−3
ä

a
= 4πG(ρ+ 3p) , (319)

and the µν = ij equations give

ä

a
+ 2

(
ȧ

a

)2

+ 2
k

a2
= 4πG(ρ− p) . (320)

Using (319) we simplify (320) as(
ȧ

a

)2

=
8πG

3
ρ− k

a2
. (321)

(321) together with (319) are known as Friedmann equations.

Now we introduce some terminology considering cosmological parameters. The
rate of expansion is characterized by the Hubble parameter

H =
ȧ

a
. (322)
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The value of the Hubble parameter at present epoch is the Hubble constant, H0.
There is also the deceleration parameter

q = −aä
ȧ2

(323)

that measures the rate of change of the rate of expanding. Another useful parameter
is the density parameter

Ω =
8πG

3H2
ρ =

ρ

ρcrit
, (324)

where the critical density is defined by

ρcrit =
3H2

8πG
. (325)

This quantity, that is generally time dependent, is called critical density because
the Friedmann equation (321) can be written as

Ω− 1 =
k

H2a2
, (326)

where generally H is time dependent. The sign of k is therefore determined by
whether Ω is greater than, equal to, or less than one. In other words, we have

ρ < ρcrit ⇒ Ω < 1 ⇒ k = −1 → open ,

ρ = ρcrit ⇒ Ω = 1 ⇒ k = 0 → flat ,

ρ > ρcrit ⇒ Ω > 1 ⇒ k = 1 → closed .

(327)

It is useful to know the qualitative behavior of various possibilities of the solutions of
the Friedman equations. Let us for the moment set Λ = 0 and consider the behavior
of Universe filled with fluids of positive energy ρ > 0 and nonnegative pressure p > 0.
Then (319) implies that ä < 0 . Since we know from observation that the Universe
is expanding (ȧ > 0) this means that the Universe is decelerating which could be
intuitively expected since the gravitation attraction of the matter in the Universe
works against the expanding. The fact that the Universe is decelerating means
that it must have been expanding even faster in the past; if we trace the evolution
backward in time, we reach the singularity at a = 0. Notice that if ä were exactly
zero, a(t) would be straight line a(t) = Ct (we have chosen the integration constant
that at t = 0, a(0) = 0 and hence H(t) = ȧ

a
= 1

t
so that H−1

0 would determine the
age of the Universe.

The singularity at a = 0 is known as Big Bang. It represents the creation of
Universe from a singular space, not explosion of matter into a pre-existing space-
time. Since for a → 0 the energy density becomes arbitrary high we do not expect
classical general relativity to give a correct description of nature in this regime.
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The future evolution is different for different k. For the open and flat cases
k = −1, 0 the (321) implies

ȧ2 =
8πG

3
ρa2 + |k| . (328)

Since the right hand side is strictly positive so ȧ never passes through zero. Since
ȧ > 0 today it follows that ȧ > 0 for all time. Thus open and flat Universes expand
forever-they are temporally and spatially open. It is however important to keep
in mind that this works on the presumption of nonzero positive energy density.
Negative energy density Universes do not have to expand forever, even if they are
open.

The question is how fast these Universes keep expanding? Let us now consider
the quantity ρa3 (recall that this is constant in matter dominated Universe). Using
the conservation of energy (306) we get

d

dt
(a3ρ) = a3(3

ȧ

a
ρ+ ρ̇) = −3pa2ȧ

(329)

that implies that
d

dt
(a3ρ) < 0 . (330)

This result implies that a2ρ must go to zero in an ever-expanding Universe where
a→ ∞ 4 Then (328) implies that

ȧ2 → |k| . (331)

(We must stress that it holds for k = −1, 0. Thus for k = −1 an expanding
approaches the limiting value ȧ → 1 while for k = 0 the Universe keeps expanding
but more and more slowly.

For the closed Universe (k = 1) (321) implies

ȧ2 =
8πG

3
ρa2 − 1 . (332)

It is clear that the argument that ρa2 → 0 as a → ∞ still holds. In this case
the right hand side of the upper equation becomes negative which clearly cannot
happen. Therefore the Universe does not expand indefinitely, a posses an upper
bound amax. As a approaches amax the equation (319) implies

ä = −4πG

3
(ρ+ 3p)amax < 0 (333)

and hence ä is finite and negative at this point, so a reaches amax and starts de-
creasing. Since ä < 0 it will inevitably continue to contract to zero- the Big Crunch.

4For example, when a(t) ∼ t we should have ρ ∼ t−4 at least and hence a2ρ ∼ t−2 → 0 for
t → ∞.

64



Thus, the closed Universe (on presumption of positive ρ and non negative p) is
closed in time as well as space.

We will now list some of the exact solutions corresponding to only one type
of energy density. For dust-only Universe (p = 0) it is convenient to define a
development angle ϕ(t), rather than using t as a parameter directly. The solutions
are then, for open Universes;

a =
C

2
(coshϕ− 1) , t =

C

2
(sinhϕ− ϕ) , k = −1 , (334)

for flat Universes

a =

(
9C

4

)1/3

t2/3 , k = 0 , (335)

and for closed Universes

a =
C

2
(1− cosϕ) , t =

C

2
(ϕ− sinϕ) , k = +1 , (336)

where we have defined

C =
8πG

3
ρa3 = constant . (337)

For Universes filled with nothing but radiation, p = 1
3
ρ, we have once again open

Universes,

a =
√
C ′

[(
1 +

t√
C ′

)2

− 1

]1/2
, k = −1 (338)

flat Universes,
a = (4C ′)1/4t1/2 , k = 0 (339)

and closed Universes,

a =
√
C ′

[
1−

(
1− t√

C ′

)2
]1/2

, k = +1 (340)

where we have defined

C ′ =
8πG

3
ρa4 = constant . (341)

Let us now consider the case of nonzero cosmological constant. We start with
Λ < 0. In this case Ω is negative and we get that k = −1. The solution in this case
is

a =

√
−3

Λ
sin

(√
−Λ

3
t

)
. (342)

There is also an open (k = −1) solution for Λ > 0 given by

a =

√
3

Λ
sinh

(√
Λ

3
t

)
. (343)

65



A flat vacuum-dominated Universe must have Λ > 0 and the solution is

a ∼ exp

(
±
√

Λ

3
t

)
(344)

while the closed Universe must also have Λ > 0 and satisfies

a =

√
3

Λ
cosh

(√
Λ

3
t

)
. (345)

These solutions are a little misleading. In fact the three solutions for Λ > 0 -
(343),(344),(345)-all represent the same space-time, just in different coordinates.
This space-time, known as de Sitter space is maximally symmetric as a space-
time. The Λ < 0 solution is also maximally symmetric and is known as anti-de
Sitter space

Before we conclude this section we spend some time with the discussion of the
situation when the matter sector in Universe constitutes more general form of mat-
ter. For example, we can presume that all components of the matter are present.
Then the total density parameter takes the form

Ω =
∑
i

Ωi (346)

and the Friedman equation can be written as

Ω− 1 =
k

H2a2
. (347)

As in the particular previous example we obtain that the sign of k is determined
whether Ω is greater than, equal to, or less than one. Explicitly, we have

ρ < ρcrit ⇒ Ω < 1 → k = −1 , open ,

ρ = ρcrit ⇒ Ω = 1 → k = 0 , flat ,

ρ > ρcrit ⇒ Ω > 1 → k = 1 , closed .

(348)

Since ρi ∼ a−ni we have
ρi
ρj

=
Ωi

Ωj

= a−(ni−nj) (349)

so that relative amount of energy in different components changes as the Universe
evolves.

3.9 Motion of the probe in the FRW Universe

In order to understand properties of given background it is common strategy to
study the dynamics of the probe in given background. Let us then consider the
motion of particle in the FRW Universe.
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Let us consider the action for the massive particle

S = −
∫
dλ
√
−gµνuµuν , uµ =

dxµ

dλ
. (350)

where λ is parameter that labels the world-line. We introduce einbain e(τ) so that
the action takes the form

S =
1

2

∫
dλ[

1

ϵ
gµνu

µuν −m2ϵ] , (351)

To see the equivalence between these two formulations we perform the variation
with respect to ϵ that gives

− 1

ϵ2
gµνu

µuν −m2 = 0 ⇒ ϵ =
1

m

√
−gµνuµuν (352)

that inserting back to the action we obtain the original action. Further, the equation
of motion with respect to xµ gives

−2
d

dλ
(
1

ϵ
gµνu

ν) +
1

ϵ
∂µgρσu

ρuσ = 0 (353)

It is important to stress that the action is invariant under τ ′ = f(τ) so that dτ ′ =
df
dτ
dτ . We can fix the gauge by imposing ϵ = 1

m
so that we obtain on-shell condition

gµνu
µuν = −1 (354)

Note that this relation allows us to write (when g0u = 0)

−1 = (−g00 + gij
dxi

dt

dxj

dt
)(
dt

dλ
)2 ⇒ dt

dλ
=

1√
g00 − gijvivj

, vi ≡ dxi

dt

(355)

Then the equation of motion for xµ takes the form

duµ

dλ
+ gµν∂ρgνσu

σuρ − 1

2
gµν∂νgρσu

ρuσ =⇒

duµ

dλ
+

1

2
gµν(∂ρgνσ + ∂σgνρ −

1

2
∂νgρσ)u

ρuσ = 0 ⇒

d2xµ

d2λ
+ Γµ

ρσ

dxρ

dλ

dxσ

dλ
= 0 .

(356)

It is also interesting to insert the solution of the equation of motion ϵ into the action
so that it takes the form

S =
1

2

∫
dλ[

1

ϵ
gµνu

µuν −m2ϵ] =

=
m

2

∫
dt
√
g00 − gijvivj[−(g00 − gijv

ivj)(
dt

dλ
)2 − 1] =

= −m
∫
dt
√
g00 − gijvivj .

(357)
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It is also interesting to analyze the equation of motion that follows from the original
action

S = −m
∫
dλ
√

−gMN∂τXM∂σXN (358)

The equations of motion have the form

− ∂KgMNẊ
MẊN

2

√
−gMNẊMẊN

+ ∂τ

 gKNẊ
N√

−gMNẊMẊN

 = 0 . (359)

This is equation of motion for X. Let us denote the variation of the action with
respect to X as δS

δX
. If we multiply given expression with ẊK we obtain

δS

δXK
ẊK = − ∂τgMNẊ

MẊN

2

√
−gMNẊMẊN

+ ∂τ (
1√

−gMNẊMẊN

)ẊKgKMẊ
N +

+
1√

−gMNẊMẊN

ẊK∂τgKMẊ
N +

1√
−gMNẊMẊN

ẊKgKMẌ
N = 0

(360)

Note that it holds as identity and not as a consequence of the equations of motion.

Let us now consider the flat FRW background

ds2 = −dt2 + a2(t)δijdx
idxj . (361)

so that the action takes the form

S = −m
∫
dt
√

1− a2δijẋiẋj .

(362)

It is interesting to determine the Hamiltonian formulation of this system

pi =
δL

δẋi
= a2m

δijẋ
j√

1− a2δijẋiẋj
. (363)

Then we find

H = piẋ
i − L =

ma2√
1− a2δijẋiẋj

= a2
√

1

a2
piδijpj +m2

(364)

using

a2ẋiδijẋ
j =

piδ
ijpj

m2a2 + piδijpj
(365)
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Now the equation of motion takes the form

ẋi =
{
xi, H

}
=

δijpj√
a−2piδijpj +m2

,

ṗi = {pi, H} = 0 ⇒ pi = ki .

(366)

We see that the momentum pi is constant. On the other hand the norm of state
slows since the norm is given as pig

ijpj =
1
a2
kiδ

ijkj.

On the other hand let us introduce following variable

X i = axi , ẋi =
1

a
(Ẋ i −HX i) (367)

Using these variables we find the action in the form

S = −m
∫
dt

√
1− (Ẋ i −HX i)δij(Ẋj −HXj) . (368)

The meaning of the variables X i can be found when we take the non-relativistic
limit where we replace

√
1− A = 1− 1

2
A2 so that the action

Snonrel = −m
∫
dt+

∫
dt
m

2
(Ẋ i −HX i)δij(Ẋ

j −HXj) =

=

∫
dt
m

2
Ẋ iẊi + . . . ,

(369)

where we neglected the remaining terms. Comparing this expression with the stan-
dard form of the non-relativistic Lagrangian we can interpret X i = a(t)xi as the
physical variable even if we mean that both variables are physical.

Now from (368) we determine the momenta conjugate to X i

Pi =
δL

δẊ i
= m

δij(Ẋ
j −HXj)√
(. . . )

(370)

and hence the Hamiltonian takes the form

H = Ẋ iPi − L =
m√
(. . . )

+ PiX
iH =

√
m2 + PiP i + PiX

iH

(371)

Using this Hamiltonian we derive the equation of motion

Ẋ i =
{
X i, H

}
=

P i

√
m2 + PiP i

+X iH ,

Ṗi = {Pi, H} = −PiH

(372)
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The last equation can be integrated as

dPi = −Pi
da

a
⇒ lnPi = − ln a+ lnKi ⇒ Pi =

Ki

a
. (373)

We see that the ”physical” momentum Pi is red shifted as the universe expands.
Note that we can also find the time dependence of X i by integrating the first equa-
tion since it takes generally the dorm

Ẋ i = F i(t) +G(t)X i (374)

so that we search the solution of the homogeneous equation

Ẋ i = G(t)X i ⇒ X i = Ci exp(

∫
dtG(t)) (375)

Note that we have∫
dtG(t) =

∫
da

dt

1

a
dt =

∫
da

a
= ln a⇒ e

∫
dtG(t) = eln a = a . (376)

Then we say that Ci depends on time so we obtain that it has to obey the equation

dCi

dt
= e−

∫
dt′G(t′)F (t) ⇒ dCi

dt
=

Ki

a
√
m2a2 +KiKi

(377)

that can be in principle integrated if we know the time dependence of a. There
is a particulary simple solution corresponding to the particle with zero physical
momentum when Ki = 0. From upper equation we immediately find that Ci =
Ci = const and hence

X i = Cia (378)

that is an expected result. The physical interpretation of this result is that particle
slows down with respect to comoving coordinates as the Universe expands (since
a→ ∞). In fact this is an actual slowing down, in the sense that a gas of particles
with initially high relative velocities will cool down as the Universe expands.

Very interesting is the case of the particle with null mass which is photon. In
principle we could use the the action for the massive particle written without the
square root and then take the limitm→ 0 however we will be more conservative and
consider the standard treatment of the electromagnetic wave in curved background.

We consider the action of free electromagnetic field

S = −1

4

∫
d4x

√
−ggµρgνσFµνFνσ , Fµν = ∇µAν −∇νAµ = ∂µAν − ∂νAµ (379)

Consider now the propagation of a photon in the homogeneous isotropic Universe.
Since the photon wavelength is small compared to the spatial curvature radius even
if the Universe is open or closed. Then we can consider the metric that is spatially
flat with the metric

ds2 = −dt2 + a2(t)δijdx
idxj . (380)
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Let us introduce conformal time η instead of t that is defined as

dt = adη (381)

or equivalently

η =

∫
dt

a(t)
. (382)

This result can be generally integrated so that we have η = η(t) and we presume
that this relation can be inverted so that t = t(η) and consequently a = a(η). Now
the metric has the form

ds2 = a2(η)[−dη2 + δijdx
idxj] (383)

and we see that the metric element in FRW spacetime is conformally flat in the
sense that

gµν = a2(η)ηµν . (384)

where the Minkowski metric is spanned by coordinates (η, xi). Then we clearly have

gµν = a−2ηµν ,
√
g = a4 (385)

and we find that in η, xi coordinates the action of the electromagnetic field has the
form

S = −1

4

∫
d4xηµρηνσFµρFνσ . (386)

Now it is clear that the solution of the equation of motion for the free electromagnetic
field in the Universe is given as the superposition of the plane waves

A(α)
µ = e(α)µ eikη−ikx (387)

where k is constant vector, |k| = k and e
(α)
µ is the standard polarization vector of

photons with α = 1, 2. Note that k is not the physical frequency as follows from
following arguments. The quantity △x = 2π

k
is the coordinate wavelength of a

photon while the physical wavelength at time t is

λ(t) = a(t)△x = 2π
a(t)

k
. (388)

In the same way we define period △η = 2π
k

of electromagnetic wave in conformal
time while the period of the physical time is

T = a(t)△η = 2π
a(t)

k
. (389)

Then we see that the frequency is equal to

ω(t) =
2π

T
=

k

a(t)
(390)
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and since we know that the frequency is equal to the magnitude of the physical
momentum of photon we obtain that the physical momentum depends on time as
in case of the massive particle namely

p =
k

a(t)
(391)

We see that in the expanding universe the scale factor a(t) is growing and hence
the physical wavelength grows. On the other hand the physical momentum is de-
creasing function of time. The phenomena when the wavelength is growing during
the expansion of the Universe is named as the redshift. Explicitly, if the photon
was emitted at time ti with physical wave length λi in the physical process as for
example when the electron in the excited state in the atom drops to the ground
state which is certainly physical process. Now we know that the state propagates
freely as in (387) and then it is again detected in time t0 where t0 we means the
present time in the reversed physical process when its physical wave length now is

λ(t0) = a(t0)
2π

k
(392)

Now expressing 2π
k

using the physical wave length at time of emission we find the
famous relation

λ(t0) =
a(t0)

a(ti)
λi ≡ λi(1 + z(ti)) . (393)

The quantity

z(ti) =
a(t0)

a(ti)
− 1 (394)

is called redshift. The earlier the object emits the photon then this photon has to
travel longer and consequently a(ti) is smaller and hence object at larger distances
have the larger redshifts.

Note that these formulas are valid in general for all z. Let us now consider
objects that are not in large distance. Then the difference t − t0 is not very large
and we can expand

a(ti) = a(t0)− ȧ(t0)(t0 − ti) (395)

Using the present value of the Hubble parameter H0 =
ȧ(t0)
a(t0)

≡ ȧ0
a0

we can write

a(ti) = a0[1−H0(t0 − ti)] (396)

so that to the linear order we find following expression for the redshift

z(ti) =
1

1−H0(t0 − ti)
− 1 ≃ H0(t0 − ti) . (397)

Finally the travel time is equal to

0 = −dt2 + a(t)2dr2 = −dt2 + (a0 − ȧ0(t0 − t))2dr2 ≈
−dt2 + a20dr

2 ⇒ (t0 − t) = a0(ri − r0) ≡ R

(398)
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where R is the physical distance of the object from the our observer. Inserting this
expression into (397) we derive famous Hubble law

z = H0R , z ≪ 1 . (399)

The redshift is something that can be measured, we know the rest-frame wave-
lengths of various spectral lines in the radiation of distant galaxies, so that we can
determine how much their wavelengths have changed along the path from time ti
when they were emitted to time t0 when they were observed. We therefore know
the ratio of the scale factors at these two times however we do not know the times
themselves.

3.10 Horizons

One of the most crucial concepts of the FRW Universe is the existence of horizons.

Suppose a emitter, e sends a light signal to an observer o, who is at r = 0.
Restricting to the radial geodetic (that means that dϕ = dθ = 0 we obtain from the
vanishing of the metric elements the equation for null geodetics in the form

ds2 = 0 = a2(η)(−dη2 + dr2) ⇒ η = ±r + r0 , (400)

where η is conformal time. Let us presume that the light hits the observer at time
η0 that is larger that ηe where ηe is time when this signal was emitted. Since for
η = ηo we have r = 0 we get ηo = r0 and consequently η − ηo = ±r. Since also for
ηe this equation implies

ηo − ηe = ∓re
and we obtain that we should choose the positive sign in front of r since ηo− ηe > 0
and r is positive. Finally we get the relation

ηo − ηe = re . (401)

Let us now presume that ηe is bounded from below by η̃e; for example η̃e might
represent the Big Bang singularity. Then there exist a maximum distance to which
the observer can see, known as a particle horizon distance given by

rph(ηo) = ηo − η̃e (402)

Similarly, suppose that ηo is bounded from above by η̃o. Then there exists a limit
to space-time events which can be influenced by the emitter. This limit is known as
the event horizon distance given by

reh(ηo) = η̃o − ηe (403)

These horizon distance may be converted to proper horizon distances at cosmic time
t. For example, we have an emitter at time η̃e at re = 0. Then at time η. Then
from the equation for geodetics we obtain

η − η̃c = r(τ) (404)
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since dη = dt
a(t)

we obtain

η − η̃ =

∫ t

te

dt′

a(t′)
(405)

using also the fact that the proper distance at time t is given by multiplication with
a(t) we get the proper horizon distance as

dh = a(t)

∫ t

te

dt′

a(t′)
. (406)

4 Our Universe Today

In this section we will discuss the remarkable properties that have been discovered
in past few years. Most remarkable among them is the fact that the universe is dom-
inated by a uniformly- distributed and slowly varying source of ”dark energy” which
may be a vacuum energy (cosmological constant), a dynamical field or something
completely different.

4.1 Matter

The inventory of constituencies comprising actual Universe is complicated by the
fact that they are not at all equally visible. In the years before we knew the dark
energy was an important constituent of the Universe and before observations of
galaxy and distributions and CMB anisotrophies observational cosmology measured
two numbers: The Hubble constant H0 and the matter density parameter ΩM . Mea-
suring the extragalactic distances is very difficult, but most current measurement
of the Hubble constant performed Planck experiment in 2013 gives the value of the
cosmological constant to be equal to

H0 = 67.80± 0.77 km/sec/Mpc , (407)

where
1Mpc = 106 parsec = 3× 1024cm . (408)

We see that the Hubble parameter in fact has the dimension [t−1] so that it has the
value

H−1
0 = h−1 · 3 · 107s = h−1 · 1010yrs ≈ 1.4 · 1010yrs , (409)

where h is a dimensionless parameter

h = 0.678 . (410)

In particle physics units (ℏ = c = 1) this is equal to

H0 ∼ 10−33eV . (411)

It is convenient to express the Hubble constant as

H0 = 100 h km/sec/Mpc . (412)
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It turns out that the scale H−1
0 gives order of magnitude of the age of the Universe

and the distance scale H−1
0 is roughly the size of the observable part equal to

H−1
0 ≈ h−1 · 3000Mpc ≈ 4.3 · 103Mpc . (413)

At this place it is natural to speak about speed of expansion of Universe. In fact, this
notion does not make sense it own meaning since Hubble constant has dimension
velocity per distance. The Universe is expanding, but the expansion doesn’t have a
speed; it has a speed-per-unit-distance. Explicitly, for each megaparsec |3.3 million
light years from Earth, the universe is expanding an extra 73.32.5 kilometers per
second. It is also important to stress that no object can travel with velocity greater
than velocity of light.

Note that since ρi = 3H2
0Ωi/8πG measurement of ρi is often expressed as mea-

surement of Ωih
2. The Hubble constant provides the rough measure of the scale of

the Universe since in the matter or radiation dominated Universe is t0 ∼ H−1
0 .

For years, determinations of ΩM based on dynamics of galaxies and clusters have
leaded to values of ΩM between 0.1 and 0.4. Alteratively, the determination of ΩM

is the same as the determination of the baryons. Recent measurements suggest
that baryons contribute to Ω as

ΩB = 0.05 . (414)

In other words baryons constitute rather small fraction of the present energy density
in the Universe. It is also important to stress that the most of the baryons in our
Universe are dark: direct measurements of th mass density of stars give an estimate

Ωstars ∼ 0.005 (415)

that is about an order of magnitude smaller than ΩB. The fact that most of the
baryons are dark follows from the dynamics of individual galaxies implies that there
is even matter there. The implied existence this celebrated dark matter is con-
firmed by applying the viral theorem to clusters of galaxies, by looking at the tem-
perature profiles of clusters, by ”weighing” clusters by gravitational lensing and by
large-scale motions of clusters between galaxies. On the other hand there is nothing
dramatic about this observation: baryons may hide in dust and neutral gas clouds,
brown dwarfs etc.

The next form of matter are Photons. They however contribute even smaller
fraction

Ωγ ≈ 6 · 10−4 . (416)

From electric neutrality the number density of electrons is about the same 5 as
that of baryons, but then due to their very small mass their contribution to the
total mass fraction is negligible.

The remaining known stable particles are neutrinos. As we will sketch bellow
their number density is calculable in Hot Big Ban theory and these calculations

5There are also neutrons whose number is somewhat smaller than the number of protons.
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are confirmed by Big Bang Nucleosynthesis. The number density of each type of
neutrinos is

nνa = 115
1

cm3
, (417)

where νa = νe, νµ, ντ . Direct limit on the mass of electron neutrino mνe < 2.6 eV
together with the observations of neutrino oscillations suggests that every type of
neutrino has mass smaller than 2.6 eV . Then the estimation of the energy density
of neutrinos is

ρν,total =
∑
α

mναnνα < 8 · 10−7GeV

cm3
(418)

that implies
Ων,total < 0.16 . (419)

However this estimate does not make use any cosmological date. In fact cosmological
observations give stronger bound

Ων,total < 0.01 . (420)

In terms of the neutrino masses this bound reads∑
mνa < 0.42eV (421)

so that every neutrino has to be lighter than 0.14eV . On the other hand atmo-
spheric neutrino data and further experiments tell that the mass of at least one
neutrino must be larger than 0.02eV . These results suggest that there is window
for measuring neutrino masses by cosmological observations.

We see that most of the energy density in the present Universe is not in the
form of known particles, most energy in the present Universe has to be in something
“unknown”. In fact essentially every known particle in he Standard Model of particle
physics has been ruled out as a candidate for this “unknown” matter. Moreover,
there is a strong evidence that this “something unknown” has two components:
clustered dark energy and unclustered dark energy.

It is believed that Clustered dark matter consists of new stable massive par-
ticles. These make clumps of energy density that encounter for much of the mass
of galaxies and most of the mass of galactic clusters. There are number of ways of
estimating the contribution of non-baryonic dark matter into the total density of
the Universe:

• Composition of the Universe affects the angular anisotropy of cosmic mi-
crowave background (CMB). The present measurements of the CMB anisotropy
enable to estimate the total mass density of dark matter.

• The density of non-baryonic dark matter is crucial for structure formation of
the Universe. If we compare the results of numerical simulations of structure
formation with observational data gives reliable estimate of the mass density
of non-baryonic clustered dark matter.
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One of the few things we know about the dark matter is that it must be “cold”-not
only is it non-relativistic today, but it must have been that way for a very long
time. The other thing we know about cold dark matter (CDM) is that it should
interact very weakly with ordinary matter, so as to have escaped detection thus far.
In summary the non-baryonic cold dark matter has

ΩCDM ≈ 0.25 . (422)

There is a direct evidence that dark matter exists in the largest gravitationally
bound objects-clusters of galaxies. There are various methods to determine the
gravitating mass of a cluster and even mass distribution in a cluster, which give
consistent results, for example:

• We measure velocities of galaxies in galactic clusters and make use of the
gravitational virial theorem

Kinetic energy of a gravity= 1
2
Potential energy .

In this way we obtain the gravitational potential and thus the distribution of
the total mass in a cluster.

• The second example of the measurement of masses of clusters use the notion
of intra-cluster gas. Its temperature that is determined from X−ray measure-
ments is also related to the gravitational potential through the virial theorem.

• The third example of measurement is based on observation of gravitational
lensing of background galaxies by clusters.

Finally, dark matter exists also in galaxies. Its distribution is measured by the
observations of rotation velocities of distant stars and gas clouds around a galaxy.

At present there are many hypotheses considering candidates for this form of
dark matter. One such an idea is that the natural candidates are particles which
participate in weak interactions that of course needs more detailed justification.

Unclustered dark energy

Non-baryonic clustered dark matter is not the whole story. If we use the above
estimates we obtain an estimate for the energy density of all particles

Ωγ + ΩB + Ωµtotal
+ ΩCDM ≈ 0.3 . (423)

Since the observation that ΩT ≈ 1 implies that 70 percent of the energy density is
unclustered.

In fact this result nicely fits recent observations. Indeed, it can be shown that
neither relativistic nor non-relativistic matter can lead to the accelerated expansion
of the Universe 6. In other words the accelerated expansion requires energy stored
in something dramatically different from conventional particles and it has to have

6We will discuss this problem in the next subsection.
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negative pressure. In fact the analysis of the entire set of cosmological date in terms
of dark energy with phenomenological equation of state

p = wρ ,w = const (424)

gives
ΩΛ = 0.72± 0.02 (425)

(here subscript Λ refers to dark energy) and

−1.2 < w < −0.8 . (426)

It is worth noting that the vacuum value, w = −1 is right in the middle of the
allowed region that corresponds to a vacuum energy density

ρΛ ∼ (10−3eV )4 . (427)

Given the significance of these results it is natural to ask what level of confidence we
should have in them. There are potential sources of systematic error and these were
discussed in the original papers [?, ?]. On the other hand the recent measurements
of the cosmic microwave background confirmed the picture outlined above with the
matter density and nonzero cosmological constant.

In summary, the composition of the present Universe is fairly complex. It is chal-
lenging for future physics that most of the energy density comes from species which
particle physicists are unfamiliar with: vacuum or vacuum-like dark energy and non-
baryonic clumped dark matter. This poses serious problems for both fundamental
physics and cosmology:

• What are the particles of non-baryonic dark matter?

Currently popular option is the lightest supersymmetric particle that is stable
in many supersymmetric extensions of the Standard model. Of course there
are many other options, such as axions, gravitinos and so on. In any case
experimental discovery of the dark matter particle would be great achievement
of both particle physics and cosmology.

• Why there are baryons and no anti-baryons in our Universe?

Alliteratively,what is the origin of matter-antimatter asymmetry of the Uni-
verse? We will discuss this issue later and here we notice only that the solution
of this problem is based on extension of the Standard Model.

• Why the mass density of the non-baryonic dark matter is so similar
to the mass density of baryons?

Both these densities scale as a−3(t) so their ratio stays constant during most
of the evolution of the Universe. Then it is possible that mechanism which
create baryons and dark matter particles in the early Universe are related to
each other so that the approximate equality of the mass densities is not a
mere coincidence. On the other hand it is difficult to construct corresponding
particle model.
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• What is the origin of dark energy? If this is vacuum,why vacuum has
non-zero energy density, which, however, is very small by particle
physics standard?

This is one of the most fundamental problems of the microscopic physics. In
natural units the vacuum density is about

ρc ∼ 10−46GeV 4 . (428)

On the other hand we would expect on the basis of the dimensional grounds
that the vacuum energy takes value 1GeV 4 (QCD-scale) or 108GeV 4 (elec-
troweak scale). It is great challenge to explain this enormous discrepancy but
despite numerous attempts it remains an open problem.

• Why now?

The energy density of non-relativistic dark matter and dark energy scales
differently: The non-relativistic dark matter scales as a−3(t) while the latter
stays approximately constant. Hence at early times (small a(t)) the energy
density of non-relativistic matter exceeded by far the dark energy density.
Conversely, future expansion of the Universe will be dominated by dark energy.
On the other hand these energy densities are of the same order of magnitude
today. The question is why is this the case? What is special about the present
epoch of the evolution of the Universe?

4.2 Supernovae and the Accelerating Universe

The first hint that the matter does not dominate the Universe came from the studies
of the Type Ia supernovae that are commonly recognized as ”standard candles”.
The special property of Supernovae Type Ia is that it has nearly uniform intrinsic
luminosity (absolute magnitudeM ∼ −19.5). It turns out that they can be detected
at high redshifts (z ∼ 1) that allows in principle a good handle on cosmological
effects.

The importance of the supernovae measurements began to be clear from the
works of two independent groups that observed distant supernovae in order to mea-
sure cosmological parameters: the High-Z Supernova Team and the Supernova Cos-
mology Project.These groups obtained the dependence of the redshift on apparent
magnitude. These date are much better fit by a universe dominated by a cosmolog-
ical constant than by a flat matter-dominated model. In fact, the supernova results
alone allow huge range of possible values of ΩM and ΩΛ. On the other hand if we
presume that we know something about one of these parameters the second one will
be tightly constrained and in particular they imply (425).

Since these observations are very fundamental one has to ask the question about
the level of confidence of them. In fact there are number of potential sources of
systematic error that have been considered by these two research teams. In summary
these results are commonly accepted with their significant predictions considering
the vacuum energy of the Universe.
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4.3 Dark Energy

It appears that the most difficult problem to solve is the origin of the dark en-
ergy. The most disappointing possibility would be that the carrier of dark energy is
vacuum: The difficulties with this option will be discussed below.

Another option, more promising from the observational viewpoint is that dark
energy is due to some light field. In fact, there are good reasons to consider the
this dynamical dark matter as an alternative to cosmological constant. Firstly,
the dynamical energy density can evolve slowly to zero so that we can solve the
cosmological constant problem .

The simplest possibility how to describe dark matter is the same kind of source
that is involved in models of inflation in the very early Universe; a scalar field ϕ
rolling slowly in a potential, something known as quintessence.

As an example, consider a homogeneous scalar field ϕ(t) in an expanding Uni-
verse. The action of the scalar field is

S = −
∫
d4x

√
−g
(
1

2
gµν∂µϕ∂νϕ+ V (ϕ)

)
, (429)

where V (ϕ) is potential. The equations of motions that follow from the action above
have the form

∂µ[
√
−ggµν∂νϕ]−

√
−g δV

δϕ
= 0 (430)

that for homogeneous field in an expanding Universe takes the form

ϕ̈+ 3Hϕ̇+
dV

dϕ
= 0 . (431)

In order to take the back-reaction of this scalar field on the Einstein equations into
account we have to determine the components of the stress energy tensor. In field
theory the stress energy tensor is defined as

Tµν = − 2√
−g

δSmatter

δgµν
(432)

that for the action of the form S = −
∫
d4x

√
−gL takes the form

Tµν = −gµνL+ 2
δL
δgµν

, (433)

where we have used
δ
√
−g

δgµν
= −1

2

√
−ggµν . (434)

More precisely, for the action (429) the stress energy tensor takes the form

Tµν = ∂µϕ∂νϕ− gµν

[
1

2
gαβ(∇αϕ)(∇βϕ) + V (ϕ)

]
. (435)
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Let us now restrict to the homogeneous case in which all quantities depend only on
cosmological time t and we also set k = 0. A homogeneous real scalar field behaves
as a perfect fluid with

ρ = T00 =
ϕ̇2

2
+ V (ϕ) . (436)

The other components of the stress energy tensor take the form

Tij = −gij(
1

2
gµν∂µϕ∂νϕ+ V ) + ∂iϕ∂jϕ . (437)

If we define pressure as

p =
1

3

3∑
i=1

Tii (438)

we get

p =
ϕ̇2

2
− V (ϕ) . (439)

Thus any state which is dominated by the potential energy of a scalar field will have
negative pressure.

If the slope of the potential V is quite flat we will have solutions for which ϕ is
nearly constant and only evolving very gradually with time, the energy density in
such a configuration is

ρϕ ≈ V (ϕ) ≈ const. (440)

Thus we see that slowly-rolling scalar field is an appropriate candidate for dark
energy with the vacuum equation of state

pϕ = −ρϕ (441)

but the energy density ρϕ slowly decreases in time. But this proposal raises several
questions: why the genuine vacuum energy density is zero (constant part of the
potential V0) so that it does not contribute to dark energy density? What is the
physics behind the field ϕ? Where does the small energy scale, V (ϕ) ∼ 10−46GeV
today, come from? All these questions remain unanswered 7.

In fact, it is important to stress that introducing dynamics opens up the possi-
bility to bring new problems that depend on form and specific kind of model being
considered. Most quintessence models feature scalar fields ϕ with masses of order
the current Hubble scale

mϕ ∼ H0 ∼ 10−33eV . (442)

In quantum field theory the light scalar fields are unnatural, renormalization
effects tend to drive scalar masses up to the scale of new physics. It is then very
difficult to understand the origin of masses of such a small value when we know
that the scale of new physics is approximately 1011eV . Moreover, light scalar fields
give rise to long-range forces and time-dependent coupling constant that should be

7For certain scalar potentials the fourth question can be explained.
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observable. Therefore we have to invoke additional fine-tunings to explain why the
quintessence field has not already been experimentally detected.

Another possibility, how to explain today acceleration of Universe, is that there
is nothing special about the present era; rather acceleration is just something that
happens from time to time. This can be enforced by oscillating dark energy. In
these models the potential takes the form of a decaying exponential with small
perturbations

V (ϕ) = e−ϕ[1 + α cosϕ] . (443)

Another models of quintessence are k-essence models that are based on presumption
that the scalar field ϕ has the form

K = f(ϕ)g(ϕ̇2) , (444)

where f, g are functions specified by the model. Unfortunately, in neither the k-
essence models nor the oscillating models do we have a compelling particle-physics
motivation for the chosen dynamics and in both cases the behavior still depends
sensitively on the precise form of parameters and interactions chosen.

Given the challenge of the problem it is worthwhile considering the possibility
that cosmic acceleration is not due to some kind of stuff but rather arise from new
gravitational physics.

As a first attempt, consider the simplest correction to the Einstein-Hilbert action,

S =
M2

p

2

∫
d4x

√
−g
(
R− µ4

R

)
+

∫
d4x

√
−gLM , (445)

where µ is a new parameter with units of [mass] and LM is the Lagrangian density
for matter. The equations arising from this action are complicated and it is difficult
to solve them. It is convenient to transform from the action used in (445) which
we call the matter frame to the Einstein frame where the gravitational Lagrangian
takes the Einstein-Hilbert form and the additional degrees of freedom (Ḧ and Ḣ) are
represented by a fictitious scalar field ϕ. In terms of the new metric gµν the theory is
that of a scalar field ϕ(x) minimally coupled to Einstein gravity and non-minimally
coupled to matter with the potential

V (ϕ) = µ2M2
p exp

(
−2

√
2

3

ϕ

Mp

)√√√√exp

(√
2

3

ϕ

Mp

)
− 1 . (446)

Yet another option for the explaining the accelerated expansion of our Universe is
that gravity deviates from General Relativity at cosmological distances and time
scales so that the Friedmann equation is not valid at present epoch. Finally, any
modification of the Einstein-Hilbert action must, of course, be consistent with the
classic solar system tests of gravity theory as well as numerous other astrophysical
dynamical tests. In known Lorentz-Invariant examples of such a theory there either
exist ghosts (fields with negative energy unbounded from below) or gravity becomes
strongly coupled at quantum level. A consistent theory of this sort would probably
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require “gravitational Higgs mechanism” and violation of Lorentz-invariance but
even this-rather exotic idea- has not yet lead to a consistent model that would be
able to explain the accelerated expansion of the Universe.

In summary, there are many models whose aim is to explain current acceleration
area. All of these models have many problems however it is certainly very important
to study them.

4.4 Observational Evidence for Dark Energy

In this section we briefly review facts considering observational evidence for dark
energy. The first one is based on so named Luminosity distance

4.4.1 Luminosity distance

In 1998 the accelerated expansion of the Universe was reported on the observations
of Type Ia Supernova (SN Ia).This observations are based on the existence of redshift
in the expanding Universe that is related to the fact that the light emitted by a stellar
object becomes red-shifted due the expanding of the Universe. The wavelength λ
increases proportionality to the scale factor a according to the formula

1 + z =
λ0
λ

=
a0
a
, (447)

where z is named as redshift and where the subscript zero denotes the quantities
given at present epoch.

Another important concept that is related to the observational tools in an ex-
panding background is the definition of the distance. In fact there are many ways
how to define distance in expanding Universe. For example, we can consider comov-
ing distance as a distance measured in comoving variables. It turns out that this
distance does not change during the evolution of the Universe. On the other hand
we can define physical distance that scales proportionally to the scale factor. An
alternative way of defining of distance is through the luminosity distance that plays
a very important role in astronomy, including supernova observations.

Let us consider for a moment Minkowski space-time and define an absolute
luminosity Ls of source that is related to the energy flux F at the distance d from
the source by the formula

F =
Ls

4πd2
. (448)

We can generalize this relation to the expanding Universe and define the luminosity
distance dL as

d2L ≡ Ls

4πF
. (449)

Let us consider an object with an absolute luminosity Ls located at coordinate
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distance χ 8 from an observer located at χ = 0. The energy of object that is
emitted in time interval △t1 let is denoted as △E1 while the energy that reaches
the sphere at radius χ is written as △E0. From the basic principles it is clear that
△E1 and △E0 are proportional to the frequencies of light at χ = χs and χ = 0
respectively. In other words, △E1 ∼ ν1 ,△E0 ∼ ν0. We also define the luminosity
Ls and L0 through the relations

Ls =
△E1

△t1
, L0 =

△E0

△t0
. (452)

The speed of light is given by c = ν1λ1 = ν0λ0 where λ1, λ0 are wavelengths at
χ = χs and χ = 0. Then (447) implies

λ0
λ1

=
ν1
ν0

=
△E1

△E0

=
△t0
△t1

= 1 + z , (453)

using also the fact that ν0△t0 = ν1△t1. If we now combine (453) and (452) we
obtain

Ls

L0

=
△E1

△E0

△t0
△t1

= (1 + z)2 . (454)

The light travailing along χ direction satisfies the geodetic motion ds2 = −dt2 +
a2(t)dχ2 = 0 that implies

χs =

∫ χs

0

dξ =

∫ t0

t1

dt

a(t)
=

1

a0H0

∫ z

0

dz′

h(z′)
, h(z) =

H(z)

H0

, (455)

where we have take t0 as the time at present epoch and consequently χ0 = 0. We
have also used the fact that

1 + z =
a0
a

⇒ dz

dt
= −a0

ȧ
⇒ dt = −dzȧ

a0
. (456)

Now the form of the metric (450) implies that the area of two sphere at t = t0
is given by S = 4π(a0fK(χs))

2, where χs corresponds to the fact that we observe
signal from the distance χs. Hence the observed energy flux is

F =
L0

4π(a0fK(χs))2
. (457)

8Recall that the metric has following form:

ds2 = −dt2 + a2(t)[dχ2 + f2
K(χ)(dθ2 + sin2 θdϕ2)] , (450)

where

fK = sinχ , k = 1 ,

fK = χ , k = 0 ,

fK = sinhχ , k = −1 .

(451)

.
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Using these results we obtain

d2Ls
=

Ls

4πF
=
Ls4π(a0fK(χs))

2

4πL0

= a20fK(χs)
2(1 + z)2 . (458)

If we combine (455) with (458) and use the fact that in FRW background fK(χ) = χ
we obtain

dL =
1 + z

H0

∫ z

0

dz′

h(z′)
. (459)

We can invert this result and express H(z) as function of dL(z) and z

H(z) =

(
d

dz

[
dL(z)

1 + z

])−1

. (460)

If we measure the luminosity distance observationally we can determine the expand-
ing rate of the Universe.

As we know the energy density on the right hand side of the Friedmann equa-
tions includes all components that are presented in Universe, namely non-relativistic
particles, relativistic particles, cosmological constant:

ρ =
∑
i

ρ
(0)
i (a/a0)

−3(1+wi) =
∑
i

(1 + z)3(1+wi) , (461)

where we have used (447). Here wi and ρ
(0)
i correspond to the equation of state and

the present energy density of each component.

Then the Friedmann equation takes standard form

H2 = H2
0

∑
i

Ω
(0)
i (1 + z)3(1+wi) , Ω

(0)
i =

8πGρ
(0)
i

3H2
0

=
ρ
(0)
i

ρ
(0)
c

. (462)

Hence the luminosity distance in a flat geometry is given by

dL =
(1 + z)

H0

∫ z

0

dz′√∑
i Ω

(0)
i (1 + z′)3(1+wi)

. (463)

The formula above is the basic theoretical ingredient for the direct evidence of the
current acceleration of the Universe that is related to the observation of luminosity
distances of high redshift supernovae.

The Type Ia supernova (SN Ia) can be observed when the white dwarf starts
exceed the mass of the Chandrasekhar limit and explode. The common belief is that
SN Ia are formed in the same way irrespective of where they are in the Universe
that means that they have a common absolute magnitude M independent of the
redshift z. This implies that they can be treated as an ideal standard candle. We do
not go to these details but it is important that using these methods the luminosity
distance of the SN Ia supernovae that was observed is

H0dL ≃ 1.16 , for z = 0.83 . (464)
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On the other hand the theoretical estimate that follows from (463) is

H0dL ≃ 0, 95 , Ω(0)
m ≃ 1 ,

H0dL ≃ 1.23 , Ω(0)
m ≃ 0.3 , Ω

(0)
Λ ≃ 0.7 .

(465)

for two-component form of matter. There are of course lot of literature considering
the fitting the estimate date and the form of the matter that is present in Universe.
The conclusion is that the present experimental date suggests the form of the matter
given above.

4.5 The age of the Universe and the cosmological constant

Another important evidence for the existence of the cosmological constant emerges
when we compare the age of the Universe t0 to the age of the oldest stellar popula-
tions ts. It is clear that the consistency demands that t0 > ts. On the other hand it
is difficult to satisfy this condition for a flat cosmological model with normal form
of matter. On the other hand the presence of cosmological constant can resolve this
problem.

To begin with we review the estimates of the oldest stellar objects. It was esti-
mated that the age of the oldest objects lay in the interval 11−13 Gyr. Consequently
the age of the Universe needs to satisfy the lower bound t0 > 11 − 12 Gyr. Let us
calculate the age of the Universe from the Friedmann equations where we consider
three contributions to the matter: radiation (wr = 1/3), pressure-less dust (wm = 0)
and cosmological constant wΛ = −1.

H2 =
8πG

3
ρ− k

a2
= H2

0 [Ω
0
r

(
a

a0

)−4

+ Ω(0)
m

(
a

a0

)−3

+

+Ω
(0)
Λ − k0

(
a

a0

)−2

] , k0 =
k

a20H
2
0

.

(466)

Then using the fact that 1 + z = a0
a
we can determine the age of the Universe as

t0 =

∫ t0

0

dt′ =

∫ a0

0

da

Ha
= (−dz = a0da

a2
) =

=

∫ ∞

0

dz

H(1 + z)
=

∫ ∞

0

dz

H0x[Ω0
rx

4 + Ω
(0)
m x3 + Ω

(0)
Λ − k0x2]1/2

,

(467)

where x = 1 + z. Since the radiation dominated period is much shorter than the
total age of the Universe it is a natural to neglect its contribution to the formula
above. In other words the integral coming from the region z ≥ 1000 does not affect
too strongly the integral (467). Hence we set Ω

(0)
r = 0 when we evaluate t0.
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Let us start with the case when the cosmological constant is absent (Ω
(0)
Λ = 0).

Since k0 = Ω
(0)
m − 1 the integral (467) is equal to

t0 =

∫ ∞

0

dz

H0x

√
Ω

(0)
m x3 − k0x2

=

∫ ∞

0

dz

H0(1 + z)2
√
1 + Ω

(0)
m z

. (468)

For a flat Universe that is characterized with k0 = 0 and Ω0
m = 1 we obtain

t0 =
2

3H0

. (469)

As we know the present Hubble parameter is constrained to be

H−1
0 = 9.776h−1 Gyr , 0.64 < h < 0.8 . (470)

Then (469) gives
t0 = 8− 10 Gyr . (471)

However this does not satisfy the stellar age bound

t0 < 11− 12 Gyr .

In other words the flat Universe without a cosmological constant suffers from a
serious age problem.

For arbitrary Ω
(0)
m the equation (467) can be integrated and we obtain

H0t0 =
1

1− Ω
(0)
m

− Ω
(0)
m

2(1− Ω
(0)
m )3/2

ln

1−
√
1− Ω

(0)
m

1 +

√
1− Ω

(0)
m

 (472)

that is of course valid for Ω
(0)
m < 1 only. Let us consider various limits of the equation

above. For Ω
(0)
m → 0 we obtain H0t0 → 1 while for Ω

(0)
m → 1 we obtain t0H0 → 2/3.

As we know the observation of the CMB constraints the curvature of the Universe
to be close to be flat |k0| = |Ω(0)

m − 1| ≪ 1. However since then Ω
(0)
m ≈ 1 in this case

we again obtain

t0 =
2

3H0

≃ 8− 10 Gyr (473)

that is again consistent with the time of the stellar age bound.

On the other hand the age problem can be easily solved in a flat Universe (k0 = 0)
with a cosmological constant ΩΛ ̸= 0). In this case the equation (467) gives

H0t0 =

∫ ∞

0

dz

(1 + z)

√
Ω

(0)
m (1 + z)3 + Ω

(0)
Λ

=

=
2

3

√
Ω

(0)
Λ

ln

1 +

√
Ω

(0)
Λ√

Ω
(0)
m

 ,

(474)
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where Ω
(0)
m + Ω

(0)
Λ = 1. We see that H0t0 → ∞ for Ω

(0)
m → 0 and H0t0 → 2/3 for

Ω
(0)
m → 1. When Ω

(0)
m = 0.3 and Ω

(0)
Λ = 0.7 one has

t0 = 0.964 H−1
0 = 13.1 Gyr , for h = 0.72 . (475)

Hence this easily satisfies the constraint t0 > 11 − 12 Gyr that arises from the
observation the oldest stellar populations. Thus the presence of Λ solves the age-
crisis problem.

4.6 The Cosmological Constant Problem

In classical general relativity the cosmological constant Λ is a completely free pa-
rameter. Let us determine corresponding dimension of given constant. Note that it
appears in the action in the form

1

8πG

∫
d4x

√
−gΛ . (476)

Since the dimension of G is [G] =M−2 whereM is mass scale and since [d4x] =M−4

we find from the requirement that the action is dimensionless that the dimension of
Λ is given by the equation

[Λ] =M2 (477)

while

ρΛ =
1

8πG
Λ (478)

has dimension [ρΛ] = M4 as it is expected for the energy density. In fact, Λ is
completely free and its value should be determined by experiment.

The introduction of quantum mechanics changes the situation in some way.
Firstly, the Planck’s constant allows us to define the reduced Planck mass MP ∼
1018GeV , as well as reduced Planck length

LP = (8πG)1/2 ∼ 10−32cm . (479)

Hence the natural guess for the value of the cosmological constant is

Λguess
P ∼ L−2

P , (480)

or as an energy density

ρgusssvac ∼M4
P = (1018GeV )4 . (481)

We can find support for this guess by thinking about the quantum fluctuation of
vacuum. As we know any quantum field can be considered as collection of infinite
number of harmonic oscillators. From quantum mechanics we know that harmonic
oscillator with frequency ω has the vacuum energy 1

2
ℏω. Since each mode of the

quantum field contributes to the vacuum energy and the net result should be an
integral over all of these modes. Usually we perform an integration over infinite
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interval and hence this integral diverges so that the vacuum energy appears to be
infinite. However, the infinity arises from contribution of modes with very small
wavelengths, it is possible to be mistake to include such a modes since we do not
know what happens at these scales. In other words we do not have any justification
whether the quantum field theory approach can be applied in these small scales as
well. To account for our ignorance we should include the cut-off energy above which
we ignore any potential contributions and hope that some more complete theory
could justify this approach. If the cut-off is at the Planck scale we get the value
given above.

However, we claim to have measured the vacuum energy. The observed value is
different from the theoretical estimate:

ρobservac ∼ 10−120ρguessvac . (482)

In other words, we can express the vacuum energy in terms of the mass scale

ρvac =M4
vac (483)

so that the observed result is
M obs

vac ∼ 10−3eV. (484)

The discrepancy is thus
M obs

vac ∼ 10−30M guess
vac . (485)

In addition to the fact that it is very small to its natural value the vacuum energy
at present posses an additional puzzle. The coincidence between observed vacuum
energy and current matter density. It can be shown that the ratio of vacuum energy
to matter density depends on time as follows from

ΩΛ

ΩM

=
ρΛ
ρM

∼ a3 . (486)

As a consequence, at early times the vacuum energy was negligible with respect in
comparison to matter and radiation while at late times matter and radiation are
negligible.

To date the value of the cosmological constant is one of the most mysterious
problems in current physics, perhaps it could be compared with the mysterious
radiation of the black body at the end of 19’ century. On the other hand it is in-
structive to consider an example of supersymmetry which relates to the cosmological
constant problem in interesting way. The main idea of supersymmetry is that for
each fermionic degree of freedom there is corresponding bosonic degree of freedom
and vice-versa. For example, for spin 1/2 electron there should be spin 0 electron of
the same mass and charge. The good news is that while bosons contribute positively
to the vacuum energy the fermion contributions is negative. Hence, if the degrees
of freedom exactly match the vacuum energy is zero.

We do not, however, live in supersymmetric state. If supersymmetry exists, then
it must be broken at some scale Msusy. In other words, for physical processes where
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the characteristic energy is much smaller than Msusy we do not see any supersym-
metry and this is the case how our word looks like. On the other hand when we
probe physics with energy scale higher with Msusy we can expect that supersymme-
try is restored. More precisely, we can explain this situation as follows. We expect
that SUSY is broken in nature, for example spontaneously broken which means
that there is one ground state. The fluctuation above states gain masses and one
expect that super-partners of known particles, get masses of order Msusy. Then for
energies much smaller than Msusy these particles are not visible, on the other hand
for energies larger than Msusy we can neglect their masses and these particles look
like massless again. Then we say that supersymmetry is restored at higher energies.
This has an consequence for the vacuum energy. Recall that the vacuum energy
was defined as sum over infinite number of oscillators. For modes with energy much
larger thatMsusy these modes find their super-partners and hence their contribution
to the vacuum energy vanishes. This is of course does not happen for modes with
energy smaller than Msusy. In other words we can expect that the vacuum energy
will be equal to

ρvac ∼M4
susy . (487)

The question is how high Msusy should be. Nice property of SUSY is that it helps
us to understand hierarchy problem- why scale of electroweak symmetry breaking is
much smaller than the scales of quantum gravity or grand unification. For SUSY
to be relevant to the hierarchy problem we need the SUSY breaking scale to be just
above the electroweak breaking scale

Msusy ∼ 103 GeV . (488)

Since this is very close to the experimental bound it is now common belief that SUSY
should be discovered soon at Fermilab or CERN, if it is connected to electroweak
physics. However considering relation between SUSY and cosmological constant we
again see that we are in discrepancy with observation:

M (obs)
vac ∼ 10−15 Msusy (Experiment). (489)

Of course there exists a possibility that our estimate Mvac ∼Msusy is incorrect.
For example let us guess following formula

Mvac ∼
(
Msusy

MP

)
Msusy . (490)

Interestingly, sinceMP is fifteen orders of magnitude larger thanMsusy andMsusy is
fifteen orders of magnitude larger than Mvac this guess gives up the correct answer.
Unfortunately this is simple numerology, we do not know how this formula should
come from.

Another possibility how to explain the value of the cosmological constant is the
presumption that it is simply feature of our local environment. This is the idea
commonly known as anthropic principle.
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In order to give this idea concrete meaning let us presume that there are many
different regions of the Universe in which the vacuum energy takes different values.
Then we can expect that we find ourselves in a region which was suitable for our own
existence. Larger value of cosmological constant than we presently observe would
either have led to a rapid re collapse of the universe (if ρvac were negative) or an
inability to form galaxies (if ρvac were positive).

The idea environmental selection is based on certain special conditions and we
do not understand whether these conditions hold in our Universe. In particular we
have to show that there can be a huge number of different domains with slightly
different values of the vacuum energy and that these domains are big enough that
our entire observable Universe is in a single domain. Further we also have to show
that the possible variation of other physical quantities from domain to domain is
consistent with observations.

Recent work in string theory whose pure essence is the currently very popular
idea of String Landscape supports the idea that there are huge number of possible
vacuum states rather than a unique one. Unfortunately the detailed discussion of
this idea is beyond the scope of this introduction review.

To conclude, at present, unfortunately,t here is not any theory that could explain
the mysterious facts considering cosmological constant. To find such a theory is one
of the most prominent goals of physical community.

However there is another, maybe deeper problem related to the cosmological
constant. This is the problem of radiative stability of the cosmological constant.
For example, let us consider unimodular gravity where cosmological constant can
be simply interpreted as integration constant with value λ0. Then we should take
into account quantum nature of the matter keeping in mind that we can still treat
gravity as classical theory. In other words we do not need to carry about quantum
nature of gravity and consider matter in the context of effective field theory.

As we argued above the vacuum in quantum field theory has its own energy
that we call as ρvac. In principle we can add arbitrary constant value to the action
Λ so that the combination Λ

8πG
+ ρvac truly gravities. In principle we could fine

tuned Λ in such a way that Λ
8πG

+ ρvac is equal to observed value. However the
true problem of cosmological constant is its radial instability. In fact, in quantum
field theory we cancel divergences in physical parameters by fixing finite value by
empirical observation. The real problem arises when these calculations are unstable
again additional loop corrections.

4.7 The Cosmic Microwave Background

Most of the radiation we observe in Universe today is in the form of the almost
isotropic black body spectrum with temperature approximately 2.7K known as Cos-
mic Microwave Background (CMB). The small angular fluctuations in temperature
of the CMB reveal a great deal about the constituents of the Universe.

We have seen previously that the radiation gas evolves and sources the evolution
of the expanding Universe. Since the radiation and dusts have different evolution
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laws that as we approach earlier and earlier times in the Universe with smaller and
smaller scale factors the ratio of the energy density in radiation to that in matter
grows proportionally to 1/a(t). Furthermore, even particles which are now massive
and contribute to matter used to be hotter, at sufficiently early times were relativistic
and thus contributed to radiation. In summary, we say that the early Universe was
dominated by radiation. More precisely, at early times the CMB photons were easily
energetic enough to ionize hydrogen atoms and therefore the Universe was filled with
a charged plasma. This phase lasted until the photons red shifted enough to allow
protons and electrons to combine during the era of recombination. Shortly after this
time the photons decoupled from the now neutral plasma and free streamed through
the Universe.

More precisely, the concept of an expanding Universe provides us with a clear
explanation of the origin of the CMB. Black body radiation is emitted by bodies
in thermal equilibrium. The present Universe is certainly not in this state, and
so without an evolving space-time we should have no explanation for the origin of
this radiation. However, at early times, the density and energy densities in the
Universe were high enough that matter was in approximate thermal equilibrium at
each point in space, yielding a blackbody spectrum at early times. Then there is
crucial thermodynamic fact about the CMB. A blackbody distribution, such as that
generated at early Universe, is such that at temperature T , the energy flux in the
frequency range [ν, ν + dν] is given by Planck distribution

P (ν, T )dν = 8πh
(ν
c

)3 1

ehν/kT − 1
dν , (491)

where h is Planck’s constant and k is the Boltzmann constant. Note that this is
energy flux of photons which are in equlibrium with amtter at temperature T . Under
recalling ν → λν , with λ = constant the shape of the spectrum is unaltered if
T → T/λ. We know that the wave length are stretched with the cosmic expansion
and therefore the frequencies will scale inversely due to the same effect. We then
see that the effect of cosmic expanding on an initial blackbody spectrum is to retain
its blackbody nature, but just at lower and lower temperatures

T ∼ 1

a
. (492)

This is what we mean when we say that the Universe is cooling as it expands.

More precisely, let us presume that radiation begans free expansion at time tL
where radiation suddently went from being in thermal equilibrium with matter and
then expands freely. The subscript L means last scattering. Then let us presume
that photon has frequency ν at late time t after decoupling when the photon travels
freely. Due to the arguments given previously we have that it had a frequency

νL = ν
a(t)

a(tL)
(493)

To proceed further we observe that energy flux P (ν, T ) is related to the number
density n(ν, T ) as P (ν, T ) = hνn(ν, T ). Further, conservation of number of photons
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gives
n(t, ν)a3(t)dν = nT (tL)(νL)a

3(tL)dνL (494)

we get, using results given above we obtain number density at the time t to be equal
to

n(t, ν) =

(
a(tL)

a(t)

)3
a(t)

a(tL)
nT (tL) (495)

Now nT (tL) is equal to

nT (tL) =
8πν2(tL)

c3
1

e
hν(tL)

kT (tL) − 1
dν =

8π

c3
ν2a2(t)

a2(tL)

1

e
hν

kT (tL)
a(t)
a(tL) − 1

(496)

so that we find that the number density of photons with frequency ν at time t is
equal to

n(t, ν) =
8π

c3
ν2dν

exp hν
kT (t)

− 1
(497)

where

T (t) = T (tL)
a(tL)

a(t)
. (498)

We should stress that this conclusion does not change even in case when the de-
coupling of photons occurs at finite time interval on condition that the interaction
between photons and matter occurs during a finite time interval when these inter-
actions are limited to elastic scattering processes where photon frequencies do not
change.

The energy density in this radiation is given∫ ∞

0

hνn(ν)dν = aBT
4 , (499)

where aB is the radiation energy constant

aB =
8π4k4B
15h3c3

(500)

that using the present temperature of CMB given by Tγ0 = 2, 725K gives an equiv-
alent mass density (in units where c = 1)

ργ0 = aBT
4
γ0

= 4.64x10−34gcm−3 . (501)

Then the ration with the critical density gives

Ωγ =
ργ0
ρ0crit

= 2.47× 10−5h−2 . (502)

It is also interesting that there are another light particles that have similar properties
as photons in CMB which are neutrinos and antineutrinos of three different types
that gives a total energy density in the radiation. It is important to stress that
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radiation is ment all massless or nearly massless particles. Then the total energy
density of radiation is

ρR0 =

[
1 + 3

(
7

8

)(
4

11

)]
ργ0 = 7.80× 10−34gcm−3 . (503)

or equivalently

ΩR ≡ ρR0

ρ0crit
= 4.15× 10−5h−2 . (504)

Further, we can calculate number of densitz of photons at present to be equal to

nγ0 =

∫ ∞

0

8πν2dν

exp(hν/kT )− 1
=

30ζ(3)

π4

ABT
3

k
= 20.28[T (degK)]3cm−3 . (505)

where ζ(3) = 1.202077..... For T = 2.275K this gives a present number density
equal to

nγ0 = 410 photons/cm3 . (506)

Let us compare this number with the present number density of nucleons nB0 that
is equal to

nB0 =
3ΩBH

2
0

8πGmN

= 1.123× 10−5ΩBh
2 nucleons/cm3 , (507)

where now h is the Hubble constant in units of 100 kms−1Mpc−1. Since both nγ

and nB depend on time through the factor a−3(t) we see that the ration nγ/nB is
the same at least during the period when the photons travel freely.

4.8 The equilibrium era

In this section we study era when the radiation and matter were in thermal equilib-
rium. This happens for sufficiently high temperatures and densitites.

Let us consider equilibrium where entropy and the baryon number which, for
temperatures ≪ 1013K is given as the number of protons and neutrons, in any
comoving frame are constants and hence their ration of entropy per baryon was also
constant. Let us denote kBσ as the ration of entropy per baryon. We start with the
second law of thermodynamics which is known as

TdS = dU + pdV (508)

In our case we should apply it for densities. More precisely, we relate these quantities
to the number of baryons so that the second law of thermodynamics has the form

d(kσ) =
d(ϵ/nB) + pd(1/nB)

T
, (509)

where nB is baryon number density so that 1/nB is the volume per baryon, ϵ is
the thermal density and p− is the pressure. Let us presume that photons and non-
relativistic particles which are protons, helium nuclei and electrons correspond to
ideal gas. Then we can write

ϵ = aBT
4 +

3

2
nBNkT , p =

1

3
aBT

4 + nBNkT , (510)
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where N is fixed number of the non-relativistic particles per baryon. Then the
second thermodynamics law takes the form

d(σk) = 4aB
T 2

nB

dT − 1

3
aBT

3dnB

n2
B

+
3

2
dnBNk +

3

2
nBNk

dT

T
− 1

nB

NkBTdnB (511)

that can be integrated as

σ =
4aBT

3

3nBk
+N ln

(
T 3/2

nBC

)
, (512)

where C is integration constant. Now in thermal equilibrium σ is constant. We
know that at present the number of photons to number of nucleons is of order 108.
In other words the first term in the expression for σ is larger than the second one. It
is natural to presume that this quantity is also much larger than unity when photons
were in equilibrium with matters. Then since σ is constant at this era we should
also have that the ration T 3/nB was constant at this time. We also saw that this
ratio was constant when the photons were travelling freely so that we can say that
this ratio is constant from the beginning of the equilibrium era to present. Then

σ =
4aBT

3

3nBk
=

3.6nγ0

nB0

= 1.31× 108h−2Ω−1
B , (513)

where we used the fact that σ is constant and hence it can be determined by values
of nγ0 and nB0 at present. Since baryon number is conserved we have that nBa

3 is
constant and hence previous relation implies that T ∼ 1

a
.

It is important to stress that even if collisions cannot change distribution of pho-
ton energies when the photon number is much graeter than the number of charged
particles at sufficient high temperatures collisions change the energy of individual
photon. Let us now perform estimate when photons stop exchange energies with
electrons at this era.

It is well known that the rate of the interaction of individual photons with
electron is given by number

Λγ = σTnec , (514)

where ne is number density of electrons, σT = 0.666×10−24cm2 is the cross section of
Thomson scattering that is elastic scattering of photons by non-relativistic electrons.

The matter content at this era was following. 76% of matter is ionized hydrogen
and the rest was helium that were ionized at temperatures above 20000K. Since
hydrogen and helium were ionized we have one electron for nucleon for hydroen
and half an electron per nucleon for helium. Then the net number of electrons per
nucleon is

0.76 +
1

2
0.24 = 0.88 (515)

Then the number density of electrons at temperature T is

ne = 0.88nB = 0.88nB0
T 3

T 3
γ0

(516)
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Then

Λγ = 0.88nB0
T 3

T 3
γ0

σT c = 1.97× 10−19s−1 × Ω2
h

T 3

T 3
γ0

. (517)

where we used the fact that

nB0 =
3ΩBH

2
0

8πGmN

= 1.123× 10−5ΩBh
2nucleons/cm3 . (518)

In other words Λγ determines number of collision of one photons per electrons which,
of course, does not determine energy transfer between matter and radiation. In fact,
let us consider a photon with energy much less than mec

2. This photon will transfer
a momentum to the non-relativistic electron of order of its own momentum which is
typically about kT that implies that electron gains enerfy of order (kT )2/me. Then
the rate for energy transfer of order kT between photon and electrons is equal to the
rate of collisions given above multiplied by the fraction of the energy kT transferes
per colision

Γγ =

(
kT

me

)
Λγ ≈ 9.0× 10−29s−1ΩBh

2

(
T

Tγ0

)4

(519)

As the next step we have to compare this with the cosmic expansion rate that is
determined by H. If we presume that at this time the universe was dominated by
photons and neutrinos so that the cosmic expansion rate is equal to

H =
ȧ

a
= H0

√
ΩR

T 4

T 4
γ0

= 2.1× 10−20s−1

(
T

Tγ0

)2

(520)

Then Γγ is greater than H when

9.0× 10−29s−1ΩBh
2 T

4

T 4
γ0

> 2.1× 10−20s−1 T
2

T 2
γ0

⇒

T 2

T 2
γ0

> 0.23× 109
1

ΩBh

(521)

so that Γγ is greater than H until temeprature dropped below temperature Tfreeze
given by expression above equal to

Tfreeze = 1.5× 104K(ΩBh
2)−1/2 (522)

that, for ΩBh
2 ∼ 0.02 is equal to 105K.

Then, when the temperature is lower than 105 photons do not exchange energy
with electrons but Λγ is still 105 greater than H. In other words Λγ is larger thatn
H until temperature drops to much lower temperatures. To see this note that for
3K ≪ T ≪ 104K the universe was matter dominated where H depends on matter
as

H = H0

√
ΩMT 3/T 3

γ0 = 3.3× 10−18s−1
√

ΩMh2
(
T

Tγ0

)3/2

. (523)

96



This is equal to Λγ for temperatures

T ≈ 18K(ΩMh
2)1/3/(ΩBh

2)2/3 (524)

This is equal to T = 130K for ΩMh
2 = 0.15 and ΩBh

2 = 0.02. Then when tem-
perature will be low enough it happens that electrons and nuclei will be bounded
together to form neutral atoms. As a result the scattering rate Λγ drops rapidly
which happens at temperature about 3000K. This happens at time when era of
rapid scattering of photons and electrons ends. This is known also as the time of
last stattering.

4.9 Recombination and last scattering

We argued that for temperatures below T < 10K photons do not exchange energy
with electrons. Then they still continue scattering with free electrons but without
gain or loss energy. This situation stops when electrons will be bound into hydrogen
and helium. This is called as recombination.

Let us consider situation at time when protons, electrons and hydrogen and
hellium atoms are in thermal equilibrium at the temperature of radiation. In such a
situation the number density of non-relativistic particles of type −i at temperature
T is given by Maxwell-Boltzman formula

ni = gi(2πℏ)−3eµi/kT

∫
d3q exp

[
−
(
mi +

q2

2mi

)
/kT

]
, (525)

where mi is the particle mass gi is the number of spin states and µi is the chemical
potential of particle of type i. Main property of chemical potential is that it is
conserved in any reaction that occurs in the gas. We consider situation when i
correspond protons-p, electrons-e and hydrogen atoms in any bound states that we
denote as 1s, 2s, 2p, . . . .

We should also say few words about helium that was about 24% of the mass of
the early universe. It is important to stress that helium atoms are more bounded
than hydrogen atoms so that for T < 4.400K they are neutral atoms. As a result
they are not important for what we discuss here.

Further, electron and protons have spin 1/2 so that they are two states for them
and hence gp = ge = 2. On the other hand the 1s ground state of hydrogen atoms
have two states with spins 0 and 1 so that they have g1s = 1 + 3 = 4.

Let us firstly consider recombination and ionization reaction

p+ e⇌ H1s (526)

so that chemical potential obeys following law

µp + µe = µ1s . (527)

On the other hand photons can be freely created and destroyed in reactions

e+ p⇌ e+ p+ γ (528)
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so that their chemical potential vanishes. Then using the fact that

(2πℏ)−3 =

∫
d3p exp

(
− p2

2mkT

)
=

(
mkT

2πℏ

)3/2

(529)

so that the number of particles ni is equal to

ni = gie
µi/kT−mi/kT (2πℏ)−3

∫
dq2 exp

(
− q2

2mikT

)
=

= gie
µi/kT−mi/kT

(
mikT

2πℏ

)3/2

(530)

so that

n1s

npne

=
4eµ1s/kT−m1s/kT

(
m1skT
2πℏ

)3/2
2eµp/kT−mp/kT

(
mpkT

2πℏ

)3/2
2eµe/kT−me/kT

(
mekT
2πℏ

)3/2 =

=

(
mekT

2πℏ

)−3/2

e2(µ1s−µp−µe)/kT exp(−(m1s −mp −me)/kT ) =

=

(
mekT

2πℏ

)−3/2

exp(B1/kT ) ,

(531)

where we ingored difference between mass of hydrogen atom and mass of proton
except of exponential so that m1s = mp. We further used the conservation of the
chemical potential and instroduced the binding energy B1 of the 1s ground state of
hydrogen defined as

B1 = mp +me −mH = 13.6 eV (532)

Further, since the cosmic matter is charge neutral we have

ne = np . (533)

Let us now say few words about excited states. If we have equilibrum then the
number of excited states differs from the number density by a factor exp(−△E/kT )
where △E is the excitation energy and for temperatures below 4200K this expo-
nential factor is less than 6 × 10−13 so that we can neglect the presence of excited
hydrogen atoms in case the thermal equilibrium is maintained.

Further, at the time of recombination the amount of neutral or ionized hydrogen,
which are 1s and p states respectively, correspond to 76% of matter. In other words,

np + n1s = 0.76nB (534)

where nB is the number of density of baryons which are, at these temperatures
neutrons and protons. Let us introduce quantity X defined as

X =
np

np + n1s

. (535)
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This is known as fractional hydrogen ionization. This quantity satisfies Saha equa-
tion

X(1 + SX) = 1 . (536)

where

S =
(np + n1s)n1s

n2
p

. (537)

In fact, by definition we have

X(1 +XS) =
np

np + n1s

(1 +
(np + n1s)n1s

n2
p

np

np + n1s

) = 1

(538)

On the other hand from using (531) we find that S is equal to

S =
(np + n1s)n1s

n2
p

= 0.76nB
n1s

n2
p

= 0.76nB

(
mekT

2πℏ

)−3/2

exp(B1/kT ) ,

(539)

where we used the neutrality of universe np = ne in (531). For nB = nB0

(
T
Tγ0

)3
and for nB0 =

3ΩBH2
0

8πGmN
= 1.123× 10−5ΩBh

2 nucleons/cm3 we obtain

S = 1/1747× 10−22e157894/TT 3/2ΩBh
2 . (540)

This is very steep function where for example the equilibrium value of the ionization
dropped from 97% for T = 4.200K to less than 1% for T = 3000K.

This description gives correct temperature of the fractional ionization however
detailed treatment of this process is very complicated and we recommend [1] for
more details.

4.10 Anisotropy in CMB

It is also well known that CMB is not a perfectly isotropic radiation bath. Devi-
ations from isotropy at the level of one part in 105 have developed over the last
decade into one of our most precise observation tool in cosmology.The small tem-
perature anisotrophies on the sky are usually analyzed by decomposing the signal
into spherical harmonics via

△T
T

=
∑
l,m

almYlm(ϕ, θ) , (541)

where alm are expansion coefficients and θ and ϕ are spherical polar angles on the
sky. Next we define the power spectrum as

Cl =
〈
|alm|2

〉
. (542)
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The fluctuations in the CMB spectrum are useful for the study of cosmology
from many reasons. To understand why, we should show at the first place why they
arise. Matter today in the Universe exists in the form of clusters of starts, galaxies,
and clusters and super-clusters of galaxies. Our understanding how large scale
structures developed is that initially small density perturbations in the otherwise
homogeneous Universe grew through the gravitational instability to the objects we
observe today. Such picture requires that from place to place there were small
variations in the density of matter at the time when CMB firstly decoupled from the
photon-baryon plasma. Then CMB photons propagated freely through the Universe
nearly unaffected by anything except the cosmic expanding itself. However it the
time of their decoupling different photons were released from regions of space with
slightly different gravitational potentials. Since the gravitational potential affects
the photon redshift, photons from some regions redshift slightly more than those
from other regions , giving rise to a small temperature anisotropy in the CMB
observed today. In this sense CMB reflects the initial conditions that ultimately
gave rise to structure in the Universe.

It is important that CMB fluctuations give us the value of Ωtotal. In fact, careful
analysis of all of the features of the CMB power spectrum provide constraints on
essentially all of the cosmological parameters. For example, let us consider recent
result from WMAP . For total density of the Universe they find

0.98 ≤ Ωtotal ≤ 1.08 (543)

at 0.95 confidence which is a strong evidence for a flat Universe. Nevertheless, much
tighter constraints on the remaining values can be derived by assuming either an
exactly a flat Universe or a reasonable value of Hubble constant. When for example
we presume a flat Universe, we can derive values for the Hubble constant, matter
density (which then implies the vacuum density from Ωtotal = 1) and baryon density:

h = 0.72± 0.05 ,

ΩM = 1− ΩΛ = 0.29± 0.07 ,

ΩB = 0.047± 0.006 .

(544)

If we instead assume that the Hubble constant is given by the value determined by
HST project

H0 = 100 h km sec−1 Mpc−1 , h = 0.71± 0.06 (545)

we can derive separate tight constraints on ΩM and ΩΛ.

In summary, taking all of the data together we obtain a remarkably consistent
picture of the current constituents of our Universe:

ΩB = 0.04 ,

ΩDM = 0.26 ,

ΩΛ = 0.7 .

(546)
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There are many mysterious things considering these values. Firstly, the baryon
density is mysterious due to the asymmetry between baryons and antibaryons. Sec-
ondly, the problem with dark matter is that we have never detected it directly and
only have promising ideas as to what it might be. However the biggest mystery is
the vacuum energy, we now try to explain why it is mysterious and what kinds of
mechanism might be responsible for its value.

5 Early Times in the Standard Cosmology

Early times at the in the Standard Cosmology are characterized by very high tem-
peratures and densities with many particle species kept in (approximate) thermal
equilibrium by rapid interactions. Our goal is then to develop some tools of the
thermodynamics in expanding Universe. In fact, up the mild-1960 it was not clear
whether the early Universe had been hot or cold. This situation changed with the
Pensias and Wilson’s 1964-1965 discovery of 2.7 K microwave background radia-
tion arriving from the farthest reaches of the Universe since the existence of the
microwave background has been predicted by the hot Universe theory.

5.1 Review of the building blocks of the standard cosmology
and matter

For reader’s convenience we review some basics facts considering the standard mod-
els of cosmology.

• The Classical general relativity:

The classical general relativity provides good description of the geometry of
space-time for scales l ≫ lP = M−1

P = 10−33cm or equivalently for energy
scales below the Planck scale MP .

• Physical scales are stretched by the scale factor a(t) with respect to the co-
moving scales

lphys(t) = a(t)lcom . (547)

A physical wavelength redshifts proportional to the scale factor where its time
derivative obeys the Hubble law

dlphys(t)

dt
=
ȧ

a
alcom = H(t)lphys(t) =

lphys
dH(t)

. (548)

• The equilibrium temperature decreases as the Universe expands as

T (t) =
T0
a(t)

. (549)
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• The Standard Model of Particle Physics:

The current standard model of particle physics that is experientially tested
with remarkable precision describes the theory of strong (QCD), weak and
electroweak interactions (EW) as a gauge theory based on the gauge group

SU(3)c ⊗ SU(2)⊗ U(1)Y . (550)

The particle content is: three generations of quarks and leptons:(
u
d

) (
c
s

) (
t
b

)
;

(
νe
e

) (
νµ
µ

) (
ντ
τ

)
(551)

vector Bosons: 8 gluons (massless) that mediate the strong interactions in
QCD, Z0,W± that are massive with masses MZ = 91.18 ± 0.02 GeV and
MW = 80.4± 0.06 GeV that mediate the electroweak interactions, the photon
(massless)-the mediator of electromagnetic interaction and the scalar Higgs
that was discovered in 2011 at LHC with the mass MH = 125.09 GeV .

• It is known that the couplings associated with strong, weak and electrodynam-
ics interactions depend on the mass scale that characterize given process. The
current theoretical ideas propose that these couplings are unified in a grand
unified theory (GUT) at the scale

MGUT ∼ 1016 GeV .

Further, the UV scale where the Gravity is eventually unified with the rest of
particle physics is the Planck scale

MP ∼ 1019 GeV .

On the other hand the physics of the Standard Model describes phenomena
at energy scales below MS where

MS ∼ 100 GeV .

• The connection between the Standard model of particle physics and early
Universe cosmology is through Einstein’s equations that couple the space-time
geometry to the matter-energy content. We study gravity semi-classically at
energy scales well below the Planck scale. The Standard model of particle
physics is a quantum field theory (QFT) thus the space-time is classical
but with sources that are quantum fields. Semi classical gravity is defined by
the Einstein equations with the expectation value of the energy-momentum
tensor T̂ µν as sources

Rµν − 1

2
gµνR =

〈
T̂ µν
〉

M2
P

, (552)

where the expectation value
〈
T̂ µν
〉
is taken in given quantum state or density

matrix that is compatible with homogeneity and isotropy so that it has to be
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translational and rotational invariant. The ground state of the quantum field
theory is usually the state that solves the classical equations of motion or the
equations of motion with the quantum correction. In this case the vacuum
expectation value of the stress energy tensor corresponds to the classical one.
The general formula above has important in case we study the properties of
the fluctuations above given classical solutions.

As the next step we review basic facts about the Energy scales, time scales and
phase transitions

Energy scales,time scales and phase transitions

In this section we give a brief overview of the main cosmological epochs by focusing
on the energy scales of particle, nuclear and atomic physics.

Energy scales:

• Total Unification

It is expected that Gravitational, strong and electroweak interactions become
unified and described by a single quantum theory at the Planck scale MP ∼
1019 GeV . The most promising approach to this unification is in terms of string
theory however their theoretical consistency is still studied and experimental
confirmation is not available.

• Grand Unification:

Strong and electroweak interactions are expected to become unified at an
energy scale

MGUT ∼ 1016 GeV , TGUT ∼ 1029K

under large gauge group G, for example SU(5), SO(10) that breaks sponta-
neously

G→ SU(3)c ⊗ SU(2)⊗ U(1)Y

at scale below unification. Main arguments for the existence of GUT theories
follow from merging of the running coupling constants of the strong, electro-
magnetic and weak interactions for the minimal supersymmetric model and
also the explanation of the small neutrino masses via see-saw mechanism.

• Electroweak:

Weak and electromagnetic interactions are unified in the electroweak theory
based on the gauge group

SU(2)⊗ U(1)Y .

The weak interactions become short ranged after symmetry breaking phase
transition

SU(2)⊗ U(1)Y → U(1)em
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at the energy scale of the order of the mass of the Z0,W± vector bosons
corresponding to temperature

TEW ∼ 100 GeV ∼ 1015 K .

More precisely, at temperature T > TEW the symmetry is restored as a con-
sequence of the fact that the effective potential of the theory depends on
the temperature as well. For temperature T > TEW the stable minimum of
the potential corresponds to the symmetric phase where all vector bosons are
massless and hence the symmetry is restored. On the other hand for T < TEW

the stable minimum of the potential corresponds to the situation when the vec-
tor bosons W±, Z0 become massive through Higgs mechanism while photon
remains massless corresponding unbroken U(1) abelian symmetry of quantum
electrodynamics. The temperature TEW determines the temperature scale of
the electroweak phase transition in the early Universe.

• QCD

The strong interaction has a typical energy scale

ΛQCD ∼ 200 MeV .

At this coupling the coupling constant becomes strong αs ∼ O(1) that corre-
sponds to the temperature scale

TQCD ∼ 1012 K

QCD is asymptomatically free theory that means that the coupling between
quarks and gluons becomes smaller at large energies but diverges at the scale
ΛQCD. For energies below ΛQCD the quantum chromodynamics is strongly
interacting theory and quarks and gluons are bound into mesons and baryons.
This phenomenon is interpreted in terms of a phase transition at an energy
scale ΛQCD or TQCD. For T > TQCD the relevant degrees of freedom are
weakly interacting quarks and gluons, while below are hadrons. In the limit
when we can presume that up and down quarks are massless, QCD possesses
new SU(2)L⊗SU(2)R chiral symmetry that is spontaneously broken at about
the same temperature scale as the scale of QCD transition. Pions are the
Goldstone bosons that emerge in the breakdown of the chiral symmetry

SU(2)L ⊗ SU(2)R → SU(2)R+L .

The high temperature phase above TQCD where the quarks and gluons are
almost free (because the coupling is small by asymptotic freedom) is a quark-
gluon plasma.

• Nuclear Physics

The low energy scales that are relevant in cosmology are determined by the
binding energy of light elements. For example, the binding energy of deuterium
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is ∼ 2 MeV that corresponds to the temperature T ∼ 1010 K. This is the
energy scale that determines the origin of the primordial nucleosynthesis. The
first step in the system of the nuclear reactions that yields the primordial
elements is the formation of deuteron in the reaction

n+ p↔ d+ γ .

These nuclear reactions continue and all neutrons end up in nuclei, mainly
helium.

• Atomic physics

A further important low energy scale relevant for cosmology is the binding
energy of hydrogen ∼ 10 eV . This is the energy scale at which free protons
and electrons combine into neutral hydrogen. The large number of photons per
baryons implies that recombination actually takes place at an energy scare of
order 0.3 eV , at about 400000 years after the beginning of the Universe. At this
time when the neutral hydrogen is formed the Universe becomes transparent
since then photons no longer scatter and travel freely. These are the photons
measured by CMB experiments today.

Time Scales:

——————

• Inflation epoch

This is (according to current cosmological scenario) the earliest period in the
life of Universe where the scale factor grows exponentially as

a(t) = eHt .

Current experiments put upper bound on the energy scale of inflation as

H ≤ 1013 GeV .

In order to solve the entropy and horizon problems the inflationary stage hast
to last a time interval δt so that

δtH ∼ 60 ⇒ δt ∼ 10−34 sec .

• Radiation dominated era

The inflationary stage is followed by a radiation dominated era after a short
period of reheating during which the energy stored in the field that drives
inflation decays into quanta of many other fields. These fields reach the state
of thermal equilibrium through the scattering processes.

After the thermal equilibrium is reached we obtain a detailed picture of the
thermal history of the Universe. This description is based on the combination
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of the statistical mechanics with the basic principles of QFT: During the first
1000 years of the Universe and after the inflation stage that lasted ∼ 10−34

sec the Universe was radiation dominated. Universe also expands and cools
almost adiabatically. The electroweak transition occurred at the energy scale
T ∼ 100 GeV that corresponds to the time

tEW ∼ 10−12 sec .

The QCD transition occurs at

tQCD ∼ 10−5 sec .

Local Thermal Equilibrium (LTE) and Non equilibrium

Weather some process occurs in or out of a local thermodynamics equilibrium
depends on the comparison of two time scales-the expanding rate and the
reaction rate. To have a contact with standard thermodynamics note that we
can formulate the same problem as the problem of comparing of the cooling
rate (the rate how temperature decreases) and the rate of reaction. In fact
the rate of cooling is related to the rate of the expanding through the formula

Ṫ

T
= − 1

Ta2
ȧ = −H(t) (553)

as follows from the fact that T ∼ 1
a
. On the other hand collisions as well as

non-collisional processes contribute to establish the equilibrium with a rate Γ.
The local thermodynamic equilibrium is established when

Γ > H(t) (554)

In this case the evolution is adiabatic in the sense that the thermodynamics
functions depend slowly on time through the temperature. On the other hand
when the expanding is too fast

H(t) ≫ Γ

local thermodynamics equilibrium cannot be established, the temperature
drops too fast for the system to have time to relax.

While a detailed understanding of the relaxation dynamics requires an analysis
of the quantum Boltzmann equations a simple order of magnitude estimate
for a collision rate is given as follows.

The collision rate can be calculated in the standard statistical physics as

Γ ∼< σnv > , (555)

where < · · · > means statistical ensemble average and where σ is a scattering
cross section, n is the density of particles that scatter and v is velocity of given
particles. For electromagnetic scattering a typical cross section is of order

σem ∼ α2

Q2
,
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where Q2 is transferred momentum and α is the electromagnetic coupling
constant. At high temperature single photon exchange implies the estimate
(the transferred momentum is proportional to the momenta of one photon
that is proportional to the temperature)

σem ∼ α

T 2
.

The density of relativistic degrees of freedom is n ∼ T 3 and for v ∼ 1 (This
estimate follows from the fact that particles are ultra-relativistic) we obtain

Γem ∼ α2T .

In QCD that in the high temperature regime can be treated perturbatively
the estimate of the single gluon exchange can be performed in the similar way
and we get

ΓQCD ∼ α2
sT ,

where αs is corresponding coupling constant. We have to compare these esti-
mates with H. However H2 ∼ ρ that in the case of the radiation dominated
era we show that ρ ∼ T 4.Then in this case we find that H ∼ T 2/Mpl so that

ΓQCD

H
=
α2
sMpl

T
> 1 (556)

and we obtain that the strong interactions are in LTE for

T ≤ 1016 GeV

In the same way we obtain that electromagnetic interactions are in LTE for

T ≤ 1014 GeV .

It is important to stress for T ≤ α2Mpl ∼ 1016GeV all perturbative interac-
tions should be frozen out and are not effective in maintaining thermal equilib-
rium. In other words all known interactions together with any new interactions
that arise from grand unification are not sufficient for maintaining the ther-
mal equilibrium in the Universe at temperatures greater than 1016 GeV that
corresponds to the time earlier than 10−38s. In other words Universe is not in
thermal equilibrium at its earliest epoch.

The estimate in case of weak interaction is slightly more involved: a typical
scattering process with an energy transfer E ≪ MW has a scattering cross
section

σ ∼ G2
FE

2 , E ≪MW

whereas if E ≫MW we have

σ ∼ g4

E2
, E ≫MW .
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Then in thermal medium with E ∼ T and with a density of relativistic particles
n ∼ T 3 a typical weak reaction rate is

ΓEW ∼ g4T , T ≫MW

and
ΓEW ∼ G2

FT
5

for T ≪MW . In this latter temperature regime the ratio

ΓE

H
∼
(

T

MeV

)3

and hence the weak interactions fall out of LTE for T ≤ 1 MeV .

Even if this analysis provides an intuitive estimate for the relaxation time
scales this analysis neglected several important aspects that however have to
be studied on a case-by-case basis. One such an example of subtle effects are
Screening and infrared phenomena: The relaxation rates Γ were calculated on
presumption of an exchange of a vector boson of relativistic degrees of freedom.
In a medium at a high temperature and a density there are important screening
effects that can change these estimates.

5.2 Hot Big Bang

We begin this section with the description of the evolution of the Universe in its hot
stage.

The basic presumption is that it is plausible to extrapolate the evolution of
the Universe back in time using the known microscopic physics (electrodynamics,
nuclear physics, QCD and electroweak theory) and General Relativity. This theory
is called as Hot Big Bang Theory. According to this theory the Universe was
hotter at earlier stages (equivalently, at smaller values of a(t)) and the temperature
scales as a(t)−3 both for non-relativistic and relativistic particles. At high enough
temperatures the Universe was in the phase that is completely different from what
we observe today. Instead of the almost empty space with galaxies here and there
was dense, hot and almost homogeneous plasma that fills the whole Universe. This is
the area whose physical laws are governed by microscopic physics. Note that gravity
plays the role of the spectators of the theory and it is considered as classical. Of
course we consider back-reaction of this matter on the time evolution of the Universe
using the Friedmann equations.

More precisely, the hot Universe theory is based on the phenomena of the phase
transitions and the symmetry breaking. Let us consider for example the simplest
GUT model based on the gauge group SU(5). For temperature T ≥ 1015GeV there
was no difference between weak, strong and electroweak interactions. The matter in
the Universe was in the form of the dense plasma containing quarks, photons, gluons
etc. Then there was no problem in the transformation of quarks to leptons. In other
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words it does not make sense to speak about baryon conservation. At t1 ∼ 10−35sec
when the temperature has dropped to T ∼ Tc1 ∼ 1014 − 1015GeV the fist symmetry
breaking phase transition takes place: SU(5) breaks to SU(3) × SU(2) × U(1)
where SU(3) is gauge symmetry of the QCD, theory of the strong interactions. In
other words string interactions were separated from electroweak and leptons. Then
at t2 ∼ 10−10 sec when the temperature dropped to Tc2 ∼ 102 GeV there was a
second phase transition that broke the symmetry between weak and electromagnetic
interactions SU(3) × SU(2) × U(1) → SU(3) × U(1). As the temperature reduces
further to Tc3 ∼ 102 MeV there was another phase transition with the formation of
baryons and mesons from quarks.

5.3 Review of the study of the expansion of the Universe

Let us again analyze the evolution of the Universe. As we have argued before at early
times the Universe was radiation dominated, then matter dominated and presently
dark energy dominated while the curvature term k

a2
was never important.

Deceleration to Acceleration

Since the dark energy dominates at present the Universe accelerates. On the
other hand when matter was dominating the Universe was decelerating. In order to
see when the change in regime occurred we write the Friedmann equations as

ȧ2 =
8πG

3
ρa2 =

8πG

3
a2(ρM + ρΛ) , (557)

where we have neglected spatial curvature and also ultra-relativistic matter for the
moment. The reason for this simplification is that the relativistic matter dominates
an expanding of the Universe at much earlier stage. The time derivative of the
equation above implies

2ȧä =
8πG

3

(
ρ̇Ma

2 + 2(ρM + ρΛ)ȧa
)
=

=
8πGa

3
(−ȧaρM + 2ȧaρΛ)

(558)

where we used ρ̇M = −3 ȧ
a
ρM . The expression above is zero when (This event defines

the turning point between decelerating and accelerating phase)

2ρΛ
ρM

= 1 (559)

or equivalently
a30
a3

≡ (1 + z)3 =
2ΩΛ

ΩM

, (560)

where or course ΩM is time-dependent. For expected values ΩΛ = 0.7,ΩM = 0.3 we
have
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deceleration → acceleration: z ≈ 0.7

In other words, the Universe was decelerating until fairly recently. Before z ≈ 0.7
the expansion was dominated by the non-relativistic matter.

Radiation domination to matter domination

As we know the energy density of ultra-relativistic matter (radiation) scales as a−4

while the energy density of non-relativistic matter scales as a−3. Then it follows
that the dominant contribution to the energy density of the Universe at very small
a (small t) came from ultra-relativistic matter. Now we estimate zeq at which
the equilibrium between matter and radiation occurred. In other words we would
like estimate zeq when the expansion regime changed from the dominance of ultra-
relativistic particles to the dominance of non-relativistic matter, we write

ρM(t)

ρrad(t)
=

ρM0a
3
0a

−3(t)

ρrad0a40a
−4(t)

=

(
ρM
ρrad

)
0

a(t)

a0
, (561)

where again the subscript 0 refers to present values. Equilibrium occurs at

ρM(teq)

ρrad(teq)
≈ 1 (562)

that gives
a0

a(teq)
≡ 1 + zeq ≈

(
ρM
ρrad

)
0

=
ΩM

Ωrad

. (563)

Since Ωrad ≈ 10−4 ,ΩM ≈ 0.3 we obtain

radiation domination → matter domination : zeq ≈ 3000 .

The corresponding temperature is

Teq = T0(1 + zeq) ≈ 104K ≈ 1eV . (564)

At higher temperatures the expansion of the Universe was dominated by ultra-
relativistic matter. We must to stress that it is important for structure formation
that the most of the part of the lifetime of the Universe is dominated by non-
relativistic matter. This follows from the fact that the expanding rate at both
radiation dominated and vacuum dominated eras is such that gravitational pertur-
bations grow slowly and only during the matter dominated stage their growth is
fast enough so that the existing structures of the Universe can arise.

5.4 Epochs of the early Universe

There are two important epochs in the evolution of the Universe:Recombination
epoch that is the transition from plasma to neutral gas. This occurs at temperature
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T ∼ 3000K, t ∼ 3 · 105years and nucleosynthesis epoch that occurs at tempera-
tures T = 1MeV to a few ·10keV . Another event is neutrino decoupling. Briefly,
at high temperatures the neutrino was in thermal equilibrium with the rest of cos-
mic plasma. The plasma became transparent for neutrinos at temperature about
1MeV . This decoupling of neutrinos is very important for nucleosynthesis since it
affects the neutron-proton ratio just before nucleosynthesis (Since neutrinos decou-
ples the reaction that transfers proton into neutrons simply cannot occur) and hence
it leads to the abundances of light elements that need neutrinos for their formations.
Further, the fact that neutrinos decoupled much earlier than photons implies that
the present neutrino-to-photon ration is less than one. This is consequence of the
fact that photons are additionally heated, after neutrino decoupling, due to the
annihilations of e+ with e−.

If we move further back in time we obtain that the cosmic plasma has more
and more components. At temperatures roughly 0.5MeV there are many electrons
and positrons that are frequently pair created and annihilate: at T > 100MeV
the plasma contains muons and pions. This plasma remains in thermal equilibrium
except possibly for phase transitions

• QCD phase transition

At temperatures above 100MeV (QCD scale) strongly interacting particles
are dissolved into quarks and gluons. This quark-gluon plasma converts into
hadronic matter (mostly pions) during the quark-hadron phase transitions.
Theoretical estimates suggest that the temperature of this phase transition is
about 170MeV .

• Electroweak transition

Briefly, at temperatures well above 100GeV electroweak symmetry is unbro-
ken. The consequence of this fact is that W and Z bosons are massless. At
T ∼ 100GeV the phase transition of the electroweak symmetry breaking takes
place.

• GUT transition

It is slightly uncertain when we extrapolate back further (equivalently, we go
to higher temperatures), but if we do so we come to the Grand Unification
epoch. The temperature of this epoch is set by GUT scale, TGUT ∼ 1016GeV .
We expect that at this temperature the Grand Unified phase transition occurs.
On the other hand many models of inflation suggest that the Universe never
had such a high temperature after inflation.

Expansion rate and life-time at radiation domination

Now we will discuss in more details the expansion of the Universe in radiation
dominated stage where we will presume thermal equilibrium of all ultra-relativistic
species 9. In the very early stages of its evolution was filled with an ultra-relativistic

9This presumption is not however valid for neutrinos at temperatures below 1MeV .
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gas of photons, electrons, positrons, etc. At that time the excess of baryons over
antibaryons small fraction (at most 10−19) of the total number of particles. The
matter could be considered as a gas of free particles where their rest masses are
small compared to temperature. In other words the energy density and entropy
density corresponds to the massless species

ρ = 3p =
π2

30
g∗(T )T

4 , s =
2π2

45
g∗(T )T

3 . (565)

where the effective number of particle species g∗(T ) is g∗(T ) = gB(T ) +
7
8
gF (T )

where gB and gF are the number of boson and fermions species degrees of freedom
with masses m ≪ T . For example, for photons gB = 2, gF = 2 for neutrinos and
gF = 4 for electrons (Let us sketch the way how to derive the dependence of ρ on
T . By definition

ρ =

∫
d3ke(k)f(

e

T
)

where f( e
T
) is distribution functions and e(k) is an energy. For particles withm≪ T

we can neglect their rest masses so that e = k. After substitution k
T
= m we obtain

ρ = T 4
∫
d3me(m)f(m) ∼ T 4.)

Generally g∗(T ) increases with increasing T but rather slowly. This follows from
the fact that at higher temperatures more species are ultra-relativistic (say, electrons
contribute at T > 0.5MeV and do not contribute at lower temperatures.)

Let us now list some time scales that are relevant for the early stage of the
evolution of the Universe:

• Nucleosynthesis

The temperature relevant for nucleosynthesis rages from a few MeV to about
70keV . This era begins at

t ∼ 1 s . (566)

and ends at
t ∼ 200 s ∼ 3 min . (567)

After this brief introduction we will discuss the properties of the early Universe in
brief details.

5.5 Describing Matter

We try to describe matter a perfect fluid described by an energy-momentum tensor

Tµν = (ρ+ p)UµUν + pgµν , (568)

where Uµ is the fluid four-velocity, ρ is the energy density at rest frame of the fluid
and p is the pressure in that same frame. By definition the stress energy tensor is
covariantly conserved

∇µT
µν = 0 . (569)
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In more complicated examples a fluid will be characterized by quantities in addition
to the energy and pressure. Many fluids have a conserved quantity associated with
them and so we will also introduce a number flux density Nµ which is also conserved

∇µN
µ = 0 . (570)

For non-tachyonic matter Nµ is a time-like 4-vector and therefore we can write

Nµ = nUµ . (571)

In the same way we can introduce an entropy flux density Sµ. This quantity is not
conserved but rather obeys a covariant version of the second law of thermodynamics

∇µS
µ ≥ 0 . (572)

It is useful to resolve Sµ into components parallel and perpendicular to the fluid
4-velocity

Sµ = sUµ + sµ , (573)

where sµU
µ = 0. The scalar s is the rest-frame entropy density that can be written

as

s =
ρ+ p

T
. (574)

We must also specify an equation of state. Typically we do this in such a way as to
treat n and s as independent variables.

For adiabatic expanding Universe sa3 ≈ const eq. (565) implies

T (t) ∼ 1

a(t)
. (575)

We see that the temperature cools during the expansion of the Universe. The
background radiation is a result of the cooling of the hot photon gas during the
expansion of the Universe.

5.6 Particles in Equilibrium

The various particles inhabiting the early Universe can be characterized according
to three criteria: in equilibrium vs. out of equilibrium (decoupled), bosonic vs
fermionic and relativistic (velocities near 1) vs. non-relativistic. In this subsection
we will consider species which are in equilibrium with surrounding thermal bath.

Now we must discuss the conditions under which a particle is in equilibrium
with the surrounding thermal plasma. The particles will be in thermal equilibrium
as long as its interaction rate is larger then the expansion rate of the Universe. In
other words, particles have enough time to share the energy among themselves or
equivalently, equilibrium requires that it should be possible for the products of a
given reaction have the opportunity to recombine in the reverse reaction. If the
expanding of the Universe is rapid enough this will not happen. A particle species
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for which the interaction rates have fallen below the expanding rate of the Universe
is said to have frozen out or decoupled. The interaction rate of some particle with the
background plasma is Γ where Γ is inverse of the mean time between the reaction
of given particle species with the thermal background. Now the particle will be
decoupled from the thermal bath when the particle has not time enough to react
with thermal bath if

Γ ≪ H , (576)

where the Hubble constant H sets the cosmological timescale.

At the early Universe the particles are in thermal equilibrium (unless they are
very weakly coupled). This can be seen from Friedmann equation when the energy
density is dominated by plasma with ρ ∼ T 4 and we have

H2 ∼ ρ⇒ H ∼ √
ρ ∼

(
T

MP

)
T (577)

so that the Hubble parameter is suppressed with respect to the temperature by a
factor of T/MP . At extremely early times (near the Planck era) the Universe may
be expanding so quickly so that no species are in equilibrium but as the expansion
rate slows the equilibrium becomes possible.

At extremely early times near the Planck era, the Universe may be expanding so
quickly that no species are in equilibrium; as the expansion rate slows, equilibrium
becomes possible. On the other hand the interaction rate Γ for a particle with cross
section σ is typically of the form

Γ = n ⟨σv⟩ , (578)

where n is the number density and v is typical particle velocity. Since n ∼ a−3

the density of particles will reduce so that the equilibrium can once again no longer
be maintained. In our current Universe no species are in equilibrium with the
background plasma (represented by CMB photons).

Now we review some facts about particles at equilibrium. For a gas of weakly-
interacting particles we can describe the state in terms of a distribution function
f(p) where the three momentum p satisfies

E(p)2 = m2 + |p|2 . (579)

The distribution function characterizes the density of particles of given momentum.
The number density, energy density and pressure of some species labeled i are given
by

neq
i (T ) =

gi
(2π)3

∫
fi(p)d

3p =
gi
2π2

T 3I11i (∓) ,

ρeqi (T ) =
gi

(2π)3

∫
E(p)fi(p)d

3p =
gi
2π2

T 4I21i (∓) ,

peqi (T ) =
gi

(2π)3

∫
|p|2

3E(p)
fi(p)d

3p =
gi
6π2

T 4I03i (∓) ,

(580)
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where

Imn
i (∓) =

∫ ∞

xi

ym(y2 − x2i )
n/2(ey ∓ 1)−1dy , xi =

mi

T
, (581)

and where gi is number of spin states of the particles (massless photons, gγ = 2,
massive vector bosons Z , gZ = 3.) Further, −/+ refers as before to bosons/fermions.
As usual, particles and antiparticles are treated as separate, for spin 1/2 electrons
and positrons we have ge− = ge+ = 2. In thermal equilibrium at a temperature T
the particles will be in either Fermi-Dirac or Bose-Einstein distributions

f(p) =
1

eE(p)/T ± 1
, (582)

where the plus sign is for fermions while the minus sign for bosons.

We can do the integrals over the distribution functions in two opposite limits,
particles which are relativistic T ≫ m and highly non-relativistic T ≪ m. For rela-
tivistic (R) particles that are characterized by condition xi =

mi

T
≪ 1 the integrals

in (581) are

bosons : I11R (−) = 2ζ(3) , I21R (−) = I03R (−) =
π4

15
,

fermions : I11R (+) =
3ζ(3)

2
, I21R (+) = I03R (+) =

7π4

120
,

(583)

where ζ is Riemann Zeta function and ζ(3) = 1.202. Then we obtain, for relativistic
bosons, following results:

neq
i =

ζ(3)

π2
giT

3 ,

ρeqi =
π2

30
giT

4 ,

peqi =
1

3
ρi

(584)

and for relativistic fermions

neq
i =

(
3

4

)
ζ(3)

π2
giT

3 ,

ρeqi =

(
7

8

)
π2

30
giT

4 ,

peqi =
1

3
ρi .

(585)

115



On the other hand non-relativistic (NR) limit, where we have x≫ 1 is the same for
bosons and fermions and we recover the Boltzmann distribution

neq
i = gi

(
miT

2π

)3/2

e−mi/T

ρeqi = mini ,

peqi = neq
i T ≪ ρeqi .

(586)

independently of whether the particle is bosons or fermions. The results given
above imply several interesting facts. For example, since the densities of relativis-
tic particles are roughly the same, the relativistic particles remain approximately
equal abundances in equilibrium. We also see that once the particles become non-
relativistic, they become exponentially suppressed with respect to the relativistic
species. This is a result of the fact that it becomes harder for massive particle-
antiparticle pairs to be produced in a plasma with T ≪ m.

We would like also mention that although matter is much more dominant than
radiation in the Universe today, since their energy densities scale differently, the
early Universe was radiation dominated. We can write the ratio of the density
parameters in matter and radiation as

ΩM

ΩR

=
ΩM0

ΩR0

a

a0
=

ΩM0

ΩR0

(1 + z)−1 . (587)

In the same way as we did above we can determine the redshift of the matter-
radiation equality as

1 + zeq =
ΩM0

ΩR0

≈ 3× 103 . (588)

From the form of the expression above where we compare the densities that scale
as a−3 for matter and a−4 for radiation it is clear that we have made an assumption
that particles that are non-relativistic today were also non-relativistic at zeq. It can
be shown that this presumption is safe.

At any given time not all particles will, be in fact in equilibrium at a common
temperature T . A particle will be in kinetic equilibrium with the background ther-
mal plasma, i.e when Ti = T only while it is interacting. In other words as long as
the scattering rate

Γ = n < σv > > H . (589)

Here < σv > is the velocity averaged cross-section for 2 → 2 processes such as

iγ → iγ , il± → il± (590)

that maintain good thermal contact between i-particles and the particles (that has
the particle density n) that constitute the background plasma (γ-fotons, l±-refers
to electrons which are abundant down to T ∼ me and remain strongly coupled to
photons through the Compton scattering through the entire Radiation dominate era
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so that Te = T always.) We say that i-particle decouple at the temperature Ti when
the condition

Γ(Ti) ≈ H(Ti) (591)

is satisfied. Of course no particle is ever truly decoupled since there are always
some residual interactions. On the other hand it can be shown that their effects are
generally negligible.

If the particle is relativistic at this time (mi < Ti) then it will also be in the
chemical equilibrium with the thermal plasma that is characteristic with the con-
dition for chemical potentials of the particles i µi , their anti-particles µi and the
chemical potential of photons µγ

µi + µi = µl+ + µl− = µγ = 0 (592)

through processes such as
ii↔ γγ , ii↔ l+l− (593)

Then its abundance at decoupling will be just the equilibrium value at the temper-
ature of decoupling

neq
i (Ti) =

(gi
2

)
nγ(Ti)fB.F , (594)

where fB = 1 if i is boson and fF = 3
4
if i is fermion.

Then the decoupled particles i will expand freely without interactions so that
their number in a comoving volume is conserved as nia

3 = const and their pressure
and energy density are functions of the scale factor a alone. Even if these particles
do not interact their phase space distribution will retain their equilibrium form
(582) with Ti. As long as the particles remain relativistic, Ei and Ti scale as a−1.
Initially the temperature Ti will track the photon temperature T . However as the
Universe cools below to some mass thresholds (in other words temperature is less
than some mass of particles), these massive particles will become non-relativistic and
annihilate. The annihilation will produce additional photons and other interacting
particles that has an effect of the heating of them. On the other hand Ti is not
affected and hence Ti will drop below T and consequently the faction ni/nγ will
decrease below its value at decoupling.

It can be shown that decoupled photons maintain a thermal distribution even if
they are not in thermal equilibrium. This follows from the fact that the thermal dis-
tribution function redshifts into similar distribution function with lower temperature
proportional 1/a. Then we can speak about an effective temperature of relativistic
species that freezes out at a temperature Tf and a scale factor af so that

afTf = aT (a) ⇒ T rel(a) = Tf

(af
a

)
. (595)

For example, neutrinos decouple at T ≈ 1MeV , shortly thereafter electrons and
positrons annihilate into photons and hence transfer energy and entropy into plasma
leaving neutrinos decoupled. Consequently we expect a neutrino background and

117



current Universe with a temperature of approximately 2K while the photon temper-
ature (that arise from the annihilation of electrons and positrons after decoupling
of neutrinos) is about 3K.

Similar effect occurs for particles which are non-relativistic at decoupling however
there is one important difference. For non-relativistic particles the temperature is
proportional to 1

2
mv2 that has the redshift as 1/a2 and we therefore have

T non−rel
i (a) = Tf

(af
a

)2
. (596)

The whole picture is as follows: We imagine that the species freeze out while rela-
tivistic or non-relativistic and stay this way afterwards.

Now the notion of the effective temperature allows us to define a corresponding
notion of an effective number of relativistic degrees of freedom that can be defined
as

g∗ =
∑
bosons

gi

(
Ti
T

)4

+
7

8

∑
fermions

gi

(
Ti
T

)4

, (597)

where the temperature T is actual temperature of the background plasma assumed
to be in equilibrium while we have taken into account that different species i could
have a thermal distribution with a different temperature that of the photons. Then
the total energy density in all relativistic species comes from adding the contribution
of each species and we obtain a simple formula

ρ =
π2

30
g∗T

4 . (598)

We can do the same thing for the entropy density. Since the entropy density of rel-
ativistic particles goes as T 3 rather T 4, we define the effective number of relativistic
degrees of freedom for entropy as

g∗S =
∑
bosons

gi

(
Ti
T

)3

+
7

8

∑
fermions

gi

(
Ti
T

)3

(599)

so that the entropy density of relativistic species is then

s =
2π

45
g∗ST

3 . (600)

For example, in Standard model, we have

g∗ ≈ g∗S


100 for T > 300 MeV
10 for 300 MeV > T > 1 eV
3 for T < 1 MeV

(601)

The events that change the effective number of relativistic degrees of freedom are
the QCD phase transition at 300MeV where quarks and gluons start to form bound
states, and the annihilation of electron-positron pairs at T ≈ 1 MeV .
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Thanks to the release of the energy into the background plasma when species
annihilate it is only approximation that the temperature goes as 1/a. It is better to
say that comoving entropy density is conserved so that

s ≈ a−3 (602)

which holds in all forms of adiabatic evolutions, entropy is only produced at a process
like a first-order phase transition or out-equilibrium decay. It is expected that the
entropy production from such processes is very small compared to the total entropy
and the adiabatic presumption is excellent approximation for almost the entire early
Universe. If we now combine (602) with (600) we obtain a better expression for the
evolution of the temperature

T ≈ g
−1/3
∗S a−1 . (603)

We see the difference with the naive time dependence T ∼ 1/a. In fact, the temper-
ature will consistently decrease under adiabatic evolution in an expanding Universe
but it decreases more slowly when the effective number of relativistic degrees of
freedom is diminished.

5.7 Thermal relics

As we know particles typically do not stay in equilibrium forever, they density can
be so low that the interactions become infrequent and the particle freeze out. Since
essentially all of the particles in our current universe belong to this category it is
important to study the relic abundance of decoupled species.

We have seen that relativistic or hot particles have a number density that is
proportional to T 3 in equilibrium. Thus a species X that freezes out while still
relativistic will have number density at freeze-out Tf given by

nX(Tf ) ∼ T 3
f . (604)

Since this is comparable to the number density of photons at that time and since
after this freeze-out both photons and species X have densities that dilute by a
factor a(t)−3 as the Universe expands, we see that the abundance of X particles
today should be comparable to the abundance of CMB photons

nX0 ∼ nγ0 ∼ 102cm−3 . (605)

We express this estimate as 102 rather as the precise number since the roughness of
this estimate does not warrant such misleading precision. For example, neutrinos
that are light (mν < MeV ) have a number density of nν = 115cm−3 for each
species. Then a corresponding contribution to the density parameter (if they are
heavy enough to be non-relativistic today)

Ω0,ν =
( mν

92 eV

)
h−2 . (606)
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Thus, a neutrino with mν ∼ 10−2 eV would contribute Ων ∼ 2× 10−4. We see that
this is not large enough to make neutrinos to be dark matter.

Let us now consider species X that is non-relativistic or cold at the time of
decoupling. In this case it is much harder to calculate the relic abundance of a cold
relic than a hot one simply because the equilibrium abundance of non-relativistic
species is changing rapidly with respect to the background plasma. Then we have
to be quite precise following the freeze-out process to obtain a reliable answer. The
direct calculation typically involves very complicated procedure. We rather give
here reasonable approximate expression. If σ0 is annihilation cross-section of the
species X at temperatures T = mX , then the final number density in terms o the
photon density can be determined to be equal to

nX(T < Tf ) ∼
1

σ0mXMP

nγ . (607)

Since the particles are non-relativistic at the time of decoupling, they are certainly
non-relativistic today and their energy density is

ρX = mXnX . (608)

Then finally we obtain the density parameter

ΩX =
ρX
ρcr

∼ nγ

σ0M3
PH

2
0

. (609)

Numerically, when ℏ = c = 1 we have 1 cm ∼ 2× 10−14 GeV so the photon density
today is

nγ ∼ 100 cm−3 ∼ 10−39 GeV −3 . (610)

The present value of the Hubble constant is

H0 ∼ 10−42 GeV (611)

and the Planck mass is
MP ∼ 1018 GeV . (612)

Then finally (609) gives

ΩX ∼ 1

σ0(109 GeV 2)
. (613)

We see an interesting fact that ΩX does not depend on mX but it depends on the
annihilation cross-section. Let us elaborate more about this result and consider
some weakly interacting massive particle. The annihilation cross-section of these
particles, since they are weakly interacting, should be σ0 ∼ α2

WGF , where αW is
weak coupling constant and GF is the Fermi constant. Using

GF ∼ (3000 GeV )2 , αW ∼ 10−2 (614)

and we obtain
σ0 ∼ 10−9 GeV −2 . (615)
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Then the density parameter of such particles would be

ΩX ∼ 1 . (616)

In other words, a stable particle with weak interaction cross section produces relic
density of order of the critical density today and hence provides a perfect candidate
for cold dark matter.

After this introduction let us present the simplest possible scenario, that, of
course, can be refined by more careful calculations.

Let us again assume that there exists a heavy stable particle X and its anti-
particle X. Let us also presume that the dominant process in which these particles
can be destroyed or created is their pair-annihilation or creation with annihilation
products being the particles of the Standard Model. Let us also presume that there
is no asymmetry betweenX andX in the early Universe, in other words the densities
X and X are equal to each other. However we have to mention that this is actually
a strong assumption that is valid in many, but not all, realistic extensions of the
Standard Model 10.

Let us outline the overall cosmological behavior of these particles. At hight
temperatures, T ≫ MX , the X- particles are in thermal equilibrium with the rest
of cosmic plasma. There are many X − X pairs in the plasma that are continu-
ously created and annihilate. As the temperature drops below MX , the equilibrium
number density decreases. At some “freeze-out” temperature Tf the number density
becomes so small so that X and X can no longer meet each other during the Hubble
time and their annihilation terminates. After that the number densities of survived
X and X decreases as a−3(t) and these relic particles contribute to the mass density
of the present Universe. The purpose of the following analysis is to estimate the
range of properties of X particles in which their present mass density is of the order
of the critical density ρc so that X may serve as dark matter candidates.

Let us again assume thermal equilibrium. It is well known that the mean free
path < l > of a particle in a gas depends on the lifetime τann of a non-relativistic
X-particle as

σann · v · τann · nX =< l > , (617)

where v is mean velocity of X particle, σann is the annihilation cross section at
velocity ν and nX = nX is equilibrium number density

nX = gX

(
mXT

2π

)3/2

e−
mX
T . (618)

In order to find the life-time of the non-relativistic particle X we have to take some
reasonable value of < l >. It is natural to presume that it is of order 1 in the natural
units < l >∼ 1. Further, it can be also shown that for non-relativistic velocities the
annihilation cross section takes the form

σann =
σ0
ν
, (619)

10In fact, the alternative scenario with the generation of X asymmetry is also interesting since
it might be related to baryon asymmetric the density of dark matter.
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where σ0 is constant. We will discuss its value later. We should now compare the
life-time with the Hubble time, or annihilation rate Γann = τ−1

ann with the expansion
rate H. At T ∼ mX the equilibrium density is of order nX ∼ T 3 and Γann ≪ H
for not too small σ0. Conversely, the life-time is much smaller than Hubble time
and consequently the annihilation and creation of X −X pairs is rapid and hence
X-particles are in equilibrium with plasma. On the other hand for very small
temperatures T ≪ mX the number density nX is exponentially small and Γann ≪ H
(τann ≫ H−1). Than it is clear that the thermal equilibrium between X-particles
and background plasma is not maintained. In other words the number density nX

gets diluted only because of cosmological expansion.

The freeze-out temperature Tf is determined by the relation

τ−1
ann ≡ Γann ∼ H , (620)

where we can still use the equilibrium formula as X particles are in thermal equi-
librium (with respect to annihilation and creation) just before freeze-out. Then we
find

σ0nX(Tf ) ∼ H ∼
T 2
f

M∗
P

, (621)

where we have introduced the effective Planck mass

M∗
P =

MP

1.66
√
g∗(t)

, (622)

and hence the expansion rate is equal to

H(t) =
T 2(t)

M∗
P

. (623)

The solution of the equation (621) gives the freeze-out temperature, up to log terms

Tf ≈ mX

ln(m∗
PmXσ0)

. (624)

This temperature is quite bit smaller than mX which means that X-particles freeze
out when they are indeed non-relativistic and hence it is natural to call them as cold
dark matter.

At the freeze-out temperature we use (621) to get

nX(Tf ) =
T 2
f

M∗
Pσ0

. (625)

It is interesting to note that this density is inversely proportional to the annihilation
cross section. The explanation of this fact is that for higher annihilation cross section
the creation-annihilation processes are longer in equilibrium and less X particles
survive.
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In order to estimate eh present density X-particles, it is convenient to consider
ratio nX/s where s is the entropy density

s =
2π2

45
g∗T

3 . (626)

The point is that during the adiabatic expansion after freeze-out, the entropy density
scales as s ∼ a−3 since in the adiabatic process sa3 = const. In the same way since
we are in the freeze-out regime we have that nXa

3 = const we obtain that nX scales
in the same way nX ∼ a−3. Then, up to a factor of order 1, this ratio at freeze-out
is

nX

s
∼ 1

g∗(Tf )M∗
PTfσ0

. (627)

At late times, the entropy density, again up to actor of order 1, is equal to the
number density of photons, so the present number density of particles is of order

nX,0

s0
=

(nX

s

)
freeze−out

⇒

⇒ nX,0 = s0

(nX

s

)
freeze−out

∼ sγ,0

(nX

s

)
freeze−out

(628)

and the present mass density is

ρX,0 = mXnX,0 =∼ nγ,0
ln(M∗

PmXσ0)

g∗(Tf )M∗
Pσ0

, (629)

where we have also used (624). The formula above is very interesting since we see
that the present mass density depends mostly on one parameter, the annihilation
cross section σ0. The dependence on the mass of X-particle is through the logarithm
and g∗(Tf ) is very mild. From this formula we derive the condition that ensure that
X-particles are dark energy candidates, i.e. their present mass density is of order ρc

σ0 ∼
nγ,0

g∗(Tf )M∗
Pρc

ln(M∗
PmXσ0) (630)

that leads to the estimate

10−11σ0 < 10−9 GeV −2 , (631)

where the uncertainty in the estimate is a consequence of the way we deal with
various numerical factors. In any case the estimate given above tells us what the
relevant range of mass scales is. To see this note that the annihilation cross section
may be parameterized as

σ0 =
α2

M2
, (632)

where α is some coupling constant and M is the mass scale (In the calculation
above M2 = GF .). With α ∼ 10−2 the estimate of the mass scale for σ0 ∼ 10−11 is
roughly

M ∼ 1 TeV . (633)
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In other words, we very mild assumptions we find that the non-baryonic dark energy
matter may naturally originate from the TeV -scale physics. Then it follows that
one natural candidate for the cold dark matter is neutralino. More precisely, in
supersymmetric extensions of the Standard Model the neutralino-that is mixture of
super-partners of photon, Z-boson and neutral Higgs bosons- is the lightest super-
symmetric particle that is often stable with the suitable value of the annihilation
cross section. In fact, the search for both direct and indirect signals from neutralino
dark matter is an active area of experimental research.

The mechanism discussed here is of course not the only one mechanism that is
able to model cold dark matter. Other dark matter candidates include very heavy
relics produced toward the end of inflation, axions, gravitinos, massive gravitons
and so on.

5.8 Baryongenesis

The symmetry between particles and antiparticles is firmly established in collider
physics. However then we lead to the following question; why the observed Universe
is composed almost entirely of matter with little or no primordial antimatter.

Outside the particle accelerators the antimatter can be seen in cosmic rays in
the form of a anti protons where the ratio of these andirons to protons is

np

np

∼ 10−4 . (634)

However this ratio is consistent with secondary anti proton productions through
accelerator-like processes

p+ p→ 3p+ p (635)

as the cosmic rays stream toward us. In other words there is no evidence for primor-
dial antimatter in our galaxy. Also let us imagine that we have clusters of matter
and antimatter galaxies. Then we could expect that we could detect background of
γ-radiation from nucleon anti nucleon annihilations with clusters. This background
is not observed and so we conclude that there is negligible antimatter on the scale
of clusters.

All these considerations put an experimental upper bound on the amount of
antimatter in the Universe.

In order to study this problem in more details let us introduce the baryon to
entropy ratio

η ≡ nB

s
=
nb − nb

s
, (636)

where nB is the difference between the number of baryons and anti-baryons per unit
volume. The range of η was determined recently as is equal to

η = 6.1× 10−10 ± 0.210−10 . (637)
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At early times, at temperatures well above 100MeV ,cosmic plasma contained many
quark-anti quark pairs whose number density was of the order of the entropy density

nq + nq ∼ s , (638)

while baryon number density was related to densities of quarks and antiquarks as
follows (baryon number of quarks equals 1/3)

△nb =
1

3
(nq − nq) . (639)

Hence in terms of quantities characterize the very early epoch, the baryon asymme-
try may be expressed as

η ∼ nq − nq

nq + nq

. (640)

We see that there was one extra one extra quark per about 10 billion quark-antiquark
pairs. It is this thiny excess that is responsible for entire baryonic matter in the
present Universe. Thus the natural question arises, as the Universe coolled from
early times to today, what processes, both particle and cosmological, were respon-
sible for the generation of this very specific baryon assymmetry?

Of course there is no logical contradiction to suppose that this thiny excess of
quarks to antiquarks was built in as an initial condition. Of course, this is not
very satisfactory for physics. Furthermore, inflationary scenario does not provide
such an initial condition for Hot Big Bang, rather, inflation theory predicts that the
Universe was baryon-symmetric just after inflation. In other words we would like
to explain the baryon asymmetry dynamically.

As pointed by Sakharov, a small baryon asymmetry may have been produced in
the early Universe from initially symmetric state if three necessary conditions are
satisfied:

• Baryon number (B) violation,

• Violation of C (charge conjugation symmetry) and CP (the composition of
parity and C)

• Departure from thermal equilibrium.

The first condition is clear since when we start from a baryon symmetric Universe,
baryon number violation must take case in order the Universe to evolve into the
state with baryon number violation. In other words, if the baryon number were
conserved that this charge would remain constant during time evolution and hence
w we would not observe the baryon number asymmetry.

The second Sakharov criterion is required since, when C and CP are exact
symmetries it can be shown that the total rate for any processes that produces an
excess of baryons is equal to the rate of the complementary process which produces
an excess of antibaryons and so no net baryon number can be created. CP violation
is present either if there are complex phases in the Lagrangian which cannot be
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reabsorbed by field redefinition (explicit symmetry breaking) or if some High scalar
field acquires an VEV which is not real (spontaneous symmetry breaking).

Finally, in order to explain the third equilibrium let us calculate the thermal
equilibrium average of the baryon number operator B at temperature T = 1/β

⟨B⟩T = Tr(e−βHB) = Tr
(
(CPT )(CPT )−1e−βHB

)
=

Tr
(
e−βH(CPT )−1B(CPT )

)
= −Tr(e−βHB) ,

(641)

using the fact that (CPT ) commutes with H and cyclicity of the trace. Finally, we
have used the fact that B is odd under (PC). Then from the equation above we see
that in the thermal equilibrium the baryon number is equal to zero and there is not
any generation of baryon number.

The first two Sakharov’s conditions may be investigated only within a given
particle model, while the third condition the departure from thermal equilibrium
may be discussed in a more general way.

5.9 Baryon Number Violation

At present there are two well understood mechanisms of baryon number non-conservation.
One emerges in Grand-Unified Theories (GUT). Briefly, these GUT describe the
fundamental interactions by means of the unique gauge group G that contains the
Standard Model group

SU(3)C ⊗ SU(2)L ⊗ U(1)Y .

The fundamental idea of GUT is that at energies higher than a certain energyMGUT

the group symmetry is G and that, at lower energies, the symmetry is broken down
to the SM gauge symmetry, possibly through the chain of symmetry breaking. The
motivation for this scenario, whose explanation, however, is beyond the scope of
this review, it the fact that in some models, the (running) gauge couplings of the
SM unify at the scale MGUT ≃ 2× 1016 GeV .

The interesting fact considering GUT is that the baryon number violation emerges
very naturally in it. Briefly, the mechanisms of the baryon number violation is due
to the exchange of super-massive particles. The scale of these new, baryon number
violating interacting is of order 1016 GeV .

Another mechanism of the baryon number violation is related to the triangle
anomaly in the baryonic current. It exists already in the Standard Model and
possibly it operates in all its extensions. The main feature of this mechanism, as
applied to the early Universe, is that it is effective over a wide range of temperatures

100 GeV < T < 1011 GeV .

In summary, realistic mechanism of baryon number non-conservation are rare, but
there are several ways the baryon asymmetry could have been generated. They
differ by the characteristic temperature at which the asymmetry is produced.
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The GUT mechanisms operates at extremely high temperatures

T ∼ 1015 − 1016 GeV

The most well developed source of the baryon asymmetry in this context are B- and
CP - violating decays of ultra-heavy particles. At late times the baryon number is
violated by anomalous electroweak processes.

Electroweak baryogenesis is scenario in which the baryon asymmetry is generated
entirely due to the anomalous electroweak processes. Its generation would occur
at temperature of order 100 GeV which is the energy at which these anomalous
processes are switched off. On the other hand the electroweak baryogenesis is still
under development.

In summary, the observed asymmetry may be explained by a number of mech-
anisms all of which, however, exist in extensions of the Standard Model only. The
problem is that direct proof that any given mechanism is indeed responsible for the
baryon asymmetry.

5.10 Departure from the Thermal Equilibrium

In some scenarios, such as GUT baryogenesis, the third Sakharov condition is sat-
isfied due to the presence of superheavy decaying particles in a rapidly expanding
Universe. These processes are called as out-of-equilibrium decay mechanisms.

The underlying idea is simple.If the decay rate ΓX of the superheavy particles
X at the time they become non-relativistic (at the temperature T ∼ MX) is much
smaller than the expansion rate of the Universe, then the X particles cannot decay
on the time scale of the expansion and so they remain as abundant as photons for
T ≤ MX . In other words at some temperature T > MX the superheavy particles
X are so weakly interacting so the they decouple from the thermal bath while they
are still relativistic, so that

nX ∼ nγ ∼ T 3 (642)

at the time of decoupling.

Then we obtain that at temperature T ≃ MX they populate the Universe with
an abundance which is much larger than the equilibrium one. This abundance is
precisely the departure from thermal equilibrium needed to produce a final non-
vanishing baryon asymmetry when heavy states X decay in B and CP violating
decays.

It can be shown that the out-of-equilibrium condition requires very heavy states

MX ≤ (1010 − 1016) GeV , (643)

if these heavy particles decay through renormalizable operators.

A different mechanism of the departure from the thermal equilibrium can be
found in the electroweak theory.

A further natural way to depart from equilibrium is provided by the dynamics
of the topological defects.
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5.11 Neutrino background

As an example of the previous discussion let us consider the fate of neutrinos in
the expanding Universe. The dynamics of the neutrinos and their reactions with
other components of the matter are governed by the Standard model. Then using
the rules of standard quantum field theory one can calculate the reaction rate Γ of
the neutrinos with the rest of the matter (Roughly speaking the inverse Γ−1 is the
average time between collision of the neutrinos with all form of the matter). When
Γ−1 is larger than H−1 (conversely, when Γ is less than H) there cannot occur the
reactions between the neutrinos and the rest of the matter. We say that in this case
neutrinos effectively decouple from the rest of matter. It can be shown that the
relevant ration is given by

Γ

H
≈
(

T

1.4MeV

)3

=

(
T

1.6× 1010K

)3

. (644)

This formula implies that for T ≤ 1.6× 1010 the neutrinos decouple from the rest of
the matter. On the other hand electrons and positrons can still annihilate at slightly
lower temperature. This process increases the number of the photons. As a result
the photon temperature goes up with respect to neutrino temperature (Remember
that it is natural to speak about two different temperatures for two different species
of particles since they have already decoupled.). We can calculate this increase of
temperature as follows. The increase of T is due to the change of degree of freedom
g and is given by

(aTγ)
3
after

(aTγ)3before
=
gbefore
gafter

=
7
8
(2 + 2) + 2

2
=

11

4
. (645)

Let us explain factors given above. In the numerator, one 2 is for electron, one 2
is for positron and the factor 7/8 arises because of fermions. The remaining 2 in
numerator is for photon. In denominator 2 is for photon since they remain after the
annihilation of positrons with electrons. Using the relation above we obtain

(aTγ)after =

(
11

4

)1/3

(aTγ)before =

(
11

4

)1/3

(aTν)before =

=

(
11

4

)1/3

(aTν)after = 1.4(aTν)after .

(646)

The first equality is from (646), the second follows from the fact that the photons
and neutrinos had the same temperature originally. The third equality follows from
the fact that for decoupled neutrinos aTν are constant. The final result leads to the
prediction that at present the Universe will contain a bath of neutrinos that has
temperature that is lower than of CMBR.
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5.12 Primordial Nucleosynthesis

Theory of Big Bang Nucleosynthesis and observations of primordial abundances
of light elements probe the earliest epoch of the evolution of the Universe that is
accessible to observation today. This epoch corresponds to temperatures ranging
from 1 MeV to a few 10 keV and age of the Universe from 1 s to 200 s.

Let us briefly review the properties of the matter at this early epoch of the
Universe.

At temperatures above 1 MeV there is a thermal equilibrium with respect to
reactions

p+ e↔ n+ νe . (647)

As the Universe cools down below T ≈ 1 MeV neutrons are no longer produced
or destroyed, they concentration (relative to protons) ”freezes out”. Alternatively
saying, the weak interactions are frozen out and neutrons and protons cannot inter-
convert. The equilibrium abundance of neutrinos at this temperature is about 1/6
the abundance of neutrons due to the slightly larger neutron mass.

When we reach a temperature somewhat below 100 keV the Bing-Bang Nucle-
osynthesis (BBN) begins 11. At that point the neutron/proton ration is about 1/7.
Since it is energetically favorable for nucleons to form He the most part of the free
neutrinos are converted into He. For every two neutrons and fourteen protons we
end up with one helium nucleus and twelve protons. In other words 25 % of the
baryons are converted to helium. There are also trace amounts of deuterium and
lithium. Heavier elements are not synthesized in the Big Bang but require super-
nova explosions in the later universe. These elements remain in the Universe so
their primordial abundance is measurable today.

It is important to stress that Big Bang Nucleosynthesis serves also as a source
of constraints on particle physics. The fact that the temperature of the Universe
reached at least 1MeV or so and that the expansion was described by know physics
at this stage constrain significantly some extensions of the Standard models.

The most amazing fact about nucleosynthesis is that, given the Universe is ra-
diation dominated during the relevant epoch, the relative abundances of the light
elements depend essentially on one parameter, the baryon to entropy ratio

η ≡ nB

s
=
nb − nb

s
, (648)

where nB is the difference between the number of baryons and anti-baryons per unit
volume. The range of η was determined recently as is equal to

η = 6.1× 10−10 ± 0.210−10 . (649)

Let us be now more specific. We know that at present the Universe is expanding and
filled with radiation that is very cold today (T0 = 2.73K). If we trace the evolution

11Note that the nuclear binding energy per nucleon is typically of order 1 MeV so that one could
expect that BBN would occur earlier. However the large number of photons per nucleons at that
time prevent BBG to occur until the temperature drops below 100 keV .
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of the Universe back in time to earlier epochs that were hotter and denser, the
early Universe is a Primordial Nuclear Reactor during its first 20 minutes (≈ 1000).
In fact,when the temperature of the Universe is higher than the binding energy of
nuclei (∼MeV ) none of the heavy elements (helium and metals) could have existed
in the Universe. The binding energy of the first four light nuclei, H2, H3, He3

and He4 are 2.22MeV, 6.92MeV, 7.72MeV and 28.3MeV respectively. Since the
average energy in the thermal ansamble is proportional to the temperature we obtain
that these nuclei could be formed when the temperature of the Universe is in the
range (1 − 30)MeV . Surprisingly, the actual synthesis takes place at much lower
temperature Tnuc = Tn ≈ 0.1MeV . The reason for this delay is the high entropy
of the Universe that implies that the ration of photons to baryons, η−1 is high.
Numerically

η =
nB

nγ

= 5.5× 10−10

(
ΩBh

2

0.02

)
, Ωh2 = 3.65× 10−3

(
T0

2.73K

)3

η10 . (650)

Thus, even if the thermal equilibrium is maintained the significant synthesis of nuclei
can occur only at T ≤ 0.3MeV . Then we can expect significant production XA ∼ 1
of nuclear species A at temperature T ≤ TA. However it turns out that the rate of
the nuclear reaction is not high enough to maintain thermal equilibrium between
various species. In order to study non equilibrium abundances in an expanding
Universe is based on rate equations. Let us now review its general concepts.

5.12.1 Rate equations

Consider a reaction in which two particles 1 and 2 interact to form two other par-
ticles 3 and 4. For example, let us consider reaction n + νe = p + e that converts
neutrons into protons in the forward direction and proton into neutrinos in the re-
verse direction. Another example is the reaction p + e = H + γ where the forward
reaction describes recombination of electron and proton forming a neutral hydrogen
atom with the emission of photon. In general we are interested in how the number
density n1 of particle species 1 changes due to the reaction of the form 1+2 ⇔ 3+4.
Remember that even in case where there is no reaction the number density changes
as n1 ∝ a−3 due to the expansion of the Universe. In other words the quantity that
changes due to the reaction is n1a

3. Further, the forward reaction will be clearly
proportional to the product of the number densities n1n2 while the reverse reaction
will be proportional to n3n4. Hence we can write the equation for the rate of the
change of particle species n1 in the form

1

a3
d(n1a

3)

dt
= µ(An3n4 − n1n2) (651)

The left hand side is the relevant rate of change over and above that due to the
expansion of the Universe. On the right hand side the two proportionality constants
have been written as µ and Aµ that generally are functions of time. Usually µ ≃ σv
where σ is the cross section for the relevant process and v is relative velocity. The
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left hand side has to vanish for system in thermal equilibrium with ni = neq
i where

the superscript eq denotes the equilibrium densities of the different species labeled
with i = 1 . . . 4. If we insert in the above equation the condition ni = neq

i we can
express A as

Aneq
3 n

eq
4 − neq

1 n
eq
2 = 0 ⇒ A =

neq
1 n

eq
2

neq
3 n

eq
4

(652)

and than the rate equation becomes

1

a3
d(n1a

3)

dt
= µneq

1 n
eq
2 (

n3n4

neq
3 n

eq
4

− n1n2

neq
1 n

eq
2

) . (653)

On the left hand side we can write d
dt
= aH d

da
that shows that the relevant scale for

this processes is H−1. Clearly when H
µni

≪ 1 the right hand side becomes ineffective
because the factor µ

H
factor. Then we see that the number of particles of species 1

does not change. In other words when the expansion rate of the Universe is large
compared to the reaction rate ( µ

H
≪ 1) the given reaction is ineffective in changing

the number of particles. However this result does not mean that the reactions have
reached thermal equilibrium and ni = neq

i . In fact, the opposite situation occurs:
The reactions are not fast enough to drive the number densities towards equilibrium
densities and the number densities ”freeze out” at non-equilibrium values. Of course
the right hand side in (653) will also vanish when ni = neq

i that is the extreme limit
of thermal equilibrium.

Using this general formalism we will now apply it to the process of nucleosynthe-
sis which requires protons and neutrons that combine together to form bound nuclei
of heavier elements like deuterium, helium... The abundance of these elements are
going to be determined by the relative abundance of neutrons and protons in the
Universe. For that reason we should start the discussion with the problem of the
thermal equilibrium between protons and the neutrons in the early Universe. As
long as the inter-conversion between n and p through the weak interaction processes

ν + n↔ p+ e , e+ n↔ p+ ν (654)

or their decay
n↔ p+ e+ ν (655)

is rapid with respect to the expansion rate of the Universe thermal equilibrium can
be maintained. Then the equilibrium static physics implies that the equilibrium n/p
ration is equal to (

nn

np

)
=
Xn

Xp

= exp(−Q/T ) , (656)

where Q = mn − mp = 1.293MeV . For T ≫ Q the factor in the exponent is
approaching zero and we obtain Xn ≈ Xp. However when T drops below about
1.3MeV the neutron fraction will drop exponentially on condition that the thermal
equilibrium is still maintained. However to check weather the thermal equilibrium
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is maintained we have to compare the expansion rate with the reaction rate. The
expansion rate is

H =

√
8πGρ

3
, (657)

where

ρ =
π2

30
gT 4 , (658)

where g ≈ 10.75 represents the relativistic degrees of freedom present at these
temperatures. At T = Q this gives H ≈ 1.1s−1. The reaction rate needs to be
computed from weak interaction theory. The neutron to proton conversion rate is
approximated by

λnp ≈ 0.29s−1

(
T

Q

)5
[(

Q

T

)2

+ 6

(
Q

T

)
+ 12

]
. (659)

At Q = T this gives λ ≈ 5s−1 that is more rapid than the expansion rate. But as T
drops below Q this decreases rapidly and the reaction ceases to be fast enough to
maintain thermal equilibrium. Then we have to work out the neutron abundance
using the equation (653).

If we denote n1 = nn, n3 = np and n2, n4 = nl where the subscript l stands for
leptons then the equation (653) becomes

1

a3
d(nna

3)

dt
= µneq

l

(
npn

eq
n

neq
p

− nn

)
. (660)

To proceed we use the fact that µneq
l is equal to the rate of the neutron to proton

conversion λnp. We also use the relation

neq
n

neq
p

= exp(−Q/T ) (661)

Let us now introduce the fractional abundance

Xn =
nn

(nn + np)
(662)

Then the equation (660) takes the form

dXn

dt
= λnp((1−Xn)e

−Q/T −Xn) , (663)

where we have used
Xn +Xp = 1 , Xp =

np

nn + np

(664)

and also the fact
1

a3
d(nna

3)

dt
=
a3(nn + np)

a3
dXn

dt
(665)
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since (nn + np)a
3 is constant. This equation can be integrated numerically and

determine how the neutron abundance changes with time. The neutron fraction falls
out of equilibrium when temperature drop below 1MeV and it freezes to about 0.15
at temperature below 0.5MeV . As the temperature decreases further the neutron
decays with a half life of τn ≈ 886.7sec becomes important and starts to reduce
the neutron number density. Then the only way how the neutrons can survive is
through the synthesis of light elements. As the temperature falls further to T =
THe ≈ 0.28MeV significant amount of He could have been produced if the nuclear
reaction rates were high enough. These reactions are all based on D,He and H
and do not occur rapidly enough because the mass fraction of D,He and H are still
quite small [10−12, 10−19, 5 × 10−19] at T ≃ 0.3MeV . The equilibrium deuterium
abundance passes through unity at temperature of about 0.07MeV which is when
nucleosynthesis can really begin.

The production of still heavier elements-even those like C,O which have higher
binding energies than He is suppressed in the early Universe.

5.13 Decoupling of matter and radiation

In the early hot phase the radiation will be in thermal equilibrium with matter.
As the Universe cools below kBT ≃ (ϵa/10) is the binding energy of atoms the
electrons and ions will combine to form neutral atoms and radiation will decouple
from matter. This occurs at T ≃ 3× 103K. As the Universe expands further these
photons will continue to exist without any further interaction. We shall now discuss
some details related to the formation of neutral atoms and decoupling of photons.

The relevant reaction is
e+ p = H + γ . (666)

If the rate of this reaction is faster than the expansion rate then one can calculate
the neutral fraction as follows. Introducing the fractional ionization Xi for each of
the particle species and using the facts that np = ne and np + nH = nB. We also
have Xp = Xe and XH = nH

nB
= 1 − np

nB
= 1 − Xe. The equation that governs the

time evolution of Xe that expresses the equilibrium situation now takes the form

1−Xe

X2
e

≈ 3.84η

(
T

me

)3/2

exp(B/T ) , (667)

where η = 2.68 × 10−8(ΩBh
2) is the baryon-to-photon ratio.We define Te as the

temperature at which 90 percent of the electrons have combined with protons. This
implies np = 0.1nB and hence Xe = Xp = 0.1. This leads to the condition

(ΩBh
2)−1τ 3/2 exp[−13.6τ−1] = 3.13× 10−18 , (668)

where τ = (T/1eV ). The solution of this equation can be given by iterative proce-
dure. For ΩBh

2 = 1, 0.1, 0.01 we then obtain Tatom = 0.324eV, 0.307eV, 0.292eV .

These results were based on the equilibrium densities. Then it is important
to check that the rate of the reaction p + e ↔ H + γ is fast enough to maintain
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equilibrium. It turns out however that this is not fully satisfied and hence we have to
again use the rate equation. The rate equation (653) for n1 = ne, n2 = np, n3 = nH

and n4 = nγ and for Xe =
ne

ne+nH
takes the form

dXe

dt
= α

(
β

α
(1−Xe)− nbX

2
e

)
, (669)

where the recombination rate α is the rate is given by

α = 9.78r20c

(
B

T

)1/2

ln

(
B

T

)
, (670)

where r0 =
e2

m2
ec

2 is classical electron radius. In (669) the ration β/α is given as

β

α
=

(
meT

2π

)3/2

exp[−B/T ] (671)

Using this result we obtain that the value of Tatom does not change significantly.

5.14 Structure formation and linear perturbation theory

The structure formation is based on the key idea that if there exist small fluctuations
in the energy density in the early Universe, then gravitational instability then leads
in a well understood manner leading to structures like galaxies today. The most
popular model for generating these fluctuations is based on the idea that if the very
early Universe went through the inflation phase then the quantum fluctuations of
the field driving the inflation can lead to energy density fluctuations.

Let us illustrate this idea on the example of the massless scalar field ϕ minimally
coupled to gravity. The action of the scalar field is

Sϕ = −1

2

∫
d4x

√
−ggµν∂µϕ∂νϕ (672)

In spatial flat FRW background this action has the form

Sϕ = −1

2

∫
dxdta3(t)[−(∂tϕ)

2 +
1

a2
(∂iϕ)

2] (673)

so that the equation of motion takes the form

∂t(a
3∂tϕ)− a∂i∂

iϕ = 0 (674)

or equivalently

ϕ̈+ 3H(t)ϕ̇− 1

a2
∂i∂

iϕ = 0 , (675)

where ẋ = ∂tx , ẍ = ∂2t x. Thanks to the homogeneity and isotropy of space it is
natural to work in the momentum representation where we search for the solutions
in the form

eixkϕk(t) . (676)
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If we insert (676) into (675) we obtain ordinary differential equation for ϕk in the
form

ϕ̈k + 3H(t)ϕ̇k +
k2

a2
ϕ = 0 . (677)

Note that k is a coordinate momentum. The physical momentum at time t is

p =
k

a
(678)

and it depends on time.

Looking on (677) we see that the second term in it acts as a friction term. Then
we can consider two regimes with the qualitatively different behavior of the modes
ϕk: Subhorizion modes:

These modes are characterized condition

p =
k

a
≫ H . (679)

Modes obeying this property are subhorizon modes since their physical length λ ∼
p−1 is much shorter than the Hubble distance H−1 that is a horizon size in matter
and radion dominated Universe. More precisely, for modes obeying the condition
(679) we can neglect the friction term in (677) and hence we get

ϕ̈+ ω2
k(t)ϕ = 0 , ωk(t) =

k

a
(680)

This equation has the general solution

ϕk =
1

a
e
±i

∫ t
t0

dt′ωk(t
′)

(681)

since

ϕ̇k = −Hϕk + iωkϕk ≈ iωkϕk ,

ϕ̈k = iω̇kϕk − ω2
kϕk = −iHωkϕk − ω2

kϕk ≈ −ω2
kϕk .

(682)

This solution (modulo slowly varying prefactor) describes oscillations with the fre-
quently experiencing redshift (The frequency is lowered with time).

Superhorizon modes:

These modes are characterized by condition

p =
k

a
≪ H . (683)

In this case the last term in (677) are negligible and the solutions are

constant mode : ϕk = const ,

growing mode : ϕk(t) = K

∫ t

t0

dt′

a3(t′)
.

(684)
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It is clear that the constant mode is solution of (677). The growing mode is solution
as well since

ϕ̇k =
K

a3
, ϕ̈k = −3Hϕk . (685)

The gravitational waves obey precisely the same equations as (677) so that they
have exactly the same behavior, in particular, for given k one of the superhorizon
modes blows up at small t. It follows that the whole picture of the FRW Universe
with small perturbations is thus self-consistent only if this modes vanishes at finite
times.

Now recall that for radiation dominated and matter dominated UniverseH ∼ t−1

while the scale factor behaves as a ∼ t1/2 for radion dominated Universe and a ∼ t2/3

for matter dominated Universe. Then the ratio of physical momentum to H behaves
as

p(t)

H(t)
∝ t1/2 (686)

for radiation dominated Universe and

p(t)

H(t)
∝ t1/3 (687)

for matter dominated Universe. These results mean that all modes start as super-
horizon and then enter the horizon. In the scalar mode example the requirement
that the growing mode vanishes determines the initial date for each k up to overall
amplitude. Then we have

ϕk = ck ,
k

a
≪ H , (688)

and

ϕk = ck cos

(∫ t

0

dt′ωk(t
′)

)
,
k

a
≫ H . (689)

For density perturbations the oscillating behavior means that at late enough times
there are sound waves in the primordial plasma with the wave-lengths that are
shorter than the horizon size at each moment of time. Briefly speaking the fate of
the primordial density perturbations is as follows. They stay constant until they
enter the horizon at radiation or matter dominate stage. After that they start to
oscillate and make the sound waves. The amplitudes of these waves grow during the
matter dominated stage due to the gravitational instability. The regions with higher
density tend to gravitationally attract matter and become even more overdense. The
dense regions collapse and form gravitationally bound structures.

Let us now discuss in more details how the simple description given above is
related to the more realistic situation. As long as the fluctuations are small one
can study their evolution by linear perturbation theory. The basic idea of linear
perturbation theory is well defined and simple. We write the metric as

gµν = gFRW
µν + hµν , (690)
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where gFRW
µν is background FRW metric and hµν is small perturbations that propa-

gate on the background characterized with gFRW
µν . In the same way we perturb the

source energy momentum tensor by

Tµν = T FRW
µν + δTµν , (691)

where again T FRW
µν is the stress energy tensor for the background matter that solves

the FRW equations and δTµν are perturbations. If we linearize the Einstein’s equa-
tions one can relate the perturbed quantities by a relation of the form

L(gFRW
µν )hµν = δTµν , (692)

where L is second order linear differential operator depending on the background
metric gFRW

µν . As wa argued above due to the fact that the background is maximally
symmetric one can separate out time and space and we can write down the equation
for any given mode labeled with the wave vector k as

L(a(t),k)hµν(t,k) = δTµν(t,k) . (693)

Then carefull analysis performed in case of metric perturbations implies that the
linearized equations of motion for gravity perturbations take the forms given in the
toy example of the massless scalar fields studied above. More precisely, it can be
shown,after some simplifications and presumption, that are all well justified, that
perturbed metric can be written in the form

ds2 = a2(η)[(1 + 2Φ)dη2 − (1− 2Φ)δabdx
adxb] . (694)

In other words we obtain one perturbed scalar degree of freedom Φ. Then it can be
shown that the dynamics of the mode Φ is governed by the equations that has the
same form as (677).

6 Inflation cosmology

6.1 Problems of the standard Big-Bang model

The standard Big-Bang model suffers from number of problems. Before we enter
in their discussion we review some properties of the Friedmann models at the early
stage of the Universe.

The question is what can we say about the Hubble parameter H = ȧ
a
, the density

ρ and the quantity k?

At the earliest stages of the evolution of the UniverseH and ρ could be arbitrarily
large. On the other hand it is believed that for ρ ≥ M4

P effects of quantum gravity
are significant and the quantum fluctuations of metric exceed the classical value of
gµν . The standard cosmology where the metric is treated in the classical manner
restricts to the region of phenomena where

ρ ≤M4
P , T ≤MP ∼ 1019GeV, H < MP . (695)
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We also have to stress that in the expanding Universe thermodynamics equi-
librium cannot be established immediately but only when the temperature T is
sufficiently low. The behavior of the non-equilibrium Universe at densities of order
of the Planck density is very important problem.

Now we come to the list of problems of the standard hot Universe theory

6.2 Problems of the standard scenario

The singularity problem

The Friedmann equations imply that the density of matter in the Universe goes to
infinity as t → 0 and the corresponding solutions cannot be formally continued to
the domain t < 0.

One of the most exciting questions of cosmology is whether anything existed
before t = 0. If there is nothing before t < 0 the question is: where did the Universe
come from?

Studies of the general structure of space-time near a singularity suggest that it is
highly unlikely that this problem could be solved with the framework of the classical
gravitation theory. One hope that these questions could be answered in the context
of string theory. We will review some string theory inspired models in next sections.
However these models are faced with many important and conceptional problems so
that the problem of the birth of the Universe is the most challenging un answered
question in physics.

Flatness Problem

The flatness problem concerns with the observation that the real density of the
Universe, ρ, is known to be very close to the critical density ρc. Recall, that in the
previous section we have studied the Friedmann equation

H2 =
1

3M2
P

ρ− k

a2
, (696)

where now MP ≡ 1√
8πG

∼ 2 · 1018GeV is the four dimensional Planck mass. Recall

also that H = ȧ
a
where a(t) is the scale factor with the spacetime metric on the form

ds2 = −dt2 + a2dΣ , (697)

where dΣ is comoving volume element of space with k = 0,+1,−1 corresponding to
flat, positively curved and negatively curved spaces respectively. As we known we
can rewrite the Friedmann equation in the form

Ω− 1 =
k

a2H2
, (698)
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where Ω means the sum of particular Ω’s. Note that for ordinary type of matter,
1

a2H2 will increase with time. To see this we use the continuum equation given by

ρ̇+ 3H(ρ+ p) = 0 . (699)

If we assume an equation of state of the form

p = wρ , (700)

for w = const then the continuity equation can be written as

dρ

da

da

dt
+ 3

ȧ

a
(1 + w)ρ =

dρ

da
+ 3(1 + w)

ρ

a
= 0 , (701)

that implies
ρ ∼ a−3(1+w) . (702)

If we start with Ω ∼ 1 we obtain that k ∼ 0. Then the Friedman equation is

H2 ∼ ρ⇒ ȧ

a
∼ a−3(1+w)/2 (703)

that implies

daa(1+3w)/2 = t⇒ a ∼ t
2

3(1+w) . (704)

As a consequence we get that

1

a2H2
∼ t2−

4
3(1+w) . (705)

This expression grows with time for any w > −1/3-examples include pressureless
dust with w = 0 and radiation with w = 1/3. Looking on the form of the Friedman
equation (698) we see that, unless the Universe is exactly flat (k = 0) and, as a
consequence Ω = 1, Ω will rapidly evolve away from Ω = 1. In order to have a value
of Ω close to 1 today, one would therefore expect to need a value of Ω even closer
to 1 in the early Universe. This is the famous Flatness problem. That is, how can
Ω be so close to one?

We can argue alternatively as follows. Looking on the form of Friedmann equa-
tion we see that the curvature contribution is

|Ωcurv| ≡
ρcurv
ρc

=
3MP

a2H2
, (706)

where we have defined the curvature contribution to the Friedmann equation as

|ρcurv|
3MP

a2
. (707)

The present value of the equation (706) is

|Ωcurv| < 0.02 . (708)
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Since |ρ|curv scales as 1/a2 while the radiation matter and radiation scales as 1/a3

and 1/a4 respectively. This implies that the curvature contribution to the Friedman
equations was even smaller in the past, for example

nucleosynthesis : |Ωcurv| < 10−16 ,

electroweak epoch , |Ωcurv| < 10−26 .

(709)

In other words the spatial curvature of the Universe was tiny at the beginning. The
question is, why the initial conditions were so flat? This flatness problem cannot be
solved within Hot Big Bang theory.

The total entropy and total mass problem

The question is why the total entropy S and total mass M of matter in the
observable part of the Universe with Rp is so large. The total entropy S of the
present Universe can be estimate as follows. The size of the observable part of the
Universe is

lH,0 ∼ 2H−1
0 ∼ 1026 m

The entropy inside a sphere of the size lH,0 is roughly of the order of the number of
photons

S ∼ Nγ ∼ nγl
3
H,0 . (710)

Using also the fact that
nγ ∼ T 3

γ ∼ 2.7 K

where Tγ is the temperature of the primordial background radiation. Then we finally
obtain

S = 1088 . (711)

On the other hand the estimate of the total mass in the observable Universe is

M ∼ l3H,0ρc ∼ 1055g . (712)

In the Hot Big Bang theory the expansion of the Universe is almost adiabatic so
this huge entropy should be built in as an initial condition. Certainly this initial
condition is very special. Moreover, the condition of naturality, which is the state-
ment that all dimensionless quantities should be of order 1 implies that such a initial
conditions with huge entropy are rather un-natural.

Horizon problem

We known that the region of the Universe look very similar even though, assuming
normal radiation dominated expansion of the early Universe, thay can not have been
in causal contact. In fact, the horizon problem steams from the existence of particle
horizons in FRW cosmologies. Horizons exist because there is only a finite amount
of time since the Big Bang singularity and thus only a finite distance that photons
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can travel within the age of the Universe. Consider a photon moving along a radial
trajectory in a flat Universe. In a flat, Universe, we can normalize the sale factor
to be a0 = 1. A radial null path obeys

0 = ds2 = −dt2 + a2dr2 (713)

so the comoving (coordinate) distance traveled by such a photon between times t1
and t2 is

△r =
∫ t2

t1

dt

a(t)
. (714)

To get a physical distance as it would be measured by an observer at any time t
simply multiply by a(t). For simplicity, we are in matter dominated Universe for
which

a =

(
t

t0

)2/3

. (715)

The Hubble parameter is therefore given by

H =
ȧ

a
=

2

3t
= a−2/3H0 , (716)

where H0 is Hubble parameter of today Universe. Then the photon travels a co-
moving distance

△r = 2H−1
0 (

√
a2 −

√
a1) (717)

The comoving horizon size when a = a∗ is the distance a photon travels since the
Big Bang

rh(a∗) = 2H−1
0

√
a∗ . (718)

The physical horizon size, as measured on the spatial hypersurface at a∗ is therefore
simply

dh(a∗) = a∗rh(a∗) = 2H−1
0 a3/2∗ = 2H−1

0

H0

H∗
= 2H−1

∗ . (719)

The horizon problem is simply the fact that CMB is isotropic to high degree of
precision even though widely separated points on the last scattering surface are
completely outside each other’s horizons. When we look at the CMB we see the
Universe at a scale factor aCMB ≈ 1/200. The comoving distance between a point
on the CMB and an observer on Earth is

△r = 2H−1
0 (1−

√
aCMB) ≈ 2H−1

0 . (720)

However, the comoving horizon distance for such a point is

rh(aCMB) = 2H−1
0

√
aCMB = 6× 10−2H−1

0 . (721)

Hence if we observe two widely separated parts of the CMB they will have non-
overlapping horizons; different patches of the CMB sky were causally disconnected at
recombination. On the other hand they are observed to be at the same temperature
at high precision. This is the core of the famous horizon problem.
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Problem of the large-scale homogeneity and isotropy of the Universe

As we argued in introduction all cosmological models are based on the presumption
of absolutely homogeneous and isotropic Universe. Of course Universe is not abso-
lutely homogeneous and isotropic at now at least on small scale and hence there is
no reason to believe that it was homogeneous at its beginning. The most natural
assumption is that the initial conditions at points that are sufficiently far from one
another were chaotic and uncorrelated. On the other hand it was shown by Collins
and Hawking that class of the initial conditions for which the Universe tends asymp-
totically (at large t) fo Friedmann Universe is one of measure zero among all possible
conditions. In other words according to this classical analysis Friedmann model is
very unprobable. This is the problem of large scale homogeneity and isotropy.

The galaxy formation problem

We know that Universe contains many inhomogeneities as stars, galaxies and so on.
In order to explain the origin of galaxies one have to presume an existence of initial
inhomogeneities whose spectrum is usually taken to be almost scale invariant. For
a long time the origin of such density inhomogeneities remained obscure.

The baryon asymmetry problem

This is the problem why the Universe is added almost entirely of matter with almost
no antimatter and why on the other hand the number of baryons is much less than
number of photons nB

nγ
∼ 10−9.

The domain wall problem

It is natural to presume that the symmetry breaking occurs independently in all
causally unconnected regions of Universe. Then at all these regions that comprise
Universe at the time of symmetry-breaking phase transition, both field ϕ = +µ/

√
λ

and the field ϕ = −µ/
√
λ. Domains filled by the field ϕ = +µ/

√
λ are separated

from those with the field ϕ = −µ/
√
λ by domain walls. It can be shown that the

energy density of these walls is so high so that their existence is inconsistent with
cosmological consequences. Since the theories based on the spontaneously breaking
of gauge symmetry are very appealing and since in these theories domain walls arise
in natural way we meet Domain wall problem. In other words how to deal with such
theories in cosmology.

The primordial monopole problems

This problem is closely related to the domain wall problems. Many theories based
on symmetry-braking mechanism can produce another nontrivial structures that are
nontrivial configurations of the scalar and gauge fields and that are stable. However
it can be shown that these objects are very massive. Moreover it can be also shown
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that the monopole density at present would be comparable with the baryon density.
Thanks to the enormous massivity these objects we obtain that the Universe filled of
monopoles is 1015 higher than the critical density. This implies that Universe filled
with such matter would have collapsed long ago. The explanation of the mechanism
how to deal with monopoles is one of the most important problems in cosmology.

Unwanted Relics

We have argued that for correct description of the early Universe the models of
particle physics should be present. However these models contain monopoles and
other topological defects. However the energy density of these objects can be very
big and hence the monopole abundance in GUT is serious problem for cosmology if
GUT have anything to do with reality.

6.3 Inflation as a solution

6.3.1 The General Idea of Inflation

The horizon problem is an extremely serious problem for the standard cosmology.
Cosmological inflation is mechanism that can solve this problem.

The main idea is that the Universe undergoes a period of accelerated expansion
defined as a period when ä > 0 at early times. The effect of this acceleration is to
quickly expand a small region of space to huge size. At this process the spatial cur-
vature of the Universe is reduced and consequently we make the Universe extremely
close to flat. In addition, the horizon size is greatly increased so that distant points
on the CMB actually are in causal contact and unwanted relics are diluted, solving
the monopole problem. Finally, quantum fluctuations imply that inflation cannot
smooth out the Universe with perfect precision, so there is a spectrum of remnant
density perturbations.

The general idea of inflation is that before Hot Big Bang (but after Planck era)
the Universe was in vacuum-like state and then it went through the era of the
exponential expansion

a(t) = const · e
∫
Hinfldt , (722)

where Hinfl is almost constant in time. Due to the exponential expansion a small
patch of the Universe expands to great size. Let us presume that the duration of
inflation tinfl exceeds 140 Hubble times

tinfl >
140

Hinfl

. (723)

Let us also presume that the size of the patch is initially at the order Planck size lP =
1

MP
∼ 10−33cm. Then at the time tinf the size exceeds the present horizon size lH,0 ∼

1028cm. It is also clear the Universe flattens out, any initial inhomogeneities are
diluted out. In the end of inflation, the Universe becomes spatially flat,homogeneous
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and isotropic at exponentially large spatial scales. This solves the horizon and
flatness problems.

A natural way to ensure that the Universe expands exponentially is to assume
that the matter at inflationary stage is in the vacuum-like state characterized with
the energy density ρinfl that is almost constant in time. At some point this energy
density should transform into conventional energy density of hot plasma. This
transformation is called reheating and after reheating the Hot Big Bang era begins.
During reheating, huge entropy is released and this solves the entropy problems.

6.4 Many models of inflation

Before we come to the more detailed study of the question how the inflation works
we give summary of some models of the inflation theory. The common property of
these model is that the matter with suitable equation of state is in the form of the
scalar field(s).

The initial model of inflation (“old inflation model”) was based on idea that
the scalar field ϕ was initially in a false vacuum with large potential energy. To
end of inflation, a quantum tunneling from the false vacuum to the true vacuum
was performed. However this model has the problem that it leads to an initially
microscopical bubble of the true vacuum which cannot grow to contain our present
observed Universe. Hence the attention shifted to models in which the scalar field
ϕ slowly rolls during the inflation.

Models of scalar field-driven inflation can be divided into three groups:

• Small-field inflation

• Large-field inflation

• Hybrid inflation

Small field inflationary models are based on ideas from spontaneous symmetry
breaking in particle physics. For example, let us consider the scalar field with
the potential in the form

V (ϕ) =
1

4
(ϕ2 − σ2)2 , (724)

where we interpret σ as the symmetry breaking scale and λ as a dimensionless
coupling constant. The main idea of the small-field models (”new inflation”) was
that the scalar field starts to roll close to its symmetric point ϕ = 0. At sufficient
high temperature ϕ = 0 is a stable ground state of the one-loop finite temperature
effective potential VT (ϕ). When the temperature drops below to some value that
is smaller than Tc, ϕ = 0 becomes unstable local minimum of VT (ϕ) and ϕ can roll
towards a ground state of the zero temperature potential (724) with

ϕgr = ±σ . (725)
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The problem of this model is that the slow-roll conditions 12(
V ′

V

)2

M2
P ≪ 1 ,

V ′′

V
M2

P ≪ 1 (726)

that for the potential (724) take the form

ϕ2

(ϕ2 − σ2)2
≪ 1

M2
P

,
3ϕ2 − σ2

(ϕ2 − σ2)2
≪ 1

M2
P

(727)

and that have to be valid for inflation to works imply that

σ ∼MP . (728)

However this is in contradiction with the fact that we have to presume that σ is
some symmetry breaking scale of the standard quantum field theory whileMP is the
scale of the quantum gravity regime where the approximation of the quantum field
theory in curved space time cannot be valid. The potential (724) can be changed
to satisfy the slow-roll conditions however this procedure needs several fine-tuning
of the shape of the potential. A further problem of the slow-roll model is that the
initial field velocity must be constrained to be small which is again fine-tuned initial
condition.

As the alternative to the small-field inflationary models are large-field inflation
models that are also known as chaotic inflation. The simplest example is provided
by a massive scalar field with the potential

V (ϕ) =
1

2
m2ϕ2 . (729)

In the chaotic inflation scenario it is presumed that the scalar field rolls towards the
origin from large values of |ϕ|. The slow roll conditions for the potential (??) takes
the form 13

|ϕ| ≫MP . (730)

Values of |ϕ| comparable or larger than MP are also required in other realizations
of large-field inflations. The question is whether such a model can consistently be
embedded in a realistic particle physics model, as for example supergravity. In many
these models V (ϕ) receives supergravity-induced correction terms that destroys the
flatness of the potential for |ϕ| > MP . The value m ∼ 1013GeV is required in order
to obtain the observed amplitude of density fluctuations.

With two scalar fields it is possible to construct a class of models which combine
some of the nice features of large-field inflation models which is large set of the
initial conditions that lead to inflation with the small-field inflation where the infla-
tion takes place at sub-Planckian field values. These models are known as Hybrid
inflation. For example, let us consider two scalar fields ϕ and ξ with the potential

V (ϕ, ξ) =
1

4
λξ(ξ

2 − σ2)2 +
1

2
m2ϕ2 − 1

2
g2ϕ2ξ2 . (731)

12Precise definition of these conditions will be given in next section
13Note that the dimensional analysis that implies that V has dimension [V ] = 4 in mass unit

implies that [ϕ] = 1.
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In the absence of the thermal equilibrium it is natural to assume that |ϕ| begins at
large values. For large ϕ the term

1

2
g2ϕ2ξ2

that serves as an effective mass term for ξ is positive and hence ξ has stable minimum
at ξ = 0. The parameters in (731) are chosen such that ϕ is slowly rolling for values
of |ϕ| somewhat smaller than MP but the parameters are chosen in such a way
that the potential energy for these fields values is dominated by the first term in
(731). The field ϕ is slowly rolling whereas the potential energy is determined by
the contribution from ξ. Once ϕ drops to the value

|ϕ|c =
√
λξ

g
σ . (732)

For this value the effective potential for ξ takes the form

V (ϕc, ξ) =
λξ
4
(ϕ2 − 2σ2)2 (733)

that has three extrema

ξ0 = 0 , V (0) = λξσ
4 ξ± = ±

√
2σ , V (ϕ±) = 0 (734)

that clearly shows that the configuration with ξ = 0 is unstable and decays to the
one of the states ξ± = ±

√
2σ. Since in this case the ground state is not unique we

have a possibility of the formation of topological defects at the end of the inflations.

After the slow-roll conditions break down the period of inflation ends and the
inflation begins to oscillate around its ground state. Since the inflation field ϕ
couples to other matter fields the energy of the Universe, that at the end of the
period of inflation is stored completely in ϕ is transferred to the matter fields of the
particle physics Standard model. The description of this process is very complicated,

6.5 How does the inflation work

The key property of the laws of physics that makes inflation possible is the existence
of states of negative pressure. To recognize the effect negative pressure let us again
consider Friedmann equation

ä = −4πG

3
(ρ+ 3p)a ,

H2 =
ȧ2

a2
=

8πG

3
ρ− k

a2
,

ρ̇ = −3H(ρ+ p) . (735)

Once again, the metric is given by Robertson-Walker form

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2

]
, (736)

146



where k = 0, 1,−1. From the first equation in (735) we see that positive pressure
(ρ is always positive) contributes to the deceleration of the Universe while the neg-
ative pressure can cause acceleration. In other words, negative pressure produces a
repulsive form of gravity.

The characteristic property of the inflation is that the physical wavelengths grow
faster than the size of the Hubble radius

dH =
a(t)

ȧ(t)
=

1

H

as follows from the fact

λ̇phys
λphys

=
1

a(t)λ0

d(a(t)λ0)

dt
=
ȧ

a
= H =

ḋH
dH

+ dH
ä

a
. (737)

This equation shows that during inflation when ä
a
> 0 the physical wavelengths

become larger than the Hubble radius. However when the physical wavelength be-
comes larger than Hubble radius it is causally disconnected from physical processes.
The inflationary era is followed by the radiation dominated and matter dominated
stagers where the Hubble radius grows faster than the scale factor and the wave-
lengths that were outside now re-enter Hubble radius. This is the basic mechanism
how the inflation explains the generation of temperature fluctuations and also the
origin of the emergence of large scale formation: Briefly, quantum fluctuations gen-
erated early in the inflationary stage exit the Hubble radius during inflation and
then eventually re-enter during the matter dominated era.

Remarkably, we can easily find form of the matter that produces negative pres-
sure.

6.6 Slowly-Rolling Scalar Fields

In order the inflation to solve the problems of the standard cosmology it must be
active at extremely early times. Thus we would like to study the earliest times in
the Universe amenable to classical description. It is expected that this is around
the Planck time tP . For that reason we will retain values of Planck mass in the
equation of this section. As we will see there are many models of inflation. In this
section we will restrict ourselves to the study of the model of chaotic inflation.

Consider matter in the form of the scalar field ϕ that is described with the action

Smatter = −
∫
d4x

√
−g
[
1

2
gµν∂µϕ∂νϕ+ V (ϕ)

]
. (738)

In field theory the stress energy tensor is defined as

Tµν = − 2√
−g

δSmatter

δgµν
(739)
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that for the action of the form S = −
∫
d4x

√
−gL takes the form

Tµν = −gµνL+ 2
δL
δgµν

, (740)

where we have used
δ
√
−g

δgµν
= −1

2

√
−ggµν . (741)

More precisely, for the action (738) the stress energy tensor takes the form

Tµν = (∇µϕ)(∇νϕ)− gµν

[
1

2
gαβ(∇αϕ)(∇βϕ) + V (ϕ)

]
, (742)

where for the scalar field ϕ we have ∇αϕ = ∂αϕ. Let us now restrict to the homoge-
nous case in which all quantities depend only on cosmological time t and we also
set k = 0. A homogenous real scalar field behaves as a perfect fluid with

ρ = T00 =
ϕ̇2

2
+ V (ϕ) . (743)

The other components of the stress energy tensor take the form

Tij = −gij(
1

2
gµν∂µϕ∂νϕ+ V ) + ∂iϕ∂jϕ . (744)

If we define pressure as

p =
1

3

3∑
i=1

Tii (745)

we get

p =
ϕ̇2

2
− V (ϕ) . (746)

Thus any state which is dominated by the potential energy of a scalar field will have
negative pressure.

Note also that the equation of motion for the scalar field are given by

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0 , (747)

that can be thought of as a usual equation of motion for a scalar field in Minkowski
space but with a friction term due to the expansion of the Universe. The Friedmann
equation with such a field as a sole energy source is

H2 =
8πG

3

[
1

2
ϕ̇2 + V (ϕ)

]
. (748)

The accelerated expanssion occurs if the Universe is dominated by an energy com-
ponent that approximates a cosmological constant. In that case the associated
expansion rate will be exponential. From (743) we see that for ϕ̇2 ≪ V (ϕ) the
potential energy of the scalar field is the dominant contribution to both the energy
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density and pressure ant the resulting equation of state is p = −ρ that has the same
form as the state equation for cosmological constant.

More technically, the slow-roll approximation for inflation involves neglecting the
ϕ̈ term in (747) and neglecting the kinetic energy compared of ϕ compared to the
potential energy. In this case the scalar field equation of motion and the Friedmann
equation become

ϕ̇ = − V ′

3H
,

H2 =
8πG

3
V (ϕ) .

(749)

The slow low conditions are conveniently characterized with so named slow roll
parameters

ϵ =
M2

P

2

(
V ′

V

)2

, η =M2
P

V ′′

V
, (750)

where
8πG =M−2

p . (751)

It is easy to see that the slow-roll conditions yield inflation. Recall that inflation is
defined by

ä

a
> 0 (752)

that using the fact that

Ḣ =
äa− ȧ2

a2
⇒ ä

a
= Ḣ +

(
ȧ

a

)2

or alternatively
ä

a
= Ḣ +H2 . (753)

Then the inflation occurs when
Ḣ

H2
> −1 . (754)

But in slow roll

2ḢH =
8πG

3
V ′ϕ̇ = −8πG

9

V ′2

H
(755)

and hence
Ḣ

H2
= −4πG

9

V ′2

H4
= − 1

16πG

(
V ′

V

)2

= −ϵ (756)

which will be small. Smallness of the second parameter η ensures that inflation will
continue for a sufficient period.

It is useful to have a general expression that describes how much inflation occurs
once it has begun. Such a quantity is the number of e-folds defined by

N(t) ≡ ln

(
a(tend)

a(t)

)
. (757)
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Usually we are interested in how many e-folds occur between a given field value ϕ
and the field value at the end of inflation ϕend where ϵ(ϕend) = 1. To do this we
express N(t) as

N(t) = ln

(
a(tend)

a(t)

)
=

∫ a(tend)

a(t)

da′

a′
=

=

∫ tend

t

ȧ

a
dt′ =

∫ tend

t

Hdt′ =

∫ ϕend

ϕ

H
dϕ̃
˙̃ϕ
=

= −3

∫ ϕend

ϕ

H2dϕ̃

V ′ = − 1

M2
p

∫ ϕend

ϕ

V

V ′dϕ̃ .

(758)

The problem of the initial conditions for inflation is very subtle. In case of chaotic
inflation in which we assume that the early Universe emerges from the Planck epoch
with the scalar field taking different values in different part of the Universe with
typically Planckian energies.

Let us now consider some examples of the potential that could lead to inflation.
We start with the simple monomial

V = λM4−α
P ϕα . (759)

For potential above we obtain following slow roll parameters

ϵ =
α2M2

P

2ϕ2
, η = α(α− 1)

M2
P

ϕ2
. (760)

Inflation starts at a large value of ϕ and the inflaton then rolls slowly towards the
minimum with increasing ϵ and η. Inflation ends when the slow roll conditions are
saturated,

ϕ ∼ λMP . (761)

The number of e-foldings we obtain before this happens is given by

N = ln
a(te)

a(ti)
=

(
Hdt =

da

a
⇒
∫
Hdt = ln(af )− ln(ai)

)∫ te

ti

Hdt =

=

∫ ϕe

ϕi

H
dϕ

ϕ̇
= −

∫ ϕe

ϕi

3H2

V ′ dϕ = − 1

M2
P

∫ ϕe

ϕi

V

V ′dϕ = − 1

M2
Pα

∫ ϕe

ϕi

ϕdϕ =

=
ϕ2
i

2M2
Pα

− 1

4
≈ 1

2αM2
P

ϕ2
i

(762)

that implies
ϕi =

√
2αNMP ≫MP . (763)

Using this initial value ϕi we can determine the values of slow roll parameters at ti

ϵi ∼
α

4N
, η ∼ α− 1

N
. (764)
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Figure 1: As an example that illustrates the main idea of inflation is motion of the
scalar field in the theory with V (ϕ) = m2

2
ϕ2. Several different regimes are possible,

depending on the value of the field ϕ. If the potential energy density of the field
is greater than the Planck density M4

p = 1, ϕ ∼ m−1, quantum fluctuations of
space-time are so strong that one cannot describe it in usual terms. Such a state is
called space-time foam. At a somewhat smaller energy density (for m ∼ V (ϕ) ∼ 1,
m−1/2 ∼ ϕ ∼ m−1) quantum fluctuations of space-time are small, but quantum
fluctuations of the scalar field ϕ may be large. Jumps of the scalar field due to
quantum fluctuations lead to a process of eternal self-reproduction of inflationary
universe which we are going to discuss later. At even smaller values of V (ϕ) (for
m2 ∼ V (ϕ) ∼ m, 1 ∼ ϕ ∼ m−1/2) fluctuations of the field ϕ are small; it slowly
moves down as a ball in a viscous liquid. Inflation occurs for 1 ∼ ϕ ∼ m−1. Finally,
near the minimum of V (ϕ) (for ϕ ∼ 1) the scalar field rapidly oscillates, creates
pairs of elementary particles, and the universe becomes hot.
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Another example of the inflation potential is

V = V0e
−
√

2
p

ϕ
MP (765)

with the slow roll parameters

ϵ =
1

p
, η =

2

p
. (766)

Recall that for this potential we can combine the equation of motion to get

ϕ̇ = −MP√
3

V ′
√
V

=

√
2

3p

√
V (767)

that has the solution

V ∼ 3M2
4p

2

t2
(768)

and hence

H2 ∼ p2

t2
⇒ ln a ∼ p ln t⇒ a ∼ tp . (769)

To gain more insight in the idea of inflation note that in most inflation models
the energy density ρ is approximately constant leading to exponential expanssion of
the scale factor. In fact, using p = −ρ in the Friedmann equation we get

ä =
8πG

3
ρa (770)

that in the approximation of ρ = const can be solved with the ansatz a = eλt that
inserted in the equation above implies

λ2 − 8πG

3
ρf = 0 ⇒ λ =

√
8πG

3
ρf , (771)

where ρf is constant energy density.

In the original model of inflation the state that drove the inflation involved a
scalar field in a local (but no global) minimum of its potential energy.The scalar
field state employed in the original version of inflation is called a false vacuum since
the state temporally acts as if it were the state of lowest possible energy density.
Classically this state is stable that there is no possibility how the scalar field crosses
a potential energy barrier that separates it from the states of lower energy. However
quantum mechanically this state would decay through tunneling. Initially it was
hoped that this tunneling could successfully ends an inflation but it was soon found
that the randomness of the bubble formation when the false vacuum decayed would
produced large inhomogeneities.

This problem was solved in the new inflation scenario proposed by Linde. In
this theory the inflation is driven by an scalar field with the potential in the form
in the form

V = −A
2
ϕ2 +

B

4
ϕ4 (772)
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that has minima at ϕ = 0, V (0) = 0 that is a false vacuum and also minima at

ϕ± = ±
√

A
B

with V (ϕ±) = −A2

4B
. This scalar field is called inflaton. If this theory

the inflation is driven by the scalar field on the plateau of the potential energy
diagram (region around the point ϕ = 0). If this plateau is flat enough, such a
state can be stable enough for successful inflation. Soon after the introduction of
the new inflation scenario it was shown that the inflaton potential need not have
either a local minimum or a gentle plateau: This new scenario is known as a chaotic
inflation.

6.7 Solving the problems of standard cosmology

To demonstrate the fact that inflation can solve the problems of the standard cos-
mology let us again consider the potential with the simplest form

V (ϕ) =
1

2
m2ϕ2 . (773)

With this potential the Friedmann equation takes the form

ϕ̇ = −m
2ϕ

3H
,H =

m√
6MP

ϕ (774)

and we find

ϕ = ϕ0 −
√

2

3

m

MP

t (775)

and

a = C exp[
m√
6MP

(ϕ0t−
√
2MP

2
√
3
t2)] = a0 exp[

1

4M2
P

(ϕ2
0 − ϕ2)] . (776)

The period of time during the solution above is valid ends at t ∼ △t at which

a(△t) ∼ a(0) exp(
1

ϵ2
) . (777)

If we take a typical value for m for which ϵ < 10−4 we obtain

a(△t) ∼ a(0)× 102.7×108 . (778)

This has remarkable consequence. A proper distance LP at t = 0 will inflate to
a size 1010

8
cm after a time △t ∼ 5 × 10−36 s. As we know the size of observable

Universe today is H−1
0 ∼ 1028 cm. Therefore, only a small fraction of the original

Planck length comprises today’s entire observable Universe.

General arguments

Inflation is not really a theory, but instead it is a paradigm, or class of theories.
Each specific model of inflation makes definitive predictions but the class of the
models as a whole can be tested only by looking for generic features that are common
for all models. Nevertheless, there are number of features of the Universe that seem
to be characterize consequences of inflation. The basic arguments for inflation are
as follows:
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• The Universe is big

We know that Universe is very large; the visible part of the Universe contains
about 1090 particles. Most of scientists believe that the creation of Universe
can be explained in scientific terms. Thus we think about the theory that could
explain how the Universe got so be so big. Such a theory has to explain the
number of particles, 1090 or more. Simple way to get such a huge number, with
small number as an input, is for the calculation to involve an exponential. The
exponential expansion of inflation can explain this huge number. Moreover,
inflationary cosmology suggests that, even though the observed Universe is
incredible large, it is only a small fraction of the entire Universe.

• The Hubble Expanssion

In standard FRW cosmology the Hubble expanssion is part of the postulates
that define the initial conditions. But the inflation offers the possibility of
explaining how the Hubble expansion began.

• Homogeneity and Isotropy

As we have shown before the degree of uniformity of Universe is starling.
The intensity of the cosmic microwave background radiation is the same in
all directions. The cosmic background radiation was released 400000 years
after big bang after the Universe cooled enough so that the opaque plasma
neutralized into a transparent gas. The cosmic background radiation photons
have mostly been traveling on straight lines since then so they provide an
image of what the Universe looked like at 40000 years after big bang. The
observed uniformity of radiation therefore implies that the observed Universe
had become uniform in temperature by that time. In standard FRW cosmology
a simple calculation shows that the uniformity could be established so quickly
if signals could propagate at about 100 times the speed of light a proposition
clearly contradicting the known laws of physics.

In inflationary cosmology the uniformity is easily explained. It is created
initially on microscopic scales by thermal thermal equilibrium processes and
then inflation takes over and stretches the regions of uniformity to become
large enough to encompass the observed Universe and more.

• Flatness problem

The problem concerns the value of the ration

Ωtot ≡
ρtot
ρ0

, (779)

where ρtot is total mass density of the Universe and where ρ0 = 3H2

8πG
is the

critical density that would make the Universe spatially flat (In ρtot the vacuum
energy, it is nonzero, is included.)

There is now general agreement that Ωtot lies in the range

0.1 ≤ Ω0 ≤ 2 , (780)
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but it was very hard to pinpoint the value with more precision. Despite this
large range the value of Ω at early times is highly constrained, since Ω = 1 is an
unstable equilibrium point of the standard model evolutions. Thus, if Ω was
exactly equal to one, it would remain exactly one forever. On the other hand
if Ω differs slightly from one in the early Universe, that difference-whether
positive or negative, would be amplified with time. More generally, it can be
shown that Ω− 1 grows as

Ω− 1

{
t (during the reaiation− dominated era)
t2/3 (during the matter− dominated era)

(781)

It was shown that at t = 1s when the processes of big bang nucleosynthesis
were just beginning, Ω must be equal to one to an accuracy of one part of
1015. Classical cosmology cannot explain this fact. In the context of modern
particle physics cosmology, where we try to push all thinks all the way back
to Planck scale 10−43sec the problem becomes even more severe.

While this extraordinary flatness of the early Universe has o explanation in
classical FRW cosmology, it is a natural prediction for inflation cosmology.
During the inflationary period, we have following relation

Ω− 1 ≈ e−2Hinf t , (782)

where Hinf is Hubble parameter during inflation. Thus, as long as there is a
sufficient period of inflation, Ω can start at almost any value and it will be
driven to unity by the exponential expansion. Moreover, recent observation
favored value of Ω0 to be equal to Ω0 = 1.02 ± 0.02 according with recent
WMAP results that is in beautiful agreement with inflation.

• Absence of magnetic monopoles

All grand unified theories predict that there should be, in the spectrum of pos-
sible particles,extremely massive particles carrying a net magnetic charge. It
was shown in the context of the standard cosmology that magnetic monopoles
would be produced so strongly so that they would overweigh everything else
in the Universe by a factor of about 1012. Such a large mass density would
cause that the Universe would come to its big crunch in about 30.000 years.
Inflation is simplest known mechanism to eliminate monopoles from the visible
Universe even though they are still in the spectrum of possible particles. The
monopoles are eliminated simply due to the fact that inflation diluted them
to a completely negligible level.

• Anisotropy of the cosmic microwave background radiation

The process of inflation smooths the Universe completely. On the other hand
the density fluctuations are generated as inflation ends by the quantum fluc-
tuations of the inflaton field. The general properties of these fluctuations are
that are adiabatic, Gaussian, and nearly scale-invariant.
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6.8 Reheating and Preheating

The great strength of inflation is its ability to redshift away all unwanted relics, such
as topological defects. However during this process radiation and dust-like matter
are similarly redshifted away to nothing so that at the end of inflation the Universe
contains nothing but the inflationary scalar field condensate. The question is how
does the matter arise and how is the Universe reheated?

The problem of reheating is very complicated and complex. In fact, the theory
of reheating of the Universe after inflation is the most important application of
the quantum theory of particle creation since almost all matter constituting the
Universe was created during this process.

Now we sketch the standard picture.

Inflation ends when the slow-roll conditions are violated and the field begins
to fall towards the minimum of the potential. Initially all energy density is in
the inflation however now this energy is damped by two possible terms. Firstly,
the expanssion of the Universe naturally damps the energy density. Secondly, the
inflation may decay into other particles, such as radiation or massive particles, both
fermionic or bosonic. To describe this process one introduce a phenomenological
decay term Γϕ into the scalar field equation. For example, if we consider the fermions
only, then the rough expression for how the energy density evolves is

ρ̇ϕ + (3H + Γϕ)ρϕ = 0 . (783)

It can be shown that the inflaton undergoes damped oscilations and decays into
radiation that equilibrates rapidly at a temperature known as the reheat temperature
TRH .

More preciselly, early theory of reheating of Universe after inflation were based
on the idea that the homogeneous inflation field can be represented as a collection
of the particles of the field ϕ. Put differently, we expect that inflation field has the
same form as the ordinary quantum field in the flat spacetime. Then we can model
reheating as a decay of each particle separately and this process can be studied in
the standard perturbative description of particle decay.Typically, it takes thousands
of oscillations of the inflaton field until it decays into usual elementary particles by
this mechanism.

In case of bosons the situation is more complicated since now inflaton oscilations
may give rise to parametric resonance that is characterised by an extremely rapid
decay that results into distributions of products that are far from equilibrium and
only much later settles down to an equilibrium distribution at energy TRH . Such a
decay due to the parametric resonance is known as preheating. The parametric res-
onance is an example of the coherent field effect that leads to the homogeneous field
decay much faster than would be predicted by perturbative effects. These coherent
effects produce high energy, nonthermal fluctuations that could have significance for
understanding developments at the early Universe, as for example baryogenesis.
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6.9 Quantum fluctuations

The key problem is how to test an inflation. The answer is the structure formation.
As we have seen an important reason to involve an inflation is to make the Universe
smooth and flat. However as we observe every day there is a large amount of
structure in Universe. This structure can be traced back to subtle variations in the
matter distribution during the time when the cosmic microwave background was
released. The naive application of inflation in fact excludes such non-uniformity. It
is a nice example of the application of the quantum field theory in curved background
that explains the emergence of non-uniformity.

The main point is that inflation magnifies microscopic quantum fluctuation to
cosmic size and hence provides seeds for structure formations. It is very interesting
that then the details of physics at the highest energy scales is therefore reflected
in the distribution of galaxies and other structures on large scales. More preciselly,
the fluctuations start at their smallest scales and grow larger (in wavelength) as
the Universe expands. Eventually they become larger than the horizon and free.
Intuitively, the different parts of wave can no longer communicate with each other
since light can not keep up with the expanssion of Universe. This is a consequence
of the fact that the scale factor grows faster than the horizon which is a defining
property of an accelerating and inflating Universe. At a later time, when inflation
stops, the scale factor will start to grow slower than the horizon and the fluctua-
tions will eventually come back within the causal horizon.The fluctuations will then
appear as acoustic waves in the plasma and hence they will affect the CMB.

Let us now study this problem in more details. We assume that metric as well
as the inflaton can be split into a classical background piece and a piece due to
fluctuations according to

gµν = g(0)µν + hµν(τ,x) ,

ϕ = ϕ(0) + δϕ(τ,x) ,

(784)

where for convenience we have introduced conformal time τ such that the metric is
given by

ds2 = a(τ)2(dτ 2 − dx2) . (785)

Since the background metric is homogenous it is convenient to Fourier transform
the fluctuation mode δϕ as

δϕ(τ,x) =
1

(2π)3/2

∫
dkδϕke

ikx . (786)

Since we can presume that fluctuation are small in magnitude we can neglect the
potential term for the fluctuation mode δϕ so that its equation of motion takes to
form

1√
−g

∂µ
[√

−ggµν∂νδϕ
]
= 0 (787)
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that using the (785) takes the form

1

a2
δϕ′′ +

2a′

a
δϕ′ − 1

a2
∂i∂

iδϕ = 0 , (788)

where (. . . )′ = d(... )
dτ

. Finally, using (786) we obtain differential equation for mode
δϕk

δϕ′′
k + 2

a′

a
δϕ′

k + k2δϕk = 0 . (789)

If we introduce the rescaled mode µk = aδϕk so that

δϕ′
k =

µ′
k

a
− µka

′

a2
, δϕ′′

k =
µ′′
k

a2
− 2

µ′
ka

′

a2
− µka

′′

a2
+ 2

µk(a
′)2

a3
(790)

the equation (789) can be transformed into

µ′′
k +

(
k2 − a′′

a

)
µk = 0 . (791)

It can be shown that the metric fluctuations can be reduced to two polarizations
obeying an equation identical to the one for the scalar fluctuations. In what follows
we will consider the scalar fluctuations only.

To proceed let us presume that the conformal factor depend on conformal time
as

a ∼ τ 1/2−ν , (792)

where ν is a constant. An important example is a ∼ eHt with H = const. where the
change of coordinates gives

dτ

dt
=

1

a(t)
= e−Ht ⇒ e−Ht = −Hτ ⇒ a(τ) = − 1

Hτ
. (793)

Comparing with (792) we find that −1 = 1/2 − ν ⇒ ν = 3/2. Note also that the
physical range of τ is −∞ < τ < 0. Using now (792) the equation for fluctuation
(791) takes the form

µ′′
k +

(
k2 − 1

τ 2

(
ν2 − 1

4

))
µk = 0 . (794)

It is nice that the equation given above has solution known as a Hankel function.
The general solution is given by

fk(τ) =

√
−τπ
2

(
C1(k)H

(1)
ν (−kτ) + C2(k)H

(2)
ν (−kτ)

)
, (795)

where C1(k) and C2(k) are to be determined by initial conditions.

When we quantize this system we need to introduce oscillators ak(τ) and a
†
−k(τ)

such that

µk =
1√
2k

(
ak(τ) + a†−k(τ)

)
,

πk = µ′
k(τ) +

1

τ
µk(τ) = −i

√
k

2

(
ak(τ)− a†−k(τ)

)
, (796)
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obey standard commutation relation. It is important to stress that these operators
are time dependent and can be expressed in terms of oscillators at a specific moment
in time using the Bogolubov transformations

ak(τ) = ukak(τ0) + vk(τ)a
†
−k(τ0) ,

a†−k(τ) = u∗k(τ)a
†
−k(τ0) + v∗k(τ)ak(τ0) ,

(797)

where
|uk(τ)|2 − |vk(τ)|2 = 1 (798)

Then we can write the quantum field µk as

µk(τ) = fk(τ)ak(τ0) + f ∗
k(τ)a−k(τ0) , (799)

where

fk(τ) =
1√
2k

(uk(τ) + v∗k(τ)) (800)

is given in (795).

Now we come the key question that is what are the initial conditions? The
ussual choice is to consider the infinite past and choose a state annihilated by the
annihilation operator

ak(τ0) |0, τ0⟩ = 0 , (801)

for τ0 → −∞. However there is great debate about this choice in the past and
is commonly known as a Problem of transplanckian physics. However we will not
discuss this issue in this section and we will continue according to common practise.
From (796) we get that

πk(τ0) |0, τ0⟩ = −ı

√
k

2
a†−k |0, τ0⟩ = −ikµk(τ0) |0, τ0⟩ . (802)

Since the Henkel functions behave as for τ0 → −∞

H(1)
ν (−kτ) ∼

√
− 2

kτπ
e−ikτ ,

H(2)
ν (−kτ) ∼ H(1)∗

ν (−kτ) ,
(803)

we find that the vacuum choice corresponds to C2(k) = 0 and |C1(k)| = 1.

In summary we have determined the quantum fluctuation and now we would
like to see how they act on CMB. To do this we compute the size of the fluctuation
according to

P (k) =
4πk3

(2π)3
〈
|δϕk|2

〉
=

k3

2π2

1

a2
〈
|µk|2

〉
=

k3

2π2

1

a2
|fk|2 =

k3

2π2

1

a2
| − πτ |

4
|H(1)

ν (−kτ)|2

(804)
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where ⟨(. . . )⟩ mean the vacuum expectation value with respect to the sate |0, τ0⟩.
Note that we are working in Heisenberg representation where the quantum mechan-
ical operators evolve with time while states not.

Now we should calculate (804) at late times, namely τ → 0. In this limit the
Hankel function behaves as

H(1)
ν (−kτ) ∼

√
2

π
(−kτ)−ν (805)

and hence (804) for τ → 0 takes the form

P ∼ 1

4π2

1

a2
(−τ)1−2νk3−2ν ∼ 1

4π2
H2k3−2ν . (806)

For ν = 3/2 and for slow roll when H for τ → 0 is almost constant we can set the
scale of the fluctuations. In fact, we find the well known scale invariant spectrum
for ν = 3/2

P =
1

4π2
H2 . (807)

It can be shown that this is more or less the whole story in case of the gravitational,
or tensor, perturbations. The scalar fluctuations obey similar equation

Ps ∼
(
H

ϕ̇

)2
1

4π2
H2 . (808)

Ussualy we express the deviation from the scale invariance by introducing spec-
tral indices according to

ns − 1 =
d lnPs

d ln k
= 3− 2νs ,

nT =
d lnPT

d ln k
= 3− 2νT ,

(809)

where νs refers to the scalar perturbations and νT refers to the gravitational, or
tensor perturbations. While not clear from our simplified analysis, the ν ′s need not
be the sam in the two cases. Observations show that ns is very close to 1 consistent
with the basic idea of inflation. It is extreme important to find any slight deviation
from the scale invariant vale which could give important information about the
inflationary potential.

In fact, the flatness of the spectrum of density fluctuations, together with flat-
ness of the Universe Ω = 1 constitute the two most robust predictions of inflationary
cosmology. On the other hand there is an important difference between the predic-
tion of flatness of the Universe and the flatness of the spectrum of perturbations of
metric. It is difficult (though possible) to construct an inflationary model deviating
from the prediction Ω = 1. On the other hand the situation with the flatness of
the spectrum is opposite: It is very difficult (though possible) to construct a model
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with an exactly flat spectrum of perturbations of metric. In this sense, existence of
a small deviation of the spectrum of inflationary perturbations from the flat spec-
trum (i.e. breaking of the scale invariance of the spectrum) represents an additional
robust prediction of inflation.

6.10 Eternal Inflation

The eternal inflation scenario is based on the discovery of the process of self-
reproduction of inflationary Universe.In fact, this process exists in old inflationary
theory and in the new one but its significance was appreciated after discovery of
eternal inflation in the simplest versions of the chaotic inflation scenario.

In the case of the new inflation, the exponential expansion occurs as the scalar
field rolls from the false vacuum state at the peak of the potential energy towards to
the true vacuum. Remarkably, it was shown very briefly after introduction of this
model that the new inflation scenario is generically eternal. The key point is that,
even though classically the field would roll off the hill, quantum mechanically there
is always an amplitude for it to remain at the top.

The time scale for the decay of the false vacuum is controlled by

m2 = − ∂2V

∂2ϕ

∣∣∣∣
ϕ=0

, (810)

which is the negative mass-squared of the scalar field when it is at the top of the
hill on the potential. This is a free parameter of each model but m has to be small
compared to Hubble constant or lese the model does not lead to enough inflation.

In other words, for parameters choosen so that the inflation works, the expo-
nential decay of false vacuum is slower than an exponential expanssion. Even if the
false vacuum is decaying, the expansion outruns the decay and the total volume
of false vacuum actually increases with time rather than decreases. Thus inflation
does not end at all places at once,instead it ends at localized patches, in a succession
that continues at infinitum. Each patches essentially a whole Universe so that it
can be said that inflation produces not just one Universe but an infinite number of
Universes.

In the context of the chaotic Universe models the situation is slightly subtle
even if it was shown by A. Linde that these models are eternal as well.We know
that inflation occurs as the scalar field rolls down a hill of the potential energy
diagram. As the field rolls down the hill quantum fluctuations will be superimposed
on top of the classical motion. The best way to think about this is to ask what
happens during one time interval of duration △t = H1 (Hubble time) in a region of
one Hubble volume H3. Suppose that ϕ0 is the average value of ϕ in this region at
the start of the interval. By definition of a Hubble time the rate of the expanssion
is given by

a(t+△t)/a(t) = eH△t = e . (811)

This means that the change of volume is

V (t+△t)/V (t) = a3(t+△t)H−3/(a3(t)H−3) = e3 (812)
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Since e3 ≈ 20 we see that volume will expand by a factor 20. Since correlations are
extended typically over one Huble length if follows that in the end of the Hubble
time the initial Hubble size region grows and breaks up into 20 independent Hubble
sized regions.

During the time interval △t the classical field ϕ is rolling down the hill. On the
other hand the classical change in the field △ϕcl during the time interval △t is going
to be modified by quantum fluctuations △ϕqu which can drive the field upwards or
downward relative to classical trajectory. For any one of the 20 regions at the end
of the Hubble time we can describe the change of the field as

△ϕ = △ϕcl +△ϕqu . (813)

In the crude approximation the fluctuation is treated as a free quantum field. This
fact implies that △ϕqu the quantum fluctuation averaged over one of the 20 Hubble
volumes at the end, will have a Gaussian probability distribution, with a with of
order H/2π. Then there is then a probability that the sum of the two terms on the
right hand side will be positive-that the scalar field will fluctuate up instead down.
As long as the probability is bigger than 1 in 20 then the number of inflating regions
with ϕ > ϕcl will be larger at the end of the interval than at the beginning. This
process will then go on forever so inflation will never end.

We see that the condition for an existence of eternal inflation is that the proba-
bility for the scalar field to go up must be bigger than 1/e3 ≈ 1/20. It can be shown
that criterion implies the relation

H2

ϕ̇cl

> 3.8 (814)

The probability that △ϕ is positive tends to increase as one considers larger and
larger values of ϕ so that sooner or later one reaches the point when the inflation
becomes eternal. In fact for that reason we think that inflation is almost always
eternal.

The eternal inflation follows from the observation that in many models large
quantum fluctuations that are produced during inflation may locally increase the
value of the energy density in some parts of the Universe. These reasons then expand
at a greater rate than their parent domains and quantum fluctuations in them lead
to production of new inflationary domains which expand even faster. This leads to
an eternal process of self-reproduction of the Universe.

In order to understand the process of self-reproduction we should remember that
the processes separated by distances l greater than H−1 proceed independently one
another. This is a consequence of the fact that during an exponential expanssion
the distance between any two objects separated by more than H−1 is growing with
speed exceeding the speed of light. Then an observer in the inflationary Universe can
see only the processes occurring inside the horizon of radius H−1. In this sense any
inflationary domain of initial radius exceeding H−1 can be considered as a separate
mini-Universe.
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In order to study the behavior of such a mini-Universe we should take into
account the quantum fluctuations. Let us consider an inflationary domain of initial
radius H−1 containing sufficient homogeneous field with initial value ϕ≫M2

p . From
the basic equation of the inflation model

H =
mϕ√
6
, ϕ̇ = −m

√
2

3
(815)

we can deduce that during time interval △t = H−1 the field inside the domain will
be reduced by △ϕ that follows from the second equation above

△ϕ
△t

= −m
√

2

3
⇒ △ϕ = −m

√
2

3
H−1 = −2

ϕ
, (816)

where in the second step we have used the first equation in (815). On the other
hand it can be shown that the quantum fluctuation of the field ϕ is

|δϕ(x)| ≈ H

2π
=

mϕ

2π
√
6
. (817)

Then we see that the magnitude of quantum fluctuation is larger than △ϕ for

mϕ∗

2π
√
6
≈ 2

ϕ∗ ⇒ ϕ∗ ∼ 5√
m

(818)

Then for ϕ ≪ ϕ∗ the decrease of the field ϕ due to the classical motion is much
greater than the average amplitude of the quantum fluctuations δϕ generated during
the same time. On the other hand for ϕ ≫ ϕ∗ one has δϕ(x) ≫ △ϕ. Since the
typical wave length of the fluctuation mode is ∼ H−1 it turns out that the whole
domain after the time △t = H−1 divides into following number of domain with
almost homogenous field

a(△t)H−1/H−1 = e3HH−1 ∼ 20 (819)

where the first expression express the physical size of the domain divided wave
length. In summary, we get 20 separated domains of size H−1, each containing
almost homogenous field ϕ−△ϕ + δϕ. In almost half of these domains the field ϕ
grows by |δϕ(x)| − △ϕ ≈ H/2π rather than decreases. This means that the total
volume of the Universe containing growing field ϕ increases 10 times. During the
next time interval △t = H−1 this process repeats. Thus, after the two time intervals
H−1 the total volume of the Universe containing the growing scalar field increases
100 times. In other words the Universe enters eternal process of self-reproduction.

One should however be careful with interpretation of this result. There is still
an ongoing debate of whether eternal inflation is eternal only in the future or also in
the past. To see this preciselly where is the problem let us consider any particular
time-like geodetic line at the stage of inflation. For any given observer following
this geodetic the duration ti of the stage of inflation on this geodesic will be finite.
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On the other hand eternal inflation implies that if one takes all such geodesics and
calculate the time ti for each of them, then there will be no upper bound for ti. In
other words for each time T there will be such geodesic which experience inflation
for the time ti > T .

Similarly, if we study any particular geodesic in the past time direction, one can
prove that it has finite length. In other words, the inflation n any particular point in
the Universe should have a beginning at some time τi. However there is no reason to
expect that there is an upper bound for all τi on all geodesics. If this upper bound
does not exist, then eternal inflation is eternal not only in the future but also in the
past.

Put differently, there is a beginning for each part of the Universe and there will
be an end for inflation at any particular point. But there will be no end for the
evolution of Universe as a whole in the eternal inflation scenario and at present we
do not have any reason to believe that there was a single beginning of the evolution
of the whole Universe at some moment t = 0 which was traditionally associated
with Big Bang.

If this scenario is correct, then physics alone cannot provide a complete expla-
nation for all properties of our part of the Universe.

6.11 Eternal Inflation: Implications

Even if the other Universes that are created during the eternal inflation are too
remote to imagine observing directly we will see that an eternal inflation has real
consequences in terms of the way we extract predictions from theoretical models.

Firstly, the eternal inflation implies that all hypothesis about initial conditions
for the Universe, such as the Hartle and Hawking no boundary proposal, the tunnel-
ing proposals by Vilekin or Linde become totally divorced from observation. This
follows from the presumption of the eternal inflation with its infinite production of
pocket Universes. Then one can expect that the statistical properties of inflating
region should approach a steady state which is independent on initial condition.
Unfortunatelly there are great problems with the study of this steady state, for ex-
ample, the properties of this state seems to depend crucially on the super-Planckian
physics which we do not understand at present. It is however possible that string
theory could be helpful with this study. More preciselly, the same quantum fluctu-
ations that make eternal inflation possible tend to drive the scalar field further and
further up to potential energy curve so that some attempts that wanted to quantity
the steady state require the imposition of some kind of a boundary condition at
large ϕ.

Even if the Universe forgets the details of its genesis the question, how the
Universe began still remain interesting. To see this note that eternally inflating
Universes continue forever once they start they are apparently not eternal into the
past. 14

14This remark implies that the word “eternal” is not technically correct, we should rather speak
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The second consequence of the eternal inflation is that the probability of the
onset of inflation becomes totally irrelevant provided that the probability is not
identically zero. In fact, this observation is slightly in the clash with our previous
claim that chaotic inflation gives better result that the new inflation scenario. Even
if the initial conditions necessary for the new inflation scenario cannot be justified
on the basis of the thermal equilibrium as was proposed in original papers, in the
context of the eternal inflation it is sufficient to conclude that the probability for
the required initial conditions is nonzero.

The third consequence of the eternal inflation is the possibility that it offers to
rescue the predictive power of theoretical physics. Here we mean the status of M-
theory. Even if this theory by itself has uniqueness it appears that the vacuum is far
from unique. Since the predictions will depend on the properties of the vacuum, the
predictive power of M-theory could be limited. Eternal inflation however provides
a possible mechanism to remedy this problem since it might help to constrain the
vacuum state of the real Universe and hopefully significantly enhance the predictive
power of M-theory. We must however stress that this is pure speculation whose
validity is not justified but one can hope that recent works in the context of the
string theory landscape could bring new light on this conjecture.

6.12 Does Inflation Need a Beginning

We know that according to the inflation scenario is eternal in the future. Than a
natural question arrives: Is it possible that the inflation is eternal into the past?
There is a nice theorem by Borde, Guth and Vlenkin (2003) that proves that the
answer to this question is no. There is of course no conclusion that an eternally
inflating model must have a unique beginning and no conclusion that there is an
upper bound on the length of all backwards-going geodesics from a given point. In
other words this theorem shows that some new physics would be needed do describe
the past boundary of the inflating region.

6.13 Inflation and Observations

It is very nice that inflation can make prediction which can be tested by cosmo-
logical observations. The inflationary prediction for nearly flat spectrum of density
perturbation is in agreement with both you measurements of the CMB anisotropy
and observations of structures in the Universe.

Let us also give another example where the inflation cosmology gives very nice
explanation of the observation date.

Today,we have three-dimensional map of the distribution of galaxies in space that
contain more than one hundred thousand galaxies.They clearly indicate that the
luminous matter in the Universe is neither uniformly nor randomly distributed. We
see clusters of galaxies,superclusters, filaments and voids that are regions of space

about “semi-eternal” or “future-eternal” Universe.
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empty of galaxies. The distribution can be quantified in terms of the luminosity
power spectrum.

As we have also seen another observation window in cosmology is the cosmic
microwave background radiation. This radiation is characterised by a surprising
isotropy, in other words it looks the same from all different directions on the sky.
However this radiation has also fractional level of a bit less than 10−4 of anisotropies.
These anisotropies can be characterised in terms of their angular power spectrum.
The sky map (that is clearly two-dimensional of topology of sphere) of anisotropies
is expanded in spherical harmonics Ylm

△T
T

(θ, ϕ) =
∞∑
l=1

l∑
m=−l

almYlm(ϕ, θ) , (820)

where θ, ϕ are the usual angles on the surface of two-sphere. It can be shown that
the angular power spectrum of CMB has characteristic pattern of anisotropies. The
challenge of cosmology is to explain both the overall isotropy of CMB and the specific
patter of anisotropies.

In order to explain these observation structures we have to look to the very early
Universe. The reason is that the Standard Big Bang cosmology that describes the
cosmological evolution at late times where the notion “late times” means the times
that includes period of nucleosynthesis and later implies that the length scales that
are currently observed were outside the Hubble radius in the early times and no
causal structure formation scenario is possible.

It is great success of inflationary cosmology that can explains all problems we
listed above and also provides a causal mechanism for the origin of inhomogeneities
in the Universe.
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