{VERSION 3 0 "IBM INTEL LINUX" "3.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 }{CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 } {PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Output" 0 11 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 3 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {EXCHG {PARA 0 "" 0 "" {TEXT -1 27 "Rozklad polynomu na soucin :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 11 "pol:=x^3+1;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$polG,&*$)%\"xG\"\"$\"\"\"\"\"\"F+F+" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "factor(pol);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*&,&%\"xG\"\"\"F&F&F&,(*$)F%\"\"#\"\"\"F&F%!\"\"F& F&F&" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 15 "readlib(split);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#R6%%\"aG%\"xG%\"sG6$%\"fG%\"LG6#%fnCop yright~(c)~1995~Waterloo~Maple~Inc.~All~rights~reserved.G6\"C%>8$--%(r eadlibG6#%'splitsG6&9$9%.8%-%#ifG6%2\"\"$9#&9\"6#;\"\"%F@%%NULLG@$1F?F @>9&F:*&--%\"@G6$%&evalaG%'NormalG6#&F06#\"\"\"FU-%(convertG6$-%$mapG6 $R6#F&F-F-F-)&F7FT&F76#\"\"#F-F-F-&F0F[o%\"*GFUF-F-F-" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "split(pol,x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*(,&%\"xG\"\"\"-%'RootOfG6#,(*$)%#_ZG\"\"#\"\"\"F&F-!\" \"F&F&F0F&,(F%F&F0F&F'F&F&,&F%F&F&F&F&" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 20 "convert(%, radical);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*(,(%\"xG\"\"\"#!\"\"\"\"#F&*&%\"IGF&-%%sqrtG6#\"\"$\"\"\"#F&F)F&,( F%F&F'F&F*F'F&,&F%F&F&F&F&" }}}{PARA 11 "" 1 "" {TEXT -1 0 "" }} {EXCHG {PARA 0 "" 0 "" {TEXT -1 21 "Roznasobeni polynomu:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 10 "expand(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,&*$)%\"xG\"\"$\"\"\"\"\"\"F)F)" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 16 "Deleni polynomu:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 27 "rac:=(x^3+2*x)/(x^2+2*x+1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$racG*&,&*$)%\"xG\"\"$\"\"\"\"\"\"F)\"\"#F+,(*$)F)F-F +F,F)F-F,F,!\"\"" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 35 "numer - citat el, denom - jmenovatel" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 45 "v :=quo(numer(rac),denom(rac), 'x', 'zbytek');" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"vG,&%\"xG\"\"\"!\"#F'" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "zbytek;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,&%\"xG\"\" &\"\"#\"\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 20 "v+zbytek/de nom(rac);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,(%\"xG\"\"\"!\"#F%*&,&F$ \"\"&\"\"#F%\"\"\",(*$)F$F*F+F%F$F*F%F%!\"\"F%" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 33 "Prevod na spolecneho jmenovatele:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 20 "normal(%, expanded);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*&,&*$)%\"xG\"\"$\"\"\"\"\"\"F'\"\"#F),(*$)F'F+F)F*F'F+ F*F*!\"\"" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 28 "Rozklad na parcialni zlomky:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "convert(rac, pa rfrac, x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,*%\"xG\"\"\"!\"#F%*&\" \"\"F(*$),&F$F%F%F%\"\"#F(!\"\"!\"$*&F(F(F+F-\"\"&" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart;" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 45 "Rozklad na parcilani zlomky \"krok za krokem\":" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 27 "rac:=(12*x+7)/(x^2-9*x+18);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%$racG*&,&%\"xG\"#7\"\"(\"\"\"\"\"\", (*$)F'\"\"#F+F*F'!\"*\"#=F*!\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "factor(denom(rac));" }}{PARA 11 "" 1 "" {XPPMATH 20 " 6#*&,&%\"xG\"\"\"!\"$F&F&,&F%F&!\"'F&F&" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "rozklad:=rac=A/(x-6)+B/(x-3);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%(rozkladG/*&,&%\"xG\"#7\"\"(\"\"\"\"\"\",(*$)F(\"\"#F ,F+F(!\"*\"#=F+!\"\",&*&%\"AGF,,&F(F+!\"'F+F3F+*&%\"BGF,,&F(F+!\"$F+F3 F+" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "(rozklad*(denom(rac)) );" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/,&%\"xG\"#7\"\"(\"\"\"*&,(*$)F% \"\"#\"\"\"F(F%!\"*\"#=F(F(,&*&%\"AGF.,&F%F(!\"'F(!\"\"F(*&%\"BGF.,&F% F(!\"$F(F6F(F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "rov1:=sim plify(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%%rov1G/,&%\"xG\"#7\"\"( \"\"\",**&%\"AGF*F'F*F*F-!\"$*&%\"BGF*F'\"\"\"F*F0!\"'" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "r1:=subs(x=3,rov1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#r1G/\"#V,$%\"BG!\"$" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 20 "r2:=subs(x=6, rov1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#r2G/\"#z,$%\"AG\"\"$" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 20 "res:=solve(\{r1,r2\});" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$res G<$/%\"BG#!#V\"\"$/%\"AG#\"#zF*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "subs(res[1], res[2], rozklad);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/*&,&%\"xG\"#7\"\"(\"\"\"\"\"\",(*$)F&\"\"#F*F)F&!\"*\"#=F)!\"\" ,&*&F*F*,&F&F)!\"'F)F1#\"#z\"\"$*&F*F*,&F&F)!\"$F)F1#!#VF8" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "convert(rac, parfrac, x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,&*&\"\"\"F%,&%\"xG\"\"\"!\"'F(!\"\"#\"#z\" \"$*&F%F%,&F'F(!\"$F(F*#!#VF-" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 43 " Porovnanim koeficientu u stejnych mocnin x:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "p:=collect(rhs(rov1), x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"pG,(*&,&%\"AG\"\"\"%\"BGF)F)%\"xGF)F)F(!\"$F*!\"'" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "lhs(rov1)=p;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/,&%\"xG\"#7\"\"(\"\"\",(*&,&%\"AGF(%\"BGF(F(F% F(F(F,!\"$F-!\"'" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 20 "r1:=12= coeff(p,x,1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#r1G/\"#7,&%\"AG\" \"\"%\"BGF)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "r2:=7=coeff( p,x,0);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#r2G/\"\"(,&%\"AG!\"$%\"B G!\"'" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 20 "res:=solve(\{r1,r2 \});" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$resG<$/%\"BG#!#V\"\"$/%\"AG #\"#zF*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "subs(res[1], res [2], rozklad);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/*&,&%\"xG\"#7\"\"( \"\"\"\"\"\",(*$)F&\"\"#F*F)F&!\"*\"#=F)!\"\",&*&F*F*,&F&F)!\"'F)F1#\" #z\"\"$*&F*F*,&F&F)!\"$F)F1#!#VF8" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}}{MARK "38 0 0" 0 }{VIEWOPTS 1 1 0 1 1 1803 }