Hormonální řízení «ř-^^^ b)Neuroendokrinni """"' ( ľ c) Endokrinní d) Parakrinni a M r~i e) Modifikovaná parakrinni A^ Á ffißS ffi pBoi ojoj We u rotran srn iter Meu roh ormo n JU lii Hormon Hormon Hormon O /ř^ • Postsynaptická buňka CiJová bunJca Cílová buňka Gap junctions (e, g., bi! E wee n myocardial ce Cytoplasmic contact Figure 14,15 Chemical messengers act over short, intermediate, and development.of itinmmaTy glands during pregnancy i Recognition molecules on adjacent cells Paracrinesand autocrines l&gfa tingiogcnesis in skeletal m use I e of end u ra ncc athletes) N eurotransm i tters {e.g., at the motor endpiatt;) DISTANCE Local d if fusion f lormones and neurohormones (e;g.j pituitary gland) Transport in blood Fheromoneti nnd kairomoněs Outside t;nvÍTi)mntľnt Buňky v mozku a oční stopce- Buňky v mozku Buňky v a) Korýš b) Hmyz c) Obojživelník Podnět >UČidloL-* CNS Akční potenciál Motoneuron Effektor/^ ^ Effektor!-^ Odpověď Podnět Neurohormon -#—«—*- ►JEfektorH* Odpověď Podnět Akční pot. „._ jEndokr. CNS 'V T ^ žláza Neurohor. Hormon EfektorLv Odpověď Podnět Odpověď Podnět e) NI Endokr. VI f zlaza Hormon Effektor -7? Odpověď Hormon (první posel) C yto plaz m atický receptor a) b Receptor Přenašeč Zesilovač b) Hormon (první posel) Druhý posel Jaderná membrána Aktivovaný enzym m-RNA i Protein L Buněčný efekt la) Ligand-gated channel (b) C protein-coupled receptor and associated C protein system Extracellular fluid Extracellular fluid After binding to their ligand, G protein-coupled receptors typically interact with two other cell-membrane proteins—a G protein and an enzyme—to activate enzyme catalytic sites. igand (first messenger) Activated active site í Cell membrane Cytoplasm G protein-coupled receptor KEY G protein Enzyme ATP / ~ In their typical mode of functioning, ligancl-gated channels open to permit ions to pass through, thereby altering membrane electrical charge, when they bind to their ligands. Activating interaction The catalytic activity of the enzyme produces cyclic AMP or another second messenger inside the cell. Cyclic AMP (second messenger) Cytoplasm (c) Enzyme/enzyme-linked receptor Extracellular fluid , Ligand (first messenger) (d) Intracellular receptor Extracellular fluid Ligand In this relatively simple example, binding with the ligand activates a catalytic site on the same molecule. a«P The ligand, in this case a steroid hormone, dissolves in and diffuses through the cell membrane. GTP Cytoplasm Cyclic CMP (second messenger) Activation of the catalytic site inside the cell causes production of the second messenger cyclic GMP. Figure 2.23 The four types of receptor proteins involved in cell signaling (a) A ligand-gated channel.The particular example shown,a muscle cell acetylcholine receptor, must bind a ligand molecule at two sites for the channel to open, (b) A G protein-coupled receptor. Details of the molecular interactions symbolized by double-headed arrows are discussed later in this chapter, (c) Enzyme/enzyme-linked receptors are themselves enzymes or, when activated, interact directly with other membrane proteins that are enzymes. One way or the other, binding with the ligand activates an enzyme catalytic site inside the cell. The ex- Sty-nli-! rl-wMnrrl if řK,i Tf-ri-il mtrii iiy-ťfri.- nnntirlf. rr-, r- r. r*+^ r ,.,Ui.-U \<- ^-»r+;>-i ■!-»■■___ The activated ligand-receptor complex functions as a transcription factor inside the nucleus. Ca2+ ATP cAMP Na+-Ca: i- a) kanálová propustnost b) aktivace enzymu ATP ADP **■ Enzymatické pochody \ _ Exprese genu Extracellular fluid Epinephrine (first messenger) Inactive adenylate Active adenylate cyclase . Activated active site inactive glycogen Phosphorylase kinase Active cAMP-dependenr kinase units are protein kinases and activate their target protein by phosphorylatino, it using phosphate groups (—P042 ) drawn from ATP, Moreover... Cytoplasm Amplification step; multiple product moleeulcíi generated per initiating molecule .., active glycogen Phosphorylase kinase molecules are also protein kinases and activate their target protein in the same way. Glucose Extracellular fluid G protein-coupled receptor Cytoplasm KEY Adenylate cyclase Guanylate \ cXcl ase Nitric oxide (NO) Cyclic AMP I Activation of cAMP- dependent protein kinases I Phosphor y la ti on of proteins Activating interaction Cyclic GMP " \ Activation öf cGMP- dependent protein kinases I Phosp horylation of proteins % o yä^~^\ Phosp holipa se C 0 Other r, ... effects G protein Nitric c^P,ed oxide receptor (NO) i • Cytoplasmic guanylate cyclase Calmodulin Ca2^- calmod u lin complex I Activation of calmod ulin-dependent protein kinases or other enzymes Diacyl- gjycerol (DAG) Activation of membrane protein kinases Inositol triphosphate Phosphorylation Li! v of proteins lPrgated calcium channel Endoplasmic or sarcoplasmic reticulum Neurosekretorické buňky mozku Corpus cardiacuní (CC) Corpus allatum (CA) Proťhorakální žláza Dospělec Hy petal am u s Ade no hypofýza Pe rite rn i lká ň produkující hormon u C. ■flj ľ3 X Ne uro hypofýza Axonální transport-ADH P Axonáinf transport - Oxytocin Konečný hormon I Pankreas: .- D-buňky A-buňký B-buňky «* Strtná žláza Funkce Zrání, reprodukce > Zrání, reprodukce ŕ Zrání, reprodukce & Zrání, reprodukce ■ Zrání, metabolizmus Zrání, metabolizmus metabolizmus kostí > Zrání, metabolizmus Tmavnutí küZe obojživelníků Metabolizmus, krevní oběh -tr Krevní oběh Reprodukce „_ MetaboJizmus: krevní oběh Krevní oběh '■ Metabolizmus kostí Metabolizmus 5, Metabolizmus .1 Metabolizmus Metabolizmus kostí Metabolizmus kostí HypotaJamus Ubwlny, Stótiny ADH, Ocytocin Adenchypolý AxDfiáinrtaJiqport NeunDhypofrza ADH, Oxytocin Tropnl horniony FSH.LH.PRL, TSHSTH.USH, ACTH An4i:ririrEiiLuLrjiy,_^ enJocripepp|t< Indifferent 'onads Vas deferens Seminal vesicle 4 weeks Genital tubercle Urethra] groove LabioscrotaJ swelling Urethral fold < il.ms Urethra groove Urethra] fold Scrota] swelling Urethral opening Clans Shaft of penis Scrotum Genital tubercle Urethra] fold Genital swelling Head of clitoris Clans of clitoris Urethral opening Labium majora Labium minora Hymen ÜO Internal organs (frontal view) Oviducts Uterus. Fimbriae Vagina íffij Ovary Theca cells Dominant follicle- Primary Artery^ follicles f Granulosa cells Antrum Primary Oocyte in cumulus oophorus Zona pellucid a Degenerating corpus luteum Ovulated secondary oocyte Mature corpus luteum Zrání folikulu ve vaječníku gmQ «u ®' ^ Nezralý , Zrající Prasknutí Žluté folikul ] folikul folikulu- tělísko Ovulace Dělozní sliznice \ 1 Odloučení Regenerace Dny 1 7 14 Menstruační Proliferační fáze fáze nvoluce žlutého tělíska Ischémie1 —•" i •. '21 Sekreční fáze 28 11 (a) Follicular phase (b) Just before ovulation Luteal, phase Anterior pituitary Theca ceil s Granulosa cells Developing follicle Hypothalamus GnRH _ / Estrogen (low blood levels} Estrogen (high blood levels) Corpus luteum Estrogen and Inhibin progesterone U>) Early development Uterus 2-cell stage Zona pellucida Ampul Iii region Fertilization Figure 15.11 From fertilization to implantation (a) Fertilization occurs in the ampulla region of the oviduct, and mitotic cell divisions to the blastocyst stage take place en route to the uterus, (b) The trophoblast cells initiate implantation and development of the placenta. In humans, implantation is complete about 10 days after fertilization, {c) Embryonic biood moves to and from the placenta through the umbilical cord. Maternal blood percolates around projections of the chorion (villi) that contain capillaries. Fimbriae implantation of the blastocyst • Endometrium (c) The placenta Maternal capillary-. Blastocyst Fumen or uterus To fetus Prom fetus From fetus Umbilical arteries {from fetus) Umbilical vein (to fetus) Blastocot The inner cell mass w give rise to the embryo. Chorionic-!- villus Amnion Chorion (fetal portion of placenta) Trophoblast cells i» Maternal portion of placenta Maternal %'ein Maternal artery Amnionic cavity Developing embryo The trophoblast will give rise to the chorion. Implantation is complete when the blastocyst is buried in the endometrium. Seminiferous Uibules Seminiferous tubule Gross section of seminiferous tubule Residua body i1 -i \ spľrm cell Mitochondria Qe[l Acrosome within midpiecc iiK'nibniiH- Head Sertoli cell Spermatogonia Basal lamina Primary spermatocyte Secondary speřmatocvtifi Spermatids 404 CHAPTER 14 Sympathetic activation ^ (norepinephrine and epinephrine) Seconds _^=- CTDĽĽC -d_ C Other brain areas such as the locus ceruleus: arousal, alertness Amygdala and hippocampus: form memories or emotionally charged events STRESS . Seconds ^w^ It T heart rate Ť ventilation T vasoconstriction of \ specific regions such as skinj 1 digestion Glucose released from muscle and liver lJancreas: 1 Glucose T glucagon > maintained I insulin J in blood T fat catabolism CRH ACTH Enhance Oppose actions of insulin Liver gluconeogcnesis 1 ! ■ 1 hour Glucocorticoids Muscle/bone protein tíitíibolism I Amino acids Gluto.se Inhibit TSH, gonadotropins, GH Fat catabolism 1 Free fatty acids and glycerol Blood loss: t vasopressin -f Ť water reabsorption at kidney T aldosterone -4 t Na reabsorption at kidney 4 T fluid retention i blööd volume T blood pressure Figure 14.10 The mammalian stress response The stress response includes activation of both the sympathetic nervous system and the HPA axis. these reveal that ť and adrenocortic; a neurotrammitt pocampus (which ally charged even! Thetwooutpu norepinephrine. 1 receive noradrene the brain. Some CRH as their neu Figure 4.20 Gastrointestinal function after a meal is coordinated in part by hormones secreted by endocrine cells in the gut epithelium The arrows represent hormones traveling by way of blood transport from endocrine cells to target cells. Red and blue arrows marked with plus (+) signs symbolize stimulatory effects on target cells. Black arrows marked with minus (-) signs symbolize inhibitory effects.The controls shown here are only a small fraction of the total st of nerve, endocrine, and paracrine controls that coordinate the processes activated by eating. GIF- CCK- Secretin- secretirig secreting secreting cell cell cell Stomach Midgut CCK, secretin Esophagus Muscle tension1 in storage region' Pyloric sphincter Muscle motility, Pcpsinogen-secreting cell G cell Acid-secreting y^'- ■' cell and midg material í pro priate passing all terial beir the sto m c The midg digestion 'Gastric emptying Liver with biliary system Gastrin Pancreas GIF, CCK, secretin The locus ceruleus is a nucleus of noradrenergic neuron s that are important in maintaining attention and responding to novel stimuli. Adrenal gland Glucocorticoids modulate the immune response by muting the actions that cause inflammation. Immune ceils