$$e \times p : \mathcal{A} \longrightarrow G$$
$$e \times p(X) := F \iota_{1}^{L_{X}}(e)$$

By definition, exp(o) = e.

Proof

Now,
$$FL_{t}^{l_{x}}(e) = FL_{t}^{l_{tx}}(e) = exp(tx)$$

($c: I \rightarrow G$ integral line of Lx , then $t \mapsto c(at)$
is on integral line of $aL_{x} = L_{ax}$ $\forall a \in IR$).
and $FL_{t}^{l_{x}}(g) = g FL_{t}^{l_{x}}(e) = g exp(tx)$
 $FL_{t}^{R_{x}}(g) = exp(tx)g$
by Prop. 1.15.

$$\left(\left(T_{exp} \right) \left(X \right) = \frac{d}{dt} \right|_{t=0} exp(tx) = \frac{d}{dt} \left| FL_{t}(e) = L_{x}(e) = X \right|_{t=0}$$

(*) (ousider the commentative lie group
$$(IR_{>0}, -)$$
.
Its lie elgebra is IR with trivial Lie bracket.
The left-inv. of generated by $x \in IR$ is
 $L_x(a) = ax$
 $II = 0$ [utegral curve of L_x through
 $T_x = 1 \in IR_{>0}$
 $L_x(c(t)) = c^1(t)$ $c(0) = 1$
 $C(t)x$
Solution is $c(t) = e^{tx}$ usual exponential
 uap .

Which implies that this power serves converges
bisolubely and uniformely on Compact sets).

$$exp(X+Y) = exp(x) exp(Y)$$
 unless $[X,Y] = XY - YX$
 $= 0$.

Def. 1.20 (Exponential coordinates)
G is a lie group with lie elg.
$$q$$
, $V \subseteq q$ is be
open reightlied of $U \in q$ sit. $exp[: V \rightarrow exp(V) =: U$
is a diffeour. Into on open neighblied of $e \in G$.

onto an open neighblid U of e in G. Indeed, $\frac{\partial v}{\partial t_i}(o) = X_i$ and so $T_v [a_1, ..., a_n] = a_1 X_1 + \cdots + a_n X_n$ $(U, V_{U}^{1} = u)$ and $(A_{g}(U), A_{g}(U))$ ore coordinates around ref and gef. n Canonical coordinates of the second kind".

Prop. 1.21 Let y: H-G continuous group holeoupleise between lie groups H and G. Then 4 12 smooth. Proof We first show this for H = (IR, +), I.e. γ is a continuous 1- parameter rubgraup. Cloim If a: IR->G 1> a continuous 1-parom. subgr., then & is smooth. By Thue. 1.19, Jr>0 s.t. 2r for some inner product $exp: B_{2r}(0) \longrightarrow exp(B_{2r}(0)) = :B_{2r}(e) \quad \forall a = 1$ $\leq a = 1Rn$

is a difference onto an open héighblid Bzrle) of eEG. Since, alo) = e and & is continuous, JE>0 S.F. $\alpha(t-\varepsilon,\varepsilon J) \subseteq B_r(e)$. Now let us define $\beta: t-\varepsilon, \varepsilon] \rightarrow B_{\rho}(o)$ $\beta = exp \int_{\beta_{r}(0)}^{-1} \circ \alpha$ <u>exp(B1+)</u>) For $|t| < \frac{\varepsilon}{2}$ we have $exp(\beta(2t)) = \alpha(2t) = \alpha(t) \alpha(t)$ = exp(2 B(H))

$$= \beta_{1}(zt) = 2\beta(t) = \beta_{2}(\frac{s}{z}) = \frac{1}{z}\beta(s) \forall s \in E_{1}[z]$$
By inductive one shows : $\beta(\frac{s}{z}) = \frac{1}{z^{k}}\beta(s)$

$$= \frac{1}{z^{k}}\beta(s)$$

$$\forall s \in E_{1}[z]$$

$$\forall k \in \mathbb{N}$$

$$= \alpha(\frac{n\varepsilon}{z^{k}})^{n} = \alpha(\frac{\varepsilon}{z^{k}})^{n} = \exp(\beta(\frac{\varepsilon}{z^{k}}))^{n} = \exp(\frac{n}{z^{k}}\beta(\varepsilon))$$
Since $\alpha(t)^{-1} = \alpha(-t)$ and $\exp(-x) = \exp(x)^{-1}$,
$$= \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty}$$

Since $S \subseteq IR$ is dense and both sides of hx) ore continuous, we deduce that $\alpha(t) = \exp\left(t\frac{\Lambda}{E}p(E)\right)$ if t. In porticular, α is suboth, because the right-hand

Side is.

Now consider the general lose $\psi: H \rightarrow G$. Toke a basis $\{X_n, \dots, X_n\}$ of \mathcal{G} . Then $u^{-1}(t_1, \dots, t_n) = \exp(t_n X_n) \dots \exp(t_n X_n)$ defines a diffeour. from a neighbourd $D \in \mathbb{R}^n$ to an open neighbour

In purvicular,
$$G_{\circ} \subseteq G_{\circ}$$
 is a life subgroup of G_{\circ}
and G/G_{\circ} is also a group, called the component
group of G_{\circ} .
 G_{\circ}
 $G_$

Thu. 1.23 G and H Lie groups with he alg. Then: g and g. A) If y: G -> H 13 a lie group houomorphisser, then yoexp = exp oy where $\psi' = T_e \psi : q - g$. coincides with the subgroup generated G. by exp(g) CG.

(3) If
$$\psi, \psi: G \rightarrow H$$
 are lie group homomorphisms
 $s+ \psi' = \psi'$, there $\psi|_{G_0} = \psi|_{G_0}$.
In porticular, if G is connected, there $\psi = \psi$.
Proof
(In the proof
 $\varphi|_{x(g)} = \int_{\psi'(x)}^{(\psi|_{g)}} (n the proof
 $\varphi|_{x(g)} = \int_{\psi'(x)}^{(\psi|_{g)}} (n the proof
 $\varphi|_{x(g)} = \int_{\psi'(x)}^{(\psi|_{g)}} (n the proof
 $\varphi|_{x(g)} = \int_{\psi'(x)}^{(\psi|_{g)}} (y the proof
(y the p(x)) = \psi(Ft_{y}) = Ft_{y}^{(\psi'(x))}(y) = ft_{y}^{(\psi'(x))}(y)$$$$$$$$$

Hence,
$$\tilde{G} \subseteq \tilde{G}$$
 is open.
But $\tilde{G} \subseteq \tilde{G}$ is also closed, since for $g \in G \setminus \tilde{G}$
 $\lambda_g(v(0))$ is an open neighblid of g contained in
 $G \setminus \tilde{G}$. Hence, $G \setminus \tilde{G}$ is open and therefore
 \tilde{G} is closed.
 $\Longrightarrow \tilde{G} = G_0$.

3 By 1, y and y coincide on exploy).
Since y and y are group honore, , also on
$$\widehat{G}$$
.
So the result follows from (2)

det :
$$GL(u, IR) \rightarrow (IR | (205, .))$$
 is a lie graup
wowowarphism
($det(AB) = det(A)det(B)$)
 $det' = T_{1d}det = trace : gl(u, IR) \rightarrow IR$
By (1) of Thun. 1.23 :
 $exp=e : gl(u, IR) \rightarrow SL(u, IR)$
 $det(e^{x}) = e^{tr(x)}$