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CHAPTER 9. CONTINUOUS MODELS – FURTHER SELECTED TOPICS

3. Remarks on Variational Calculus

Many practical problems look for minima or maxima of
real functions J : S → R defined on some spaces of func-
tions. In particular, many laws of nature can be expressed as
certain “minimum principle” concerning some space of map-
pings.

The basic idea is exactly the same as in the elementary
differential calculus: we aim at finding the best linear approx-
imations of J at fixed arguments u ∈ S, we recognize the
critical points (those with vanishing linearization), and then
we perhaps look at the quadratic approximations at the critical
points. However, all these steps are far more intricate, need a
lot of care, and may provide nasty surprises.

9.3.1. Simple examples first. If we know the sizes of tan-
gent vectors to curves, we may ask what is the
shortest distance between two points. In the
plane R2, this means we have got a quadratic
form g(x) = (gij(x)), 1 ≤ i, j ≤ 2, at each

x ∈ R2 and we want to integrate (the dots mean derivatives
in time t, u(t) = (u1(t), u2(t)) are differentiable paths)

(1) J (u) =
∫ t2

t1

√
g(u(t))(u̇(t)) dt

to get the distance between the two given points u(t1) =
(u1(t1), u2(t1)) = A and u(t2) = (u1(t2), u2(t2)) = B.
If the size of the vectors is just the Euclidean one, and we
consider curves u(t) = (t, v(t)), i.e., graphs of functions of
one variable, the length (1) becomes the well known formula

(2) J (u) =
∫ t2

t1

√
1 + v̇(t)2 dt.

Quite certainly we all believe that the mimimum for fixed
boundary values v(t1) and v(t2) must be a straight line. But
so far, we have not formulated the problem itself. What is the
space of curves we deal with? If we allowed non-continuous
ones, then shorter paths are available! So we should aim at
proving that the lines are the minimal curves among the con-
tinuous ones. Do we need them to be differentiable? In some
sense we do, since the derivative appears in our formula for
J , but we need to have the integrand defined only almost ev-
erywehere. For example, this will be true for all Lipschitz
curves.

In general, g(u)(u̇) = g11(u)u̇
2
1 + 2g12(u)u̇1u̇2 +

g22(u)u̇
2
2. Such lengths of vectors are automatically inher-

ited from the ambient Euclidean R3 on every hypersurface in
the space. Thus, finding the minimum of J means finding
the shortest track in a real terrain (with hills and valleys).

If we choose a positive function α on R2 and consider
g(x) = α(x)2 idR2 , i.e., the Euclidean size of vectors scaled
by α(x) > 0 at each point x ∈ R2, we obtain

(3) J (u) =
∫ t2

t1

α(t, v(t))
√

1 + v̇(t)2 dt.

We can imagine the speed 1/α of a moving particle (or light)
in the plane depends of the values of α (the smaller is α, the
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CHAPTER 9. CONTINUOUS MODELS – FURTHER SELECTED TOPICS

bigger is the speed) and our problem will be to find the short-
est path in terms of the time necessary to pass from A to B.

As a warm up, consider α = 1 in the entire plane, except
the vertical strip V = {(t, y); t ∈ [a, a + b]} where α = N
and takeA = (0, 0),B = (a+b, c), a, b, c > 0. We can imag-
ine V is a lake, you have to get from A to B by running and
swimming, and you are swimming N times slower than run-
ning. If we believe that the straight lines are the minimizers
for constant α, then it is clear that we have to find the optimal
point P = (a, p) on the bank of the lake where we start swim-
ming. The total time T (p) will then be (s is our actual speed
when running straight)

|AP |
s

+
|PB|
s/N

=
1

s

(√
p2 + a2 +N

√
(c− p)2 + b2

)
and we want to find the minimum of T (p). The critical point
is given by

p√
p2 + a2

= N
c− p√

(c− p)2 + b2
=⇒ sinφ = N sinψ,

where φ is the angle betwen our running track and the nor-
mal to the boundary of V, while ψ is the angle between our
swimming track and the normal to the boundary (draw a pic-
ture yourself!). Thus we have recovered the famous Snell law
of light diffraction saying that the proportion of the sine val-
ues of the angles is equal to the proportion of the speeds. (Of
course, to finish the solution of the problem, the reader should
find the solution p of the quartic equation and check that it is
a minimum.)

9.3.2. Variational problems. We shall restrict our attention
to the following class of problems.

General first order variational problems
Consider an open Riemann measurable set Ω ⊂ Rn, the
space C1 (Ω) of all differentiable mappings u : Ω → Rm, a
C2 function F = F (x, y, p) : Rn ×Rm ×Rnm and set the
functional

(1) J (u) =
∫
Ω

F (x, u(x), D1u(x))ωRn ,

i.e., J (u) is computed as the ordinary integral of a Riemann
integrable function f(x) = F (x, u(x), D1u(x)) where
D1u is the Jacobi matrix (the differential) of u. The function
F is called the Lagrangian of the variational problem and
our task is to find the minimum of J and the correspond-
ing minimizer u with prescribed boundary values u on the
boundary ∂Ω (and perhaps some further conditions restrict-
ing u).

Mostly we shall restrict ourselves to the case n = m = 1,
like in the previous paragraph, where u is a real differentiable
function defined on an interval (t1, t2) and the function F =
F (t, y, p) : R3 → R,

(2) J (u) =
∫
Ω

F (t, u(t), u̇(t)) dt.
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CHAPTER 9. CONTINUOUS MODELS – FURTHER SELECTED TOPICS

We saw F =
√
1 + p2, F = α(t)

√
1 + p2 in the previous

paragraph. If we take F = y
√
1 + p2, the functional J com-

putes the area of the rotational surface given by the graph of
the function u (up to a constant multiple). In all cases we may
set the boundary values u(t1) and u(t2).

Actually, our differentiability assumptions are too strict
as we saw already in our last example above, whereF was dif-
ferentiable except of the boundary of the lake V . We can eas-
ily extend our space of functions to piecewise differentiable
u and request F (t, u(t), u̇(t)) to be piecewise differentiable
for all such u’s (as always, picewise differentiable means the
one-side derivatives exist at all points).

A maybe shocking example is the following functional:

(3) J (u) =
∫ 1

0

(u̇(t)2 − 1)2 dt

on piece-wise differentiable functions on [0, 1] (i.e. F is the
neat polynomial (p2 − 1)2). Clearly, J (u) ≥ 0 for all u and
if we set u(0) = u(1) = 0, then any zig-zag piecewise linear
function u with derivatives ±1 satisfying the boundary con-
ditions achieves the zero minimum. At the same time, there
is no minimum among the differentiable functions u (find a
quick proof of that!), but we can approximate any of the zig-
zag minima by smooth ones at any precision.

9.3.3. More examples. Let us develop a general method
how to find the analogy to the critical points
form the elementary calculus here. We shall find
the necessary steps dealing with a specific set of
problems in this paragraph. Let us work with the

Lagrangian generalizing the previous examples:

(1) F (t, y, p) = yr
√
1 + p2

r > 0, and writeFt,Fy ,Fp, etc., for the corresponding partial
derivatives. Consider the variational problem on an interval
I = (t1, t2) with fixed boundary conditions u(t1) and u(t2)
and assume u ∈ C2 (I), u(t) > 0. Let us consider any dif-
ferentiable v on I with v(t1) = v(t2) = 0 (or even better v
with compact support inside of I). Then u + δv fulfills the
boundary conditions for all small real δ’s and consider

J (u+ δv) =

∫ t2

t1

F (t, u(t) + δv(t), u̇(t) + δv̇(t)).

Of course, the necessary condition for u being a critical point
must be d

dδ |0J (u+ δv) = 0, i.e., (remind the derivative with
respect to a parameter can be swapped with the integration)

(2) 0 =

∫ t2

t1

Fy(t, u(t), u̇(t))v(t)+Fp(t, u(t), u̇(t))v̇(t) dt.

Integrating the second term in (2) per partes immediately
yields (remember v(t1) = v(t2) = 0)

0 =

∫ t2

t1

(
Fy(t, u(t), u̇(t))v(t)−

d

dt
Fp(t, u(t), u̇(t))

)
v(t) dt.
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CHAPTER 9. CONTINUOUS MODELS – FURTHER SELECTED TOPICS

This condition will be certainly satisfied if the so called Euler
equation holds true for u (we prove this is a necessary condi-
tion in lemma 9.3.6)

(3)
d

dt
Fp(t, u(t), u̇(t)) = Fy(t, u(t), u̇(t)).

An equivalent form of this equation for u̇(t) ̸= 0 is (we omit
the arguments t of u and u̇)

(4) Ft(t, u, u̇) =
d

dt

(
F (t, u, u̇)− u̇Fp(t, u, u̇)

)
.

In our case of F (t, y, p) = yr(1+ p2)1/2, Ft vanishes identi-
cally, Fp = yrp(1 + p2)−1/2 and thus, if we further assume
r ̸= 0, u > 0, the term in the bracket has to be a positive
constant Cr :
Cr = ur(1+u̇2 )1/2−u̇uru̇(1+u̇2 )−1/2 = ur(1+u̇2 )−1/2.

We have arrived at the differential equation

(5) u = C(1 + u̇2)1/2r

which we are going to solve.
Consider the transformation u̇ = tan τ , i.e.,

u = C(1 + (tan τ)2)1/2r = C(cos τ)−1/r,

and so du = C
r (cos τ)

−1/r tan τdτ . Consequently, dt =
1
u̇du = C

r (cos τ)
−1/rdτ and by integration we arrive at the

very useful parametrization of the solutions by the parameter
τ (which is actually the slope of the tangent to the solution
graph):

(6) t = t0 +
C

r

∫ τ

0

(cos s−1/r)ds u = C(cos τ)−1/r.

Now, we can summarize the result for several interest-
ing values of r. First, if r = 0 (which
we excluded on the way), then the Euler
equation (3) reads
ü(1 + u̇2)−3/2 = 0,

which implies ü = 0 and thus the potential minimizers should
be straight lines as expected. (Notice that we have not proved
yet that the Euler equation is indeed a necessary condition,
we shall come to that in the next paragraphs.)

For general r ̸= 0, the Euler equation (3) tells (a straight-
forward computation!)

ü = r
1 + u̇2

u
and thus the sign of the second derivative coincides with the
sign of r. In particular, the potential minimizers are always
concave functions (if r < 0) or convex (if r > 0).

If r = −1, the parametrization (6) leads to (an easy inte-
gration!)
(7) t = t0 − C sin τ, u = C cos τ,

thus for τ ∈ [−π/2, π/2] our solutions are half-circles with
radius C in the upper halfplane, centred at (t0, 0).

For r = −1/2, the solution is

(8) t = t0 −
C

2
(2τ + sin 2τ),

C

2
(1 + cos 2τ)
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which is a parametric description of a fixed point on a circle
with diameter C rolling along the t axis, the so called cycloid
curve. Now, τ ∈ [−π/2, π/2] provides t running from t0 +
1
2Cπ to t0− 1

2Cπ, while u is zero in the point t0± 1
2Cπ and

reaches the highest point at t = t0. (Draw pictures!)
Next, look at r = 1/2. Another quick integration reveals

t = t0 + 2C tan τ = t0 + 2Cu̇ , and we can compute u̇ and
substitute into (5) to obtain

u = C +
1

4C
(t− t0)2.

Thus the potential minimizers are parabolas with the axis of
symmetry t = t0. If we fix A = (0, 1) and a t0, there are
two relevant choicesC = 1

2 (1±
√
1− t20) whenever |t0| < 1

(and no options for |t0| > 1). The two parabolas will have two
points of intersection, A and another point B. Clearly only
one of them should be the actual minimizer. Moreover, the
reader could try to prove that the parabola u = 1

4 t
2 touches

all of them and has them all on the left (this is the so called
envelope of all the family of parabolas). Thus, there will be
no potential minimizer joining the point A = (1, 0) to an
arbitrary point on the right of the parabola u = 1

4 t
2.

The last case we come to is r = 1, i.e., the case of the
area of the surface of the rotational body drawn by the graph.
Here we better use another parametrization of the slope of
the tangent, we set u̇ = sinh τ . A very similar computation
as above then immediately leads to t = t0 +

C
r

∫ τ
0
cosh s ds

and we arrive at the result7

(9) u(t) = C cosh t−t0
C .

9.3.4. Critical points of functionals. Now we shall devel-
ope a bit of theory verifying that the steps done
in the previous examples realy provided neces-
sary conditions for solutions of the variational
problems. In order to underline the essential fea-

tures, we shall first introduce the basic tools in the realm of
general normed vector spaces, see 7.3.1. The spaces of piece-
wise differentiable functions on an interval with theLp norms
can serve as typical examples. We shall deal with mappings
F : S → R called (real) functionals.

The first differential

Let S be a vector space equipped with a norm ∥ ∥. A con-
tinuous linear mapping L : S → R is called a continuous
linear functional.

A functional F : S → R is said to have the differen-
tial DuF at a point u ∈ S if there is a continuous linear
functional L such that

(1) lim
v→0

F(u+ v)−F(u)− L(v)
∥v∥

= 0.

7Some more details on the set of examples of this paragraph can be
found in the article "Elementary Introduction to the Calculus of Variations"
by Magnus R. Hestenes, Mathematics Magazine, Vol. 23, No. 5 (May - Jun.,
1950), pp. 249-267.
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In the very special case of the Euclidean S = Rn, we
have recovered the standard definition of the differential, cf.
8.1.7 (just notice that all linear functionals are continuous on
a finite dimensional vector space). Again, the differential is
computed via the directional derivatives.8 Indeed, if (1) holds
true, than for each fixed v ∈ S

(2) δF(u)(v) = lim
t→0

F(u+ tv)−F(u)
t

=
d

dt |0
F(u+tv)

exists and L(v) = δF(u)(v). We call δF(u) the variation of
the functional F at u.

A point u ∈ S is called a critical point if δF(u) = 0.
We say that F has got a local minimum at u if there is an
open neighborhood U of u such that F(w) ≥ F(u) for all
w ∈ U . Similarly, we define local maxima and talk about
local extrema.

If u is an extreme of F, then in particular t = 0 must be
an extreme of the function F(u + tv) of one real variable t,
where v is arbitrary. Thus the extremes have to be at critical
points, if the variations exist.

Next, let us assume the variations exist at all points in a
neighborhood of a critical point u ∈ S. Then, again exactly
as in the elementary calculus, considering two increments
v, w ∈ S we consider the limit

(3) δ2F(u)(v, w) = lim
t→0

δF(u+ tv)(w)− δF(u)(w)
t

.

If the limits exist for all u, v, then clearly δ2F(u) is a bilinear
mapping. Then, δ2F(u)(w,w) is a quadratic form which we
can consider as a second order approximation of F at u. We
call it the second variation of F. Moreover, again as in the
elementary calculus, δ2F(u)(w,w) = d2

dt2 |0F(u+tw), if the
second variation exists. We may summarize:

Theorem. Let F : S → R be a functional with a local ex-
treme in u ∈ S. If the variation δF(u) exists, then it has to
vanish. If the second variation δ2F(u) exists (thus in particu-
lar, δF exists on a neighborhood of u), then δ2F(u)(w,w) ≥
0 for a minimum, while δ2F(u)(w,w) ≤ 0 for a maximum.

Proof. Assume F has got a local minimum at u. We
have already seen, f(t) = F(u + tv) has to achieve a local
minimum for each v at t = 0. Thus f ′(0) = 0 if f(t) is
differentiable, and so δF(u) vanishes.

Now assume δ2F(u)(w,w) = f ′′(0) = τ < 0 for some
w. Then the mean value theorem implies

f(t)− f(0) = f ′(c)t =
1

c
(f ′(c)− f ′(0))ct

for some t ≥ c > 0. Thus, for t small enough f(t)−f(0) < 0
which contradicts f(0) being a local minimum.

The claim for maximum follows analogously (or we may
apply the already proved result to the functional −F). □

8In functional analysis, this directional derivative is usually called the
Gâteaux differential, while the continuous functional L satisfying (1) is usu-
ally called the Fréchet differential, going back to two of the founders of func-
tional analysis from the beginning of the 20th century.
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Corollary. On top of all assumptions of the above theorem
suppose F(v + tw) is 2 times differentiable at t = 0 and
δ2F(v)(w,w) ≥ 0 for all v in a neighborhood of the critical
point u and w ∈ S. Then F has got a minimum at u.

Proof. As before we consider f(t) = F(u+ tw), w =
z − u. Thus, for some 0 < c ≤ 1

F(z) −F(u) = f(1)− f(0) = f ′(0) +
1

2
f ′′(c)

=
1

2
δ2F(u+ cw)(w,w) ≥ 0.

□

Remark. Actually, the condition from the collolary is far too
strong in infinite dimensional spaces. It is possible to replace
it by the condition δ2F continuous at u and δ2F(u)(w,w) ≥
C∥w∥ for some real constant C > 0 just in the critical point
u. In the finite dimensional case, this is equivalent to the re-
quirement δ2F continuous and positive definite.

9.3.5. Back to variational problems. As we already no-
ticed, the answer to a variational problem minimizing a func-
tional (we omit the arguments t of the unknown function u)

(1) J (u) =
∫ t2

t1

F (t, u, u̇) dt

depends very much on the boundary conditions and the space
of functions we deal with. If we posit u(t1) = A, u(t2) = B
with arbitrary A,B ∈ R we may deal with spaces of differ-
entiable or piecewise differentiable functions satisfying these
boundary conditions. But these subspaces will not be vector
spaces any more. Thus, strictly speaking, we cannot apply
the concepts from the previous paragraph here.

However, we may fix any differentiable function v on
[t1, t2] satisfying v(t1) = A, v(t2) = B, e.g. v(t) =
A+ (B −A) t−t1t2−t1 , and replace the functional J by

J̃ (u) = J (u+ v) =

∫ t2

t1

F (t, u+ v, u̇+ v̇) dt.

Now, the intitial problem transforms to one with boundary
conditions u(t1) = u(t2) = 0 and computing the variations
d
dδ J̃ (u+ δw) = d

dδJ (u+ v + δw) does not change, i.e. we
have to request w(t1) = w(t2) = 0 and we differentiate in a
vector space.

Essentially, we just exploit the natural affine structures
on the subspaces of functions defined by the general bound-
ary conditions and thus the derivatives have to live in their
modeling vector subspaces.
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