are diffeomorphisme.

`**የ**/

Similarly, one proves the statement for
$$(g, X) \mapsto R_{Y}(g)$$
.
(1) By (2) L_{X} and R_{X} are smooth vector fields on G.
 $(\lambda_{g}^{*}L_{X})(h) = (T\lambda_{g})^{-1}(L_{X}(\lambda_{g}(h))) =$
 $= T_{gh}\lambda_{g-1} T_{e}\lambda_{gh} X = T_{e}(\lambda_{gn}\lambda_{gh}) X = L_{X}(h)$
 $\forall g, h \in G$.
Similarly, one cuecks right-inv. of R_{X} .

forms a basis of
$$T_{g}G$$
.
For any $g \in G$, $\lambda_{g}^{*} I_{1n}J = I \lambda_{g}^{*} \langle \lambda_{g}^{*} n J \rangle = I_{1n}J$
 $\forall i n \in X_{L}(G)$.
The subspace $X_{L}(G) \subseteq X(G)$ is a subalgeble of
 $(X(G), I, J)$. Via isomorphism, $q \simeq X_{L}(G) \circ f(3)$
of Prop. 1.7, we can transport I, J to a brocket on
 q .

$$\begin{array}{ccc} \Box, J & \mathcal{P} & \mathcal{P} & \mathcal{P} \\ \Box & \mathcal{P} & \mathcal{P} & \mathcal{P} \\ \Box & \mathcal{P} & \mathcal{P} & \mathcal{P} & \mathcal{P} \\ \Box & \mathcal{P} & \mathcal{P} & \mathcal{P} & \mathcal{P} \\ \end{array}$$

is called the lie algebra of G. Due has $L_{[X,Y]} = EL_{X,LY}$ by construction. From the properties of the lie proceed of vector fields it follows:

Prop. 1.10 The mop E, J: gxq - g as in Def. 1.9 hos the following properties: (i) it is bilinear (over IR) (ii) skew-symmetric : [XIY] = - [Y,X] VXYEA (iii) it satisfies the Jacobi-identity: [X, [Y, z]] + [Y, [z, x]] + [z, [x, y]] = 0YX,Y,ZEQ.

Examples (1) Consider a vector space V (dim(V)<00) as Lie group wir to addition +. Then the left-trivialization is just the usual identification of TV = VXV and the left-sur vector fields corresp. to constant functions V-V. In particulas, the Lie bracket of two left-inv. vf.

vanishes and have the lie elgebre is TV = Vequipped with the zero brocket [v, w] = O $\forall v, w \in V$.

Hence, the lie algebra of GxH is what one calls the direct sum of the lie algebras of g and g. (check this as on exercise) For $A \in GL(n, \mathbb{R})$, $J_A : GL(u, \mathbb{R}) \to GL(u, \mathbb{R})$ 1) the resmichan of the linear twop $A_A: M_{n \times n}(IR) \longrightarrow M(LR).$ $= \int T_{A} (B, \chi) = (AB, A\chi) e T_{AB} GL(u, R) \\ \in T_{B} GL(u, R)$

$$= \sum_{X} (A) = T_{M} \lambda_{X} = A_{X}$$
Viewing L_{X} to a function $G_{L}(u, \mathbb{R}) \to M_{n \times n}(\mathbb{R})$,
we know that
$$[X_{1}Y_{1}] := [L_{X}, L_{Y}](Id) = T_{Id} L_{Y} L_{X}(Id) - T_{Id} L_{X} L_{Y}(Id)$$

$$= X - YX$$

$$= XY - YX$$

$$= XY - YX$$

$$= X_{1}Ye = H_{n \times n}(\mathbb{R}) .$$
Lie algebra of $G_{L}(u, \mathbb{R})$ is $g = H_{n \times n}(\mathbb{R}) = :g^{C}(n, \mathbb{R})$
with the commutator of heatrices to Lie brocket.

Proof Exercise.

Prop. 1.14 Suppose G 12 a lie group with lie elg. (g, [,]). (1) $R_x = v^* L_{-x}$ $\forall x \in A_{+}$ $[R_{X}, R_{Y}] = -R_{[X,Y]} \quad \forall X, Y \in \mathcal{A}.$ (\mathbb{Z}) 3 ELy, Ry] = D VX, YEq.

Proof Exercise.

Prop. 1.15 Suppose G is a life grap and g is a
left-(resp. night)- invariant vector field as G.
(1)
$$Fl_{\pm}^{G}(g) = g Fl_{\pm}^{S}(e) \forall g \in G$$
 (resp. $Fl_{\pm}^{S}(g) = Fl_{\pm}^{S}(e)g$
 $\forall g \in G$)
(2) G is can plete
Proof
(1) If G is left-inversant, that G is λ_{g} -related to
itself $(\lambda_{g}^{S}g(h) = g(h) = \chi_{g}g(h) = g(gh))$
 $T_{\lambda_{g}}^{H}g(gh) = g(h)$

which implies that the flow of s communes with the :

$$FL_{t}^{5} \circ \lambda_{g} = \lambda_{g} \circ FL_{t}^{5} \quad \forall g \in G.$$
Evaluating at e shows : $FL_{t}^{5}(g) = g FL_{t}^{5}(e),$
2) Follows from criteria we proved in Global anylisis:
14 $\exists E > D$ s.t. any integral curve through on y
point of a vector field is defined on $(-E, E)$, then
 G is complete.

Def. 1.16 Suppose G is a lie group.
A one parameter subgroup of G is a lie group
homomorphism
$$\alpha : (IR_1+) \rightarrow G$$
 (i.e. a smooth
Curve $\alpha : IR \rightarrow G$ s.t. $\alpha(s+t) = \alpha(t)\alpha(s) \forall s, t \in IR$).
In particular, $\alpha(0) = e$.
Lemma 1.17 G lie group, $\alpha : IR \rightarrow G$ smooth
with $\alpha(D) = e$.

equivalent:

(1)
$$\alpha$$
 is a bue parameter subgroup with $\alpha'(0) = X$.
(2) $\alpha(t) = F_{t}^{L_{X}}(e) \quad \forall t \in \mathbb{R}$
(3) $\alpha(t) = F_{t}^{R_{X}}(e) \quad \forall t \in \mathbb{R}$.
(4) $= 0$ $\lambda_{\alpha(t)}(\alpha(s))$
 $\alpha'(t) = \frac{d}{ds}\Big|_{s=0}^{\alpha(s+t)} = \frac{d}{ds}\Big|_{s=0}^{\alpha(t)\alpha(s)} = T_{e} \lambda_{\alpha(t)}^{X}$
 $= 1 \quad \alpha \text{ is an integral arrive of L_{X} and since $\alpha(0) = e$,$

•

We must have
$$\alpha(t) = Fl_{t}^{L_{x}}(e)$$
 by uniqueness.

$$(\Box - (I) \quad \alpha(t) = Fl_{t}^{L_{x}}(e) \text{ is a support outreinG}$$
with $\alpha(0) = e$ and $\alpha'(0) = L_{x}(\alpha(0)) = X$. Since
 $I + IS = flow$ we have
 $\alpha(t+s) = Fl_{t}^{L_{x}}(e) = Fl_{t}^{L_{x}}(Fl_{s}^{L_{x}}(e)) = \alpha(s)\alpha(t)$
 $I + s$
By exchanging roles of s and t, one proves
Similarly that (I) ≤ 1 (I).