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ABSTRACT  

Over 1000 genetically linked RFLP loci in Brassica napus were mapped to homologous 

positions in the Arabidopsis genome based on sequence similarity.  Blocks of genetically linked 

loci in B. napus frequently corresponded to physically linked markers in Arabidopsis.  This 

comparative analysis allowed the identification of a minimum of 21 conserved genomic units 

within the Arabidopsis genome which can be duplicated and rearranged to generate the present 

day B. napus genome.  The conserved regions extended over lengths as great as 50 cM in the B. 

napus genetic map, equivalent to approximately 9 Mb of contiguous sequence in the Arabidopsis 

genome.  There was also evidence for conservation of chromosome landmarks, particularly 

centromeric regions, between the two species.    The observed segmental structure of the 

Brassica genome strongly suggests that the extant Brassica diploid species evolved from an 

hexaploid ancestor.  The comparative map assists in exploiting the Arabidopsis genomic 

sequence for marker and candidate gene identification within the larger, intractable genomes of 

the Brassica polyploids. 
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INTRODUCTION 

ARABIDOPSIS thaliana (hereafter referred to as Arabidopsis) is one of almost 3500 species 

which make up the monophyletic family of the Brassicaceae (PRICE et al., 1994).  Arabidopsis 

thus shares recent common ancestry with a large number of species of significant economic 

importance, including a diverse range of vegetable and oil producing crops, the majority of 

which are Brassica species.  Arabidopsis is an excellent model system for the Brassicaceae, with 

a small and relatively simple genome, efficient transformation system, diverse range of genetic 

and genomics resources, and a completed genome sequence (ARABIDOPSIS GENOME 

INITIATIVE, 2000).  

 Over the past ten years, plant comparative mapping has taken prominence as a powerful 

tool firstly for uncovering the processes and rate of genome evolution and secondly for allowing 

the transfer of genetic resources between species. Comparative mapping has been most 

extensively applied to the grasses where the genetic maps of eleven species, including the model 

monocot rice, have been aligned. These include 11 diverse species varying dramatically in 

haploid chromosome number, genome size, and phenotype (reviewed in DEVOS and GALE, 

2000).  Perhaps the most striking observation from the cereal studies was the extensive genome 

conservation observed between species that diverged millions of years ago. Using rice as the 

basal genome, fewer than 30 conserved blocks were identified, which could be rearranged and/or 

duplicated to form each of the other grass genomes.  Comparative mapping studies among 

members of the Brassicaceae have been more ambiguous in their conclusions, leading to on-

going discussions with regards to the level of genome duplication prevalent in modern day 

Brassica cultivars and the extent of the genome rearrangements which have occurred in the 
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evolution of these cultivars from a common ancestor (LAGERCRANTZ, 1998; LAN et al., 

2000; LUKENS et al., 2003). 

 The present study focuses on the genome of the oilseed crop Brassica napus, which is an 

amphidiploid species formed from multiple independent fusion events between ancestors of the 

diploids B. rapa (A genome donor) and B. oleracea (C genome donor) (PARKIN et al., 1995; 

PALMER et al., 1983; U, 1935).  Polyploidy is a prevalent evolutionary mechanism within 

angiosperms since it has been estimated that 30-70% of modern plant species have evolved 

through a polyploid ancestor (reviewed in WENDEL, 2000).  Polyploidy can occur either 

through the duplication of whole chromosome complements or the fusion of related chromosome 

complements, and stabilisation of the newly expanded karyotype must then take place to ensure 

normal diploid inheritance.  Diploidisation of the novel polyploid can occur through 

chromosomal restructuring or genetic control of illegitimate recombination events or a 

combination of both mechanisms.  It is widely accepted that the progenitor diploid genomes of 

B. napus are ancient polyploids and that large scale chromosome rearrangements have occurred 

since their evolution from a lower chromosome number progenitor (SCHMIDT et al., 2001). 

What is more contentious is whether the diploids evolved through a hexaploid ancestor or 

whether they were formed via segmental duplication of one or two ancestral genomes (LUKENS 

et al., 2004).  B. napus, a relatively young amphidiploid, is somewhat of an anomaly since it has 

been established that no major chromosomal rearrangements have occurred since the fusion of 

the progenitor A and C genomes, but homoeologous recombination events between these two 

related genomes are common in newly resynthesised B. napus lines and have been observed at 

low levels in established canola cultivars (UDALL et al, 2004; PARKIN et al., 1995; SHARPE 
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et al., 1995).  It has yet to be established if B. napus has evolved or inherited a locus controlling 

homologous pairing similar to the Ph1 locus in hexaploid wheat (JENCZEWSKI et al., 2003).   

 Comparative mapping between B. napus and Arabidopsis has thus far targeted small 

regions of the Arabidopsis genome, generally identifying three collinear segments in each of the 

diploid genomes for every region of Arabidopsis studied thereby promoting the idea that the 

diploid Brassica species may have evolved through a hexaploid ancestor (CAVELL et al., 1998; 

OSBORN et al., 1997; PARKIN et al., 2002).  However, at the same time regions suggesting a 

more complex relationship between the two species were also identified (OSBORN et al., 1997; 

PARKIN et al., 2002). In the earliest published global comparison between one of the diploid 

Brassicas, B. nigra (black mustard), and Arabidopsis, an extensive number of rearrangements 

were invoked to explain how the two extant diploid genomes evolved from a common hexaploid 

ancestor (LAGERCRANTZ, 1998).  There have been four global comparisons of the genomes of 

B. oleracea and Arabidopsis.  Although all have been limited by a low density of common loci, 

three identified extensive synteny between the two genomes but were inconclusive in assessing 

the level of duplication of the collinear segments (LAN et al., 2000; BABULA et al., 2003; 

LUKENS et al., 2003).  A more recent comparison of the B. oleracea and Arabidopsis genomes 

refuted the possibility of a hexaploid ancestor, citing evidence of syntenous blocks ranging in 

copy number from one to seven (LI et al., 2003). 

 The present study describes a comprehensive comparison of a Brassica genome with that 

of Arabidopsis. Sequences of 359 probes derived from Brassica and Arabidopsis that detect 

1,232 genetically mapped loci in B. napus, were used to query the Arabidopsis genome, 

revealing 550 homologous sequences and their inferred chromosomal positions. The data 

provides strong evidence to support the hypothesis that the Brassica diploid genomes evolved 
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through a hexaploid ancestor and suggests conservation of some centromeric regions between the 

two species.  The postulated ancestor appears to have been formed from duplication events 

which occurred subsequent to the putative global duplication events which took place between 

65 and 90 million years ago during the evolution of Arabidopsis (LYNCH and CONERY, 2000; 

SIMILLION et al., 2002; RAES et al., 2003). The resultant genetic and physical comparative 

map can be used not only to infer genome rearrangements during the evolution of the Brassica 

species but also to identify regions of the Arabidopsis genome which may harbour genes of 

interest and should potentiate the exploitation of Arabidopsis genomics tools in Brassica 

research. 

 

MATERIALS AND METHODS 

 

Genetic Linkage Analysis: Genetic linkage analysis in B. napus was carried out as described 

previously except hybridisations with Arabidopsis clones were washed only at low stringency (2 

X SSC, 0.1% SDS) (SHARPE et al., 1995).  The B. napus population consisted of 60 doubled 

haploid lines derived from crosses between a winter B. napus breeding line (CPB87/5) and a 

newly resynthesised B. napus line (SYN1) as described in PARKIN et al. (1995).  The genetic 

map also includes loci positioned through previously described map alignments with a second 

linkage map of B. napus and one of B. oleracea (PARKIN and LYDIATE, 1997; BOHUON et 

al., 1996). Briefly, common parental genotypes allowed corresponding loci to be identified 

between the maps through the inheritance of identical RFLP alleles. Loci mapped in only one 

population which co-segregated with such common loci were positioned at that locus in the 

combined map.  Loci mapped in only one population positioned between common loci were 
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placed in the corresponding interval in the combined map based on their relative position in the 

map of origin.   The RFLP probes consisted of 213 Brassica genomic clones (pN, pO, pR, pW: 

SHARPE et al., 1995), 61 Brassica cDNA clones (CA, es), 88 Arabidopsis cDNA clones (I, N, 

R, Z: SILLITO et al., 2000) and six cloned Brassica or Arabidopsis genes (ACYL, CONSTANS, 

FCA, HS1, oleosin: pC2, ∆9 desaturase: pC3).  The genetic linkage map was constructed using 

Mapmaker v3 with a LOD score of 4.0 (LANDER et al, 1987) and the linkage groups were 

drawn using Mapchart (VOORRIPS 2002). Irregularities in meiotic pairing in the resynthesised 

B. napus parental line of the doubled haploid population used for the initial and the additional 

mapping, caused a non-disjunction event which prevented the accurate mapping of further loci to 

linkage group N16 (PARKIN et al., 1995).  A limited map of N16 derived from the alignment of 

N16 from B. napus, described in SHARPE et al. (1995), and O6 from B. oleracea, described in 

BOHUON et al. (1996) has been used in the present analysis.  A similar alignment of N16 and 

O6 was discussed in RYDER et al. (2001). 

Sequence Analysis: Brassica genomic or cDNA clones were sequenced from each end using the 

BigDyeTM v2 Terminator cycle sequencing kit according to the instructions of the manufacturer 

and subsequently the reactions were run out on an automated ABI377 DNA Sequencer (Applied 

Biosystems, Foster City, CA, USA). The Brassica sequences were analysed using Sequencher 

(Gene Codes Corp, Ann Arbor, MI, USA) to trim vector sequence, identify overlaps and 

generate contigs.  Brassica and Arabidopsis sequences were analysed for homology to the TIGR 

Arabidopsis pseudo chromosome genomic sequence version 5.0 

(ftp://ftp.tigr.org/pub/data/a_thaliana/) using the BLAST programs of the National Center for 

Biotechnology Information (http://www.ncbi.nlm.nih.gov/) housed on a Linux server. Low 

complexity sequences were filtered in the BLAST analysis, and default values for cost 
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(mismatch cost = -3.0), reward (match reward= 1.0), and wordsize (11 bp) were selected.  The 

default gap opening penalty (5.0), and the gap extension penalty (2.0) were also selected.  Perl 

script was used to extract the base pair position in the Arabidopsis genomic sequence of each 

HSP (high scoring segment pairs), identified with BLASTN, for each clone where the primary 

HSP had an E value of less than or equal to 1E-07 (Table I, supplemental data).  

 

RESULTS 

 

Comparative map of Brassica napus and Arabidopsis: Genetic linkage mapping of restriction 

fragment length polymorphisms (RFLPs) identified with 183 Brassica and Arabidopsis cDNA 

clones added a further 646 loci to the published aligned map of B. napus (BOHUON et al., 1996; 

PARKIN and LYDIATE, 1997). The complete B. napus linkage map is presented in Figure 1 

and consists of 1317 genetic loci distributed over nineteen linkage groups with a combined map 

length of 1,968 cM.  

The genetic linkage map was generated from segregating loci detected by 368 DNA 

clones, 274 of which were derived from anonymous Brassica genomic or complementary DNA, 

five were Brassica homologues of known genes and the remaining 89 clones were derived from 

Arabidopsis cDNA.  Sequence data was obtained for 267 of the anonymous Brassica clones and 

BLASTN analysis was used to identify homologous loci within the Arabidopsis genome for each 

clone. A fairly low expect (E) value was used as the exclusion cut off (1E-07) (supplemental 

data, Table I). The low E value was adopted to maximise the number of number of markers 

positioned, since the majority of the probes were derived from genomic, potentially inter-genic, 

DNA. Two hundred and fifty-eight of the Brassica clones displayed homology to 404 regions 
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within the Arabidopsis genome, with an average sequence identity of 86% over all aligned 

highest scoring pairs (HSPs). The majority of these hits were to genic regions and the most 

similar Arabidopsis gene was identified for each clone (supplemental data, Table I). A less 

stringent E value can lead to the identification of a large number of small non-specific regions of 

homology (LUKENS et al., 2003).  Fifty-eight of the 258 clones identified regions of similarity 

with bit scores lower than 82, a value suggested as a cut-off for identifying orthologous 

sequences within the Arabidopsis genome for Brassica markers (LUKENS et al., 2003). For 11 

clones these lower scoring hits represented their only or primary region of homology within the 

Arabidopsis genome, the data for these clones was included in the comparative analysis 

described below.  The remainder of the low scoring hits represented secondary or tertiary regions 

of homology which generally fell within predefined duplicated regions within the Arabidopsis 

genome (ARABIDOPSIS GENOME INITIATIVE, 2000), and these data did not impact on the 

comparative analysis.  Ten of the Brassica genomic clones showed no significant homology to 

the Arabidopsis genomic sequence at an E value of 1E-07, one clone, pR113, mapped to the 

Arabidopsis genome over multiple adjacent HSPs, but with an E value of 1E-06.  Subsequent 

BLASTX analysis of the remaining nine clones identified related sequence for two clones, pR30 

and pN87, which showed significant (1E-44 and 1E-94 respectively) homology to an annotated 

retroelement pol polyprotein sequence (At3g29156).   Perhaps not surprisingly neither of these 

clones mapped to syntenous regions between the two genomes (see below). 

 To position the Arabidopsis clones accurately relative to the Brassica sequences all the 

clones were compared to the Arabidopsis pseudo-chromosome sequence using BLASTN 

analysis.  In total, 550 loci were physically positioned within the Arabidopsis genome based on 

sequence identity (an average of one comparative marker every 214 Kb). These same clones 
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identified 1,232 RFLP loci on the genetic linkage map of B. napus (an average of one 

comparative marker every 1.6 cM).  In Figure 1 each of the B. napus genetic loci has been colour 

coded according to the most significant BLASTN hit for the probe which detected that locus. 

Forty-two percent of the RFLP clones probes showed sequence similarity to more than one 

region of the Arabidopsis genome. Some of the mapped homologous loci in B. napus may 

represent orthologues of these secondary hits within the model genome. Brassica loci whose 

position within a conserved block in Arabidopsis was dependant upon such secondary hits are 

colour coded according to the appropriate duplicate hit and are identified in italics in Figure 1.   

 All of the B. napus linkage groups were composed of loci identified by probes related to 

sequence from each of the five Arabidopsis chromosomes (Table 1 and Figure 1).  If the 

Brassica genomes evolved through simple polyploidy from a lower chromosome ancestor 

similar to Arabidopsis, it might be expected that the comparative loci mapped within the B. 

napus genome would be equally represented across the Arabidopsis genome.  However, the 

number of loci originating from each Arabidopsis chromosome was not evenly distributed  with 

significantly fewer loci than expected detected by probes showing homology to Arabidopsis 

chromosomes 2 and 3 and significantly more loci than expected detected by probes with 

homology to Arabidopsis chromosome 5 (p<0.001 for a goodness-of-fit test) (Table 1).  This 

non-random distribution could be a function of a reduction in chromosome number in the 

Arabidopsis lineage and/or a function of gene loss occurring after genome duplication events 

within Arabidopsis.  

Identification of conserved blocks between Arabidopsis and B. napus: For each B. napus 

linkage group it was possible to identify blocks of conserved synteny between B. napus and 
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Arabidopsis which represent chromosomal segments that have been maintained since the 

divergence of Arabidopsis and Brassica from a common ancestor (Figures 1 and 2).  

 A conserved block is defined as a region that contains several closely linked homologous 

loci in both the Arabidopsis and Brassica genomes. Each block has a minimum of four mapped 

loci with at least one shared locus every 5 cM in B. napus and at least one shared locus every 1 

Mb in Arabidopsis. Using these criteria, each conserved block contained on average 7.8 shared 

loci and had an average length of 14.8 cM in B. napus and 4.8 Mb in Arabidopsis. Together the 

blocks covered almost 90% of the mapped length of the B. napus genome. The average physical 

distance covered in the Arabidopsis genome per 1 cM of genetic distance in the B. napus genome 

was calculated for every pair of comparative markers identified within the conserved blocks 

(Figure 3). The distribution was skewed with 35% of the intervals tested giving a ratio of 1 cM 

of the B. napus genetic map to 100,000 bp or less of Arabidopsis sequence, with a median ratio 

of 1 cM to 160,767 bp. 

 Based on the conserved blocks, 21 segments were identified within the Arabidopsis 

genome which could be duplicated and rearranged to form the skeleton of the B. napus genome 

(Figure 1, Figure 2).  Although coverage of the two genomes is extensive there are areas where 

marker density is limited, specifically the regions spanning the Arabidopsis centromeres (Figure 

2). The low copy number sequences utilised in the Brassica mapping would be expected to have 

lower levels of similarity to centromeres, since they tend to be located within gene poor 

transposable element rich regions (ARABIDOPSIS GENOME INITIATIVE, 2000).  

Comparative genome organisation: The organisation of the B. napus genome in comparison to 

the Arabidopsis genome as depicted in Figures 1 and 2 has been summarised for each of the 

linkage groups.  Due to the close homology between the A (N1-N10) and C (N11-N19) genomes 



Arabidopsis/Brassica napus comparative map 
 

Parkin et al.. 13

of B. napus, the primary homoeologues in B. napus (described in PARKIN et al., 2003) are 

indicated in the comparison. 

N1/N11:  These two B. napus linkage groups are homologous along their entire length.  The top 

half of each linkage group shows significant homology to the long arm of Arabidopsis 

chromosome 4 (block C4B) with one inversion, previously noted in CAVELL et al. (1998), 

disrupting the collinearity between the two genomes.  The inversion appears to be specific to 

N1/N11, and is not present in the homologous regions of linkage groups N3/N17 and N8/N18 

where copies of block C4B were found. The lower half of N1/N11 is homologous to the top arm 

of Arabidopsis chromosome 3 (block C3A).  This block is also strongly conserved on N5/N15 

and N3/N13.  In each case the distal end of the Arabidopsis chromosome corresponds with the 

terminal end of the linkage groups. At the breakpoint between the two large stretches of 

collinearity there are three markers that span the centromere on Arabidopsis C3 and additional 

markers that do not identify a conserved region. One gross chromosomal rearrangement would 

be sufficient to generate N1/N11 from the blocks defined in Figure 2. 

N2/N12: These two linkage groups are homologous along their mapped length.  PARKIN et al. 

(2002) previously described the relationship between N2/N12 and Arabidopsis C5, where the 

upper region of N2/N12 is homologous to the top 8 Mb of Arabidopsis C5 (block C5A) and an 

inversion on Arabidopsis C5 has moved block C5E to lie adjacent to block C5A.  This pattern of 

C5A-C5E is conserved on linkage groups N3/N13 and N10/N19. The same inversion moved 

blocks C5B and C5D to the bottom of N2/N12. N2/N12 share a region of homology with 

Arabidopsis C1, block C1E, adjacent to which are five markers that flank the centromere on 

Arabidopsis C4. Two further small conserved regions were identified on N2/N12, C3B and C5F. 
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One inversion on Arabidopsis C5 and three insertion/deletion/translocation events represent the 

least number of rearrangements, which could generate the present organisation of N2/N12. 

N3(N17)/N13: The homology of N3/N13 to C5 is described above, below which N3/N13 share 

homology with Arabidopsis C2 (block C2BC).  Block C2BC on N3/N13 was defined by a lower 

density of comparative markers, which were further rearranged by an inversion, compared to the 

duplicated copies of C2BC found on N4/N14 and N5.  The lower end of C2BC on N3/N13, 

which borders the centromere on C2, lies adjacent to a conserved block originating from the 

centromeric region of Arabidopsis C4 (block C4A). Below C4A, N3/N13 share homology with 

block C3A as described above. At the junction of C3A, which lies proximal to the centromere on 

C3, N3 is no longer homologous to N13 but instead shares homology with linkage group N17 

and Arabidopsis C4 as described above.  The remainder of linkage group N13 has no clear 

region of homoeology in the B. napus A genome. However, in relation to Arabidopsis this region 

of N13 shares homology with the blocks flanking the centromere of C3 (C3B-C3C), block C1B 

and block C4B.  In the area which would be homologous to the centromeric region of C3 there 

are eight markers with homology to different Arabidopsis chromosomes, three of which flank the 

centromere on C2.  At least three gross chromosomal rearrangements and two inversions are 

necessary to generate N3 from the identified conserved blocks, assuming C3ABC has been 

essentially conserved one additional translocation/insertion would be necessary to generate N13. 

N4/N14/N5:  The majority of N4 and N14 (65% and 75% of the mapped length, respectively) 

and the upper half of N5 share homology with Arabidopsis C2.  The organization of N14 

suggests that of an isocentric chromosome with the upper and lower arms sharing numerous 

common markers mapped in inverse orientation with respect to each other.  The top of N4 and 

the homoeologous central section of N14 show small blocks of collinearity with Arabidopsis C3, 
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C4 and C5; N14 has one additional block from C1.  Three gross chromosomal rearrangements 

are sufficient to describe the organisation of N4 and one additional inversion and two 

translocation/insertions would describe N14. 

N5/N15/N6: The lower half of N5 and N15 as described above (for N1/N11) are collinear with 

the long arm of Arabidopsis C3.  At the centre of N5/N15, the markers originate from 

Arabidopsis C1, with comparative markers flanking the centromere on C1.   This central region 

on N15 is part of a larger block which is collinear with the upper arm of Arabidopsis C1 and the 

homoeologous region of B. napus N6.  One and two large chromosomal rearrangements would 

generate the present organisation of N15 and N5 respectively. 

N6/N17:  The lower half of N6 shows homology to sections of Arabidopsis C5 and C3.  The 

region from block C5B to the bottom of N6 is homoeologous but inverted with respect to N17.  

There are two markers on N6/N17 (CA129 and es1732) that identify sequences on the short arm 

of Arabidopsis C2; there was insufficient marker data from this region to identify a conserved 

block, however fine mapping of a dwarf gene in B. rapa has subsequently aligned this region of 

N6 with the short arm of Arabidopsis C2 (MUANGPROM and OSBORN, 2004).  It is to be 

expected that for regions such as these, flanking the Arabidopsis centromeres where there is a 

dearth of comparative markers, further conserved blocks will be identified. The comparison of 

N6/N17 to Arabidopsis is complex relative to other B. napus linkage groups and at least five and 

six chromosomal rearrangements need to be invoked to generate N6 and N17, respectively. 

N7(N16)/N17: The top of N7/N17 are homologous to the short arm of Arabidopsis C2 including 

comparative markers which flank the centromere on C2.  Homoeology between N7/N17 breaks 

down after block C1B, where the lower half of N7 is homologous with N16 and Arabidopsis C1.  

Due to the constraints of the mapping population (refer to Materials and Methods) there are 
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limited markers mapped to N16, making the number of rearrangements difficult to interpret. The 

data suggests that at least three translocations/deletions/insertions of conserved blocks have 

taken place to give N7 and at least one chromosomal rearrangement gave rise to N16. 

N8/N18/N9: The whole of N8 appears to be homoeologous with N18, and is syntenous with 

Arabidopsis C1C, C4B and C1AB; however block C1AB is inverted on N18 with respect to N8.  

The remainder of N18 is homoeologous to the lower portion of N9 and is syntenous with 

Arabidopsis C3D, C2B, a fraction of C1B and C1A. The latter block forms part of an internal 

duplication on N18. One insertion of block C4B into the centromeric region lying between 

C1AB and C1C and two inversions (in C4B) could describe N8. The same insertion of C4B 

found on N8, duplication of C1A and translocation/insertion of C3D would generate N18. 

N9/N19/N10:  N10 and N19 share a region which is syntenous with Arabidopsis C5 as described 

above (for N2/N12).  The end of C5E, which coincides with the break in homology between 

N10/N19, separates a region of apparent conservation between the two species from one which is 

fragmented.  The tops of N9 and N19 share loci from comparative markers which are assigned to 

a number of blocks, running from the top of N9/N19 in the order C4A-C5B-C5F-C1D-C5D-

C4A.  There is no clear region of homology in the B. napus C genome for the top of N10, which 

is syntenous with Arabidopsis C1. N9 has the most complex segmental pattern of all the linkage 

groups necessitating at least nine chromosomal rearrangements to generate the mapped group. 

One inversion on C5 (as described for N2/N12) and one translocation would explain N10, one 

inversion and six further rearrangements would explain N19. 

 At least seventy-four translocations, fusions, deletions or inversions of the 21 conserved 

segments found within the Arabidopsis genome are necessary to generate the present day B. 

napus genome.  However, 28 of these rearrangements are common to both the A and C genomes 



Arabidopsis/Brassica napus comparative map 
 

Parkin et al.. 17

of B. napus, suggesting they occurred prior to their divergence from a common ancestor. As 

described above, a  number of the breakpoints between conserved segments correspond to 

previously defined translocation end points which separate the A and C genomes of B. napus 

(PARKIN et al., 2003).  In a number of instances the junctions of conserved blocks coincide 

with telomeric or centromeric regions of Arabidopsis suggesting centric fission and fusion have 

played a role in the chromosomal restructuring. 

Duplication within the Brassica Genome: Counting the number of times a single Arabidopsis 

region is found within the B. napus genome provides an estimate of the level of genome 

duplication within Brassica compared to the model genome.  Each conserved chromosomal 

segment was represented between four and seven times within the B. napus genome (Table 2). 

However, the organisation of the different duplicated copies of each block varied with respect to 

each other, either by the presence of additional rearrangements (see description for N1/N11 

above) or by the number of comparative markers (see description for N3(N17)/N13 above).  In 

Arabidopsis, 81% of the comparative loci positioned on the genome mapped to conserved 

regions present in at least six copies within the B. napus genome (Table 2). Eighty-six percent of 

the mapped length of the B. napus genome, which was arranged in conserved blocks, was found 

in at least six copies (Table 2).  These results corroborate previous suggestions based on more 

limited data that the Brassica diploid genomes have evolved through a hexaploid ancestor.  

However, the presence of seven copies of some Arabidopsis regions within the B. napus genome 

suggests that further segmental duplication events may have occurred subsequent to any 

polyploidy event(s).  

Consequences of duplication within the Arabidopsis genome: The majority of the conserved 

Arabidopsis blocks, including those known to be part of duplicated regions within Arabidopsis, 
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are each found between five and seven times within the B. napus genome. Effectively this means 

that the duplicated regions of the Arabidopsis genome are found between ten and fourteen times 

within the B. napus genome, similarly recent physical mapping carried out in B. napus identified 

twelve regions within the B. napus genome homologous to a small duplicated region of the 

Arabidopsis genome (RANA et al., 2004).  These data suggest the large segmental genomic 

duplications found within Arabidopsis occurred in the common ancestor of the two lineages prior 

to the formation of a Brassica hexaploid ancestor. These data are also consistent with the fact 

that the last round of genome duplication is believed to have occurred in Arabidopsis between 65 

and 90 million years ago (LYNCH and CONERY, 2000; SIMILLION et al., 2002; RAES et al., 

2003) whereas the separation of the Arabidopsis and Brassica lineages is dated somewhere 

between 12 and 24 million years ago (KOCH et al, 2000).   

 Since the divergence of these two species one would expect the independent loss of 

redundant duplicate genes from both species. Several such losses were observed from the 

Arabidopsis genome.  For example on N1 and N11, the upper parts of the linkage groups are 

collinear with the long arm of Arabidopsis chromosome 4 (Figure 1). Nonetheless, a number of 

Brassica loci were identified by probes (IC06, CA87, pN52, pN67) originating from Arabidopsis 

chromosome 2.    Although these probes were found in regions identified as being duplicated 

between chromosomes 2 and 4 of Arabidopsis (http://www.tigr.org/tdb/e2k1/ath1/ 

Arabidopsis_genome_duplication.shtml) they showed no homology to Arabidopsis chromosome 

4 sequence.   Thus, Brassica has maintained duplicate copies of these sequences within the 

region equivalent to chromosome 4, whereas Arabidopsis has lost them. 

 In some instances the duplications evident within the Arabidopsis genome have made it 

difficult to identify the most similar region shared between the two species. For example, loci on 
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B. napus linkage group N19, show strong homology to both chromosome 5 block C and to the 

duplicated region on Arabidopsis chromosome 1 block D (Figure 4). 

Conservation of chromosome landmarks between the two species: The position of each 

Brassica centromere has yet to be accurately determined relative to the genetic linkage maps. 

However, RFLP mapping of artefactual telocentric chromosomes in Brassica aneuploids placed 

the centromere of linkage group N12 between markers pW177E3 and pO5b, the centromere of 

group N13 between pW181a and pN96b and the centromere of group N14 between markers 

pN151b and pW130a (KELLY, 1996).  Additionally, integration of the cytogenetic and genetic 

linkage maps of B. oleracea positioned the centromere of linkage group O1 (equivalent to N11) 

between markers pN152E1 and pO168E1 (HOWELL et al., 2002).   

In the proposed centromeric region of N12 four coincident markers were mapped with 

homology to Arabidopsis sequences that span the centromere on chromosome 4, suggesting 

conservation of chromosome position between the species.  It is possible that with sufficient 

marker data the Arabidopsis centromeric positions could be used to predict functional and 

ancestral centromeric regions in Brassica chromosomes. The latter would arise, since a 

hexaploid derived from a lower chromosome progenitor, which likely had between 5 and 8 

chromosomes, would have originally had between 15 and 24 functional centromeres, which were 

then reduced to 10 and 9 in the Brassica A and C genomes respectively.  As in the case of N12, 

there were a number of instances where the density of markers across the Arabidopsis 

centromere was insufficient to identify a conserved block in B. napus. However, the loci 

identified by these same markers were tightly linked in B. napus and in the case of N11, N12 and 

N13 there was further cytological evidence suggesting the centromere location. These putative 

centromeric regions have each been indicated in Figure 1. As evidenced by numerous small 
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segments of collinearity flanking these provisional centromeric regions on N11, N12 and N14, it 

appears the neighbouring regions are prone to rearrangements and evolve rapidly compared to 

more distal regions. 

The karyotype of B. oleracea indicates that linkage group O7 (equivalent to N17) is an 

acrocentric chromosome and has a strongly hybridising 45S locus at the terminus of the short 

arm (HOWELL et al., 2002).  This region of N17 shows homology to the short arm of 

Arabidopsis chromosome 2 and coincidently one of the two NOR regions of Arabidopsis also 

maps to the terminus of the short arm of chromosome 2 (FRANZ et al., 1998).  

 

DISCUSSION 

In the present study, by allowing minor disruptions in conserved regions it was possible 

to identify 21 conserved blocks within Arabidopsis which could be replicated and rearranged to 

cover almost 90% of the mapped length of B. napus.  A minimum number of 74 gross 

rearrangements, with 38 in the A genome and 36 in the C genome, can be estimated to have 

separated the two lineages since their divergence 14-24 million years ago (mya) (KOCH et al, 

2000).  This lies between two previously published figures derived from Brassica Arabidopsis 

comparative mapping, which were 19 chromosomal rearrangements separating B. oleracea from 

Arabidopsis (LAN et al., 2000) and 90 separating B. nigra from Arabidopsis (LAGERCRANTZ, 

1998).   Detecting rearrangements is influenced by a number of variables including the number 

and type of available comparative markers, the level of polymorphism within a mapping 

population and the method of determining synteny between species.  For LAN et al. (2000) the 

lower figure was probably due to a low density of comparative markers and for 

LAGERCRANTZ et al. (1998) the much higher figure was due in part to the approach used to 
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identify syntenous regions, with no allowance made for minor disruptions of collinearity, and 

was exacerbated by the inclusion of markers thought to be single copy in Arabidopsis but now 

known to be multi-copy.  Comparing estimates of the level of rearrangements in lineages is 

problematic because of the inherent difficulties in comparing between data sets and due to 

variation in the estimated divergence times. With that proviso, considering the data presented 

here, the level of rearrangement observed in the Brassiceae tribe, as represented by the A and C 

genomes of B. napus, is relatively high when compared with related species from the 

Brassicaceae family. Recently the genetic maps of Capsella rubella (Lepideae tribe) and 

Arabidopsis lyrata (Sisymbrieae tribe) have been compared to the sequence map of A. thaliana 

(BOIVIN et al., 2004; KUITTINEN et al., 2004).  Based on the comparison to the A. thaliana 

genome, analysis of the two maps indicates equivalent linkage group organisation, with the eight 

chromosomes of C. rubella, A-H, aligning with the A. lyrata chromosomes, AL1-AL8, 

respectively. This demonstrates that both species evolved from a common ancestor.  A. lyrata 

and C. rubella are estimated to have diverged from Arabidopsis 5 mya and 10 mya, respectively 

(BOIVIN et al., 2004; KUITTINEN et al., 2004). A limited number of major chromosomal 

rearrangements, approximately 6-13, separate these two species from A. thaliana.  In addition, no 

major rearrangements have separated A. lyrata from C. rubella. Although it is not possible to 

align all the conserved blocks identified in this study with the C. rubella and A. lyrata genomes, 

the junctions of a number of the rearrangements identified between these two species and A. 

thaliana correspond to the ends of conserved blocks identified in this study.  However, none of 

the chromosomal rearrangements which separate A. lyrata and C. rubella from A. thaliana 

appear to be common to the Brassiceae lineage. 
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The fact that the majority of the identified conserved segments are found in at least six 

copies in B. napus, and 81% of the comparative loci, which define the conserved blocks in 

Arabidopsis, are mapped to these triplicated regions, is consistent with a proposed hexaploid 

ancestor for the diploid Brassica progenitor. However, it could still be argued that the observed 

pattern of duplicated segments is the result of several smaller independent segmental 

duplications following a single whole genome duplication event, a mode of evolution which 

would require a significant number of independent duplication events.  Polyploidy has been a 

prevalent mechanism of evolution within the angiosperms and it has been estimated that 30-70% 

of species having undergone at least one round of chromosome doubling during their 

evolutionary development (reviewed in WENDEL, 2000). There is also well documented 

evidence for extensive chromosomal rearrangements in newly resynthesised Brassica polyploids 

(SONG et al, 1995; PARKIN et al, 1995).  Thus genome triplication followed by a small number 

of insertions/deletions/translocations would provide the simplest explanation for the present 

structure of the Brassica diploid genome.   

In this study, the overall picture is one of conservation of gene content and gene order 

between the genomes of Arabidopsis and B. napus.  The average length of the conserved blocks 

identified between the two species was 14.8 cM in B. napus and 4.8 Mb in Arabidopsis. 

However, for at least seven B. napus linkage groups half their mapped length was equivalent to 

one conserved region of the Arabidopsis genome.    Undoubtedly the Brassica genomes have 

undergone restructuring during their evolution from a common ancestor of Arabidopsis, but this 

has not prevented the maintenance of large stretches of similarity, in some cases equivalent to 9 

Mb of contiguous Arabidopsis genomic sequence. In a number of instances the comparative 

mapping provisionally suggests correspondence of centromere positions between the two 
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species. The large conserved regions found across the different genomes, punctuated by 

numerous smaller blocks of similarity suggest there are preferential regions for chromosome 

breakage and subsequent rearrangements.   

The publication of the genome sequence of Arabidopsis has opened up many avenues of 

research with the expectation that these endeavours would have applications in the study of the 

more complex genomes of crop plants (ARABIDOPSIS GENOME INITIATIVE, 2000).  The 

complete sequence allowed the resolution of the exact physical positions for some 30,000 genes, 

50% of which have no known function, and any of which could hold the key to understanding a 

number of important agronomic traits.  The comparative map suggests that the model genome of 

Arabidopsis can be widely exploited to infer the genetic basis of traits in its economically 

valuable Brassica crop relatives. In the identified conserved regions, the Arabidopsis genomic 

sequence should be an excellent resource for identifying useful markers, targeting the genic 

regions, since they show on average 86% sequence identity. Accurately mapping the genes 

controlling target phenotypes in large segregating Brassica populations should allow candidate 

genes to be inferred from the Arabidopsis sequence.  However, due to the duplicated nature of 

the Brassica genomes it will be difficult to predict whether any particular Arabidopsis gene will 

have been maintained in all the duplicate copies. Comparative genomic sequencing in other plant 

species suggest that there will have almost certainly been numerous rearrangements at the level 

of microsynteny (BENNETZEN and RAMAKRISHNA, 2002). Limited physical mapping in B. 

oleracea only identified one potential inversion and one gene in a non-syntenic position; 

however, there was obvious interspersed gene loss from the different triplicated regions 

(O’NEILL and BANCROFT, 2000).  In addition, recent physical mapping in the B. napus 

genome uncovered a similarly small number of disruptions in the microsynteny but evidence of 
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changes in gene content between the homologous Brassica segments compared to the 

homologous Arabidopsis regions (RANA et al., 2004). Genomic sequence data of such regions 

from Brassica species will allow the extent to which the duplicate copies have been conserved to 

be determined, provide insights into the mechanism underlying the rearrangements 

differentiating the different copies and allow an estimate of the relative age of the different 

duplication events. 
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TABLE 1:  Number of loci originating from each Arabidopsis chromosome, based on sequence 

homology, for each B. napus linkage group. ND: Not determined. 

 

 C1 C2 C3 C4 C5 ND Total 

N1 4 5  14  29  2  6 60 

N11 3 6  13  27 7  7 63 

N2 14 3  3  4  34  9 67 

N12 12 4  4  7  41  2 70 

N3 9 19  17  24  36  2 107 

N13 19 16  25  17  42  11 130 

N4 6 14  6  7  7  2 42 

N14 13 33  10  6  13  6 81 

N5 13 13  16  1  5  5 53 

N15 36 3  16  2  7  4 68 

N6 29 4  3  5  21  1 63 

N17 17 11  9  23  18  4 82 

N7 32 9  7  3  3  1 55 

N16 17 0  3  0  3  1 24 

N8 20 1  1  17  4  3 46 

N18 31 7  12 7  8  7 72 

N9 27 10  9  12  17  1 76 

N19 10 4  5  8  57 7 91 

N10 14 2  3  2  40  6 67 

Total (%) 326 (26) 164 (13) 176 (13) 201 (16) 365 (30) 85 1317 

Expecteda 313 209 240 187 281   
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a. Expected number of loci to originate from each Arabidopsis chromosome based on random 

distribution of loci across five chromosomes with approximate sizes: C1 – 30 Mb; C2 – 20 Mb 

(not including the NOR region); C3 – 23 Mb; C4 – 18 Mb (not including the NOR region) and C5 

– 27 Mb. 
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TABLE 2: Description of each conserved block found in Arabidopsis (refer to Figures 1 and 2). 

Conserved 

Blocka 

No. of 

times 

replicated 

No. of 

comparative 

markers in 

Arabidopsis 

(non-syntenous)b 

No. of 

comparative 

loci in  

B. napusc 

Total cM 

coverage in B. 

napus 

Length of 

conserved 

block (Mb) in 

Arabidopsisd 

C1A 7 31 (1) 88 192.1 6.68 

C1B 7 22 (2) 54 64.7 5.32 

C1C 7 14 (1) 28 38.1 4.12 

C1D 4 10 (1) 18 24.1 2.49 

C1E 4 23 (2) 42 106.6 6.07 

C2A 5 12 (2) 19 42.1 8.71* 

C2B 6 11 (1) 24 34.15 3.42 

C2C 6 31 (3) 65 186 6.35 

C3A 6 31 (1) 88 244.6 9.27 

C3Be 5-8 7 13 24.75 1.66 

C3Ce 1-4 6 8 4.35 3.07 

C3D 6 18 (1) 34 36.85 4.7 

C4A 6 11 31 25.65 7.09* 

C4B’ 6 8 18 5.85 1.45 

C4B 6 35 (2) 106 244.85 8.96 

C5A 6 44 (3) 142 245.7 7.55 

C5B 6 7 25 55 1.98 

C5C 4 7 (2) 11 27.55 3.54 

C5D 6 16 (1) 26 45.05 2.42 
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C5E 6 18 (3) 52 45.35 4.32 

C5F 5 6 (1) 14 13.15 1.99 

Totals 

(%) 

115 (121) 368 (27) 906 1706.55 

(86.7%) 

101.16 

(85.3%) 

 

a. Conserved blocks are indicated in Figures 1 and 2, those blocks that are present in at least three 

copies in each of the diploid Brassica genomes are indicated in bold text. 

b. Number of comparative loci originating from the conserved block in Arabidopsis, that are 

mapped in a conserved region within the A and/or C genomes of B. napus.  Loci within the 

conserved block that have not been mapped to a syntenous position in B. napus are indicated in 

parentheses. 

c. Total number of mapped loci within B. napus which originate from the conserved block and are 

found in a syntenous position. 

d. Physical length of the designated conserved block in Arabidopsis as shown in Figure 2. The 

complete block may not be represented in each of the duplicate copies. * indicates blocks which 

include centromeric regions in Arabidopsis. 

e. Limited marker data in the region flanking the centromere on Arabidopsis chromosome three 

makes it difficult to accurately identify these regions within the B. napus genome
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FIGURE LEGENDS 

FIGURE 1: Genetic linkage map of Brassica napus. Linkage groups are arranged according to 

the regions of primary homology between the A (N1-N10) and C (N11-N19) genomes (Parkin et 

al., 2003), with cM distances indicated to the left of each group.  Each genetic locus is coloured 

according to the presumed Arabidopsis homologue: light blue - chromosome 1; orange - 

chromosome 2; dark blue - chromosome 3; green - chromosome 4 and red - chromosome 5. Loci 

in italics were found within conserved blocks based on secondary or tertiary hits within the 

Arabidopsis genome. Loci duplicated within a B. napus linkage group are indicated by vertical 

lines to the right of the group.  Identified genome blocks showing conservation of marker content 

and marker order between the Arabidopsis and B. napus genomes are shown to the left of each 

linkage group.  Each block is coloured and labelled according to the identified homologous 

region in Arabidopsis (see Figure 2).   Inversions identified in Brassica relative to Arabidopsis 

are indicated by arrows.  Regions of the B. napus genome which have been tentatively aligned 

with Arabidopsis centromeric regions are indicated by hashed blocks. 

 

FIGURE 2:  A representation of the Arabidopsis genome based on the primary location of each 

sequenced B. napus RFLP marker on the Arabidopsis pseudochromosomes (Mb distances are 

indicated to the right of the chromosomes). Duplicate marker locations are indicated in 

parentheses. Blocks of markers found to be genetically linked in B. napus are indicated by 

shading and capital letters (A-F).  In the majority of cases C4B is conserved as a complete block, 

but in two instances, on N4 and N14, a small section of the block was observed and is 

represented by C4B’.  
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FIGURE 3:  Distribution of the physical distance in Arabidopsis compared to the genetic 

distance in B. napus for each pair of linked comparative markers found with the conserved 

blocks. 

 

FIGURE 4: Alignment of segment of B. napus linkage group N19 with both Arabidopsis 

chromosome 1 and chromosome 5, highlighting the difficulty in identifying the most related 

Arabidopsis region where there are ancient duplications in the model genome.  
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