Nuclear DNA Amounts in Angiosperms: Progress, Problems and Prospects M. D. BENNETT* and I. J. LEITCH Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK Received: 23 July 2004 Returned for revision: 12 August 2004 Accepted: 1 September 2004 CONTENTS INTRODUCTION 45 PROGRESS 46 Improved systematic representation (species and families) 46 (i) First estimates for species 46 (ii) First estimates for families 47 PROBLEMS 48 Geographical representation and distribution 48 Plant life form 48 Obsolescence time bomb 49 Errors and inexactitudes 49 Genome size, `complete' genome sequencing, and, the euchromatic genome 50 The completely sequenced genome 50 Weeding out erroneous data 52 What is the smallest reliable C-value for an angiosperm? 52 What is the minimum C-value for a free-living angiosperm and other free-living organisms? 53 PROSPECTS FOR THE NEXT TEN YEARS 54 Holistic genomics 55 LITERATURE CITED 56 APPENDIX 59 Notes to the Appendix 59 Original references for DNA values 89 Background The nuclear DNA amount in an unreplicated haploid chromosome complement (1C-value) is a key diversity character with many uses. Angiosperm C-values have been listed for reference purposes since 1976, and pooled in an electronic database since 1997 (http://www.kew.org/cval/homepage). Such lists are cited frequently and provide data for many comparative studies. The last compilation was published in 2000, so a further supplementary list is timely to monitor progress against targets set at the first plant genome size workshop in 1997 and to facilitate new goal setting. Scope The present work lists DNA C-values for 804 species including first values for 628 species from 88 original sources, not included in any previous compilation, plus additional values for 176 species included in a previous compilation. Conclusions 1998­2002 saw striking progress in our knowledge of angiosperm C-values. At least 1700 first values for species were measured (the most in any five-year period) and familial representation rose from 30 % to 50 %. The loss of many densitometers used to measure DNA C-values proved less serious than feared, owing to the development of relatively inexpensive flow cytometers and computer-based image analysis systems. New uses of the term genome (e.g. in `complete' genome sequencing) can cause confusion. The Arabidopsis Genome Initiative C-value for Arabidopsis thaliana (125 Mb) was a gross underestimate, and an exact C-value based on genome sequencing alone is unlikely to be obtained soon for any angiosperm. Lack of this expected benchmark poses a quandary as to what to use as the basal calibration standard for angiosperms. The next decade offers exciting prospects for angiosperm genome size research. The database (http://www.kew.org/cval/homepage) should become sufficiently representative of the global flora to answer most questions without needing new estimations. DNA amount variation will remain a key interest as an integrated strand of holistic genomics. 2005 Annals of Botany Company Key words: Angiosperm DNA amounts, DNA C-values, nuclear genome size, plant DNA C-values database. INTRODUCTION It has been possible to estimate the amount of DNA in plant nuclei for over 50 years, and since the key role of DNA in biology was discovered in 1953, such research has increased in each successive decade. Work on plants has played a leading part in research to describe and understand the origin, extent and effects of variation in the DNA amount in the unreplicated haploid nuclear chromosome comple- ment (defined by Swift, 1950, as the 1C-value) of different taxa. Indeed, angiosperms are probably the most intensively Annals of Botany 95/1 Annals of Botany Company 2005; all rights reserved * For correspondence. E-mail m.bennett@kew.org Annals of Botany 95: 45­90, 2005 doi:10.1093/aob/mci003, available online at www.aob.oupjournals.org studied major taxonomic `group' of organisms, with published C-values for over 4100 species. Early research to address questions such as possible relationships between DNA C-value and the rate of cell development (e.g. Van't Hof, 1965) usually required work to estimate C-values for most of the taxa concerned, as these were unavailable. Later, as taxa with `known' C-values increased, it was possible to use such data in new comparisons (supplemented by further first estimates made for sample taxa). However, it was often difficult to know whether a C-value existed for a particular taxon, and if so, where to find it. Such estimates were widely scattered in the literature or even unpublished. Small lists of nuclear DNA amounts were published in reviews and research papers, but the first large list of DNA amounts for angio- sperms, compiled primarily as a reference source was published in 1976. This contained data for over 750 species from 54 original sources (Bennett and Smith, 1976), and noted an intention to publish supplementary lists for refer- ence purposes at intervals. Five such lists, together giving pooled data for over 2900 species from 323 original sources, have followed (Bennett et al., 1982, 2000; Bennett and Smith, 1991; Bennett and Leitch, 1995, 1997). Data from the first five publications were pooled in an electronic form ­ the Angiosperm DNA C-values database, which went live in April 1997. This was updated as release 3.1 and incorporated, with databases for gymnosperms, pteridophytes and bryophytes, into the Plant DNA C-values database (release 1.0) in 2001. These data are clearly much used, as the published lists have been cited over 1400 times, including over 700 times since 1997, whilst the electronic database has received over 50 000 hits. Recently they have provided the large samples of data needed for many diverse comparative studies, such as testing for possible relationships between nuclear DNA amount and risk of extinction (Vinogradov, 2003), ecolog- ical factors in California (Knight and Ackerly, 2002), lead pollution in Slovenia (B. Vilhar, University of Ljubljana, Slovenia, pers. comm.); ploidy level (Leitch and Bennett, 2004), and land plant evolution (Leitch et al., 2005). Given their ongoing use as reference sources, publication of a sixth supplementary list of angiosperm C-values is timely, if not overdue. The present work lists DNA C-values for 804 species from 88 original sources, including first estimates for 628 species not included in any previous com- pilation, plus additional estimates for 176 species already included in one or more previous compilation. Data in the Appendix table were prepared for analysis at the second Plant Genome Size Discussion Meeting in September 2003, so it is fitting that they are included in this special supplement. Whilst they represent most of the new C-value data published or estimated in 2000­2002, we are already aware of a further large sample estimated but unpublished either by late 2002, or subsequently. Thus, despite its large size, the present list will soon be followed by a seventh supplement. PROGRESS Research on DNA C-values in angiosperms is unique in having been subject to detailed analyses of its quantity and quality over a long period (Bennett and Leitch, 1995). The importance of identifying gaps in our knowledge concerning this key biodiversity character, of recommend- ing targets for new work to fill them by collaboration of international partners, and of monitoring progress to ensure that any shortfall is recognized, was confirmed by the first plant genome size workshop in 1997 (http://www.kew.org/ cval/conference.html#outline, Bennett et al., 2000) and reviewed by participants at the second plant genome size workshop in 2003. Thus, what follows is mainly a summary of the overall progress for angiosperms against key targets set in 1997 for the following quinquennium (1998­2002). However, it also notes meaningful statistics for the data included in the Appendix table, or known to us from personal communications made after the Appendix table was closed. In 1997 C-values for 2802 species (approximately 1 %) of angiosperm species had been estimated in the previous 40 years. The 1997 workshop concluded that the ideal of a C-value for all taxa was unrealistic, but long-term, estimates for 10­20 % of angiosperms seemed both ulti- mately achievable and adequate for all conceivable uses provided they were carefully targeted to be representative of the various taxonomic groups, geographical regions, and life forms in the global flora. So the first recom- mended target was to estimate first C-values for the next 1 % of angiosperm species (i.e. another 2500 spe- cies) by 2003. Many saw this goal as aspirational, as achieving it would mean estimating as many C-values in five years as in the past 40. Others thought that new technology (e.g. flow cytometry) would make it easy to achieve. Improved systematic representation (species and families) (i) First estimates for species. In September 1997 the Angiosperm DNA C-values database contained data for 2802 species. By September 2003 C-values were listed for 4119 species, including 689 first values for species listed in Bennett et al. (2000) and 628 such values for species in the Appendix table. Progress toward the first target in the five year period (1998­2002) considerably exceeded the average of $110 first values for species per annum in the early 1990s. Clearly, the 1997 workshop stimulated an increase in the total output of first C-values for species to its highest level for any five-year period (almost 200 per annum; Fig. 1A). Moreover, the proportion of newly pub- lished C-values that were also first estimates for species, which had previously fallen (Bennett et al., 2000), rose as a result of recent targeting and averaged 72Á5 % for values published since 1997 (Fig. 1B). Nevertheless, the total number of published first C-values for species (1032) listed since 1997 was only 41 % of the 1997 target of approx. 2500. The real total of first C-values for angiosperms esti- mated after 1996 but unpublished by 2003 was much higher, but is difficult to determine exactly. For example, several hundred values were measured by Ben Zonneveld (pers. comm.) using flow cytometry but not published. Listing 46 Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms for the Appendix table closed in August 2002, ready for the workshop; however, we saw 158 first C-values published by other authors later in 2002, and 22 such values were esti- mated at RBG, Kew. Adding these data to those listed in our compilations suggests that the total number of first C-values for species estimated in 1997­2002 was probably at least 1700 and hence not less than approx. 66 % of the target set in 1997. Analysis shows that this was achieved by interna- tional collaboration involving at least 18 research groups in ten countries. Whilst a target of 2500 was aspirational, it seems attainable as a future five-year goal. However, at the present rate achieving 20 % species representation would take 100 years, so an ultimate goal of 10 % (approx. 25 000 angiosperm species) is more sensible. (ii) First estimates for families. The 1997 workshop noted that a first C-value was available for only 30 % of angiosperm families recognized at that time. Thus, a second recommended target was `To obtain at least one C-value estimate for a species in all angiosperm families'. Monitor- ing first C-values for species listed in Bennett et al. (2000) showed that progress towards this goal was initially very slow. Indeed, `since 1997 first C-values had been listed for 691 angiosperm species, but only 12 (1Á7 %) were also first estimates for families'. Work to correct this began at RBG, Kew in 1999. In 2001 two papers reported first C-values for 50 families (Hanson et al., 2001a, b), and 30 more followed, including five basal angiosperm families (Leitch and Hanson, 2002; Hanson et al., 2003), all included in the present Appendix table. Analysis of listed data for 4119 species shows that a first published value is available for at least 217 of the 457 angiosperm families currently recognized by the Angiosperm Phylogeny Group (APG) (APG II, 2003). Together with first estimates for 11 unlisted families (Hanson, RBG, Kew, pers. comm.; Koce et al., 2003) measured or seen after listing for the Appendix table was closed, the total is 228. Thus, since 1997 (after losses owing to new familial circumscriptions--APG II, 2003; Hanson et al., 2003) first values for at least 85 such families have been measured, so good progress has been made. However, the proportion of families represented rose only from 30 % to 49Á9 % (Fig. 2), which is less than one third of the target (100 %) set in 1997. Major factors limiting progress were 0 50 100 150 200 250 300 1950­1954 1960­1964 1970­1974 1980­1984 1990­1994 2000­2002 Period Meannumberofestimates 0 20 40 60 80 100 1965 1970 1975 1980 1985 1990 1995 2000 Year PercentageofC-valueestimatespublished thatare`new' A B FI G . 1. (A) Mean numberper year of total (open symbols)and `first' (closed symbols) DNA C-value estimates communicated in ten successive 5-year periods and the 3-year period 2000­2002, between 1950 and 2002. Based on analysis of data listed in the present Appendix table, and the Angiosperm DNA C-values database (release 4.0, January 2003). (B) Percentage of C-value estimates published or communicated during 1965­2002 that are first values for species listed in the present Appendix table and the Angiosperm DNA C-values database (release 4.0, January 2003). 0 10 20 30 40 50 60 1950 1960 1970 1980 1990 2000 Year Cumulative%ofAPGfamilies FI G . 2. Cumulative percentage of angiosperm families recognized by the Angiosperm Phylogeny Group (APG) (APGII, 2003) with a first C-value represented in the present Appendix table, the Angiosperm DNA C-values database (release 4.0, January 2003), plus eleven known to the present authors in September 2003. Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms 47 discussed previously (Hanson et al., 2003). Unlike progress towards the species target, which involved many research groups, movement towards the goal for families since 1997 has depended mainly on work by one institution, as RBG Kew estimated 65 of the 74 (87 %) first values for families listed in the Appendix table. The Plant Genome Size Workshop in 2003 confirmed that global capacity for estimating DNA C-values (determined by available equipment, funding and trained operators) remains very limited. Consequently, any increased focus on targets for other plant groups (e.g. bryophytes, pterido- phytes, gymnosperms--reviewed in Leitch and Bennett, 2002b) inevitably reduces progress to improve representa- tion for angiosperm targets, a problem discussed below. However, it should not detract from the highly successful progress to make C-values more representative of the global flora described above. PROBLEMS Geographical representation and distribution We first noted the need to improve geographical representa- tion for angiosperm C-values in Bennett and Leitch (1995). This was confirmed by the 1997 plant genome size workshop, although no specific regional targets were recommended. Perhaps, in consequence, progress in this area has never been monitored in detail, although we have been at pains to advertise the problem in a general way and to provoke action to rectify it in particular regions, such as southern Africa (Leitch and Bennett, 2002a). There are two critical concerns regarding the geographical distribution of angiosperm C-value work. (i) The first concerns the small number of publications with original C-values by first authors in many regions (Table 1). This reflects a serious imbalance between the geographical dis- tribution of research scientists working on genome size and of taxa whose C-values are unknown. Bennett et al. (2000) noted that `Africa remains an unexplored continent' and that `Whereas six out of 377 original sources have first authors with addresses in Africa, still none has an angiosperm C-value estimated in Africa, as all six reported work done in Europe or the USA.' Analysis of the 88 original sources in the present work shows no improvement, as the number of original sources from Africa (2), China (2), and South America (2) remains low (Table 1). (ii) The second concerns the small number of first C-values by any authors for species endemic to several large geographical regions. With some exceptions, the sample is still dominated by crops and their wild relatives, model species grown for experimental use, and other species growing near labora- tories in temperate regions, mainly in Western Europe and North America. Analysis of data in the Appendix table shows that none presented data for other taxa endemic to China, Japan, Brazil, Mexico or Central Africa. Similarly, although island floras are known to be rich in endemics, no original source has reported C-values for any large islands such as Borneo, New Guinea or Madagascar, where 80 % of the 12 000 described plant species are endemic (Robinson, 2004). Plant life form There is also a need for the overall sample to represent better the full range of plant types and life forms. We previously identified several associations and life forms as being poorly represented in the database (Bennett and Leitch, 1995), yet taxa from bog, fen, tundra, alpine and desert environments, and halophytic, insectivorous, parasitic, saprophytic and epiphytic species and their asso- ciated taxa are all still under-represented. Solving this problem needs a proactive approach, as recent experience with first C-values for angiosperm families shows. First, a target must be set for each gap. Second, monitoring newly published data against targets TA B L E 1. The number and percentage (in brackets) of original references with first authors from various geographical areas among the total of 465 sources contributing to the present Appendix table and the six lists of angiosperm DNA amounts previously compiled for reference purposes that were pooled in the Angiosperm DNA C-values database (release 4.0, January 2003) DNA C-value compilation Area 19761 19822 19913 19954 19975 20006 Present Appendix Total Europe 34 (63.0) 38 (71.7) 30 (53.6) 43 (40.6) 18 (48.6) 38 (51.4) 54 (61.4) 255 (54.8) UK 28 (51.9) 13 (24.5) 22 (39.3) 23 (21.7) 5 (13.5) 8 (10.8) 10 (11.4) 109 (23.4) North America 14 (25.9) 11 (20.8) 16 (28.6) 19 (17.9) 5 (13.5) 11 (14.9) 13 (14.8) 89 (19.1) South and Meso America 0 (0.0) 0 (0.0) 3 (5.4) 9 (8.5) 1 (2.7) 6 (8.1) 2 (2.3) 21 (4.5) Africa 1 (1.9) 0 (0.0) 0 (0.0) 1 (0.9) 2 (5.4) 1 (1.4) 2 (2.3) 7 (1.5) Asia 1 (1.9) 3 (5.7) 4 (7.1) 30 (28.3) 11 (29.7) 8 (10.8) 17 (19.3) 74 (15.9) India 1 (1.9) 1 (1.9) 2 (3.6) 28 (26.4) 11 (29.7) 4 (5.4) 11 (12.5) 58 (12.5) China 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 2 (2.3) 2 (0.4) Australasia 4 (7.4) 1 (1.9) 3 (5.4) 4 (3.8) 0 (0.0) 7 (9.5) 0 (0.0) 19 (4.1) Australia 4 (7.4) 1 (1.9) 3 (5.4) 1 (0.9) 0 (0.0) 1 (1.4) 0 (0.0) 10 (2.2) Total 54 53 56 106 37 71 88 465 (100) 1 Bennett and Smith (1976); 2 Bennett et al. (1982); 3 Bennett and Smith (1991); 4 Bennett and Leitch (1995); 5 Bennett and Leitch (1997); 6 Bennett et al. (2000). 48 Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms must begin. Third, if work on poorly-represented floras or life forms does not increase, then established research groups must re-focus on target material available in exist- ing collections. Unless global capability for estimating plant DNA C-values is significantly increased by new technology, funds or skilled operators, then this change in strategy will reduce progress towards achieving other targets. However, the prime objective remains: to generate a sample representative of the global flora that is able to support most comparative studies. Managers of the limited global capacity for estimating genome size should keep this firmly in mind when targeting taxa for new work. Obsolescence time bomb Several methods have been used to measure plant DNA C-values, but most values have been estimated by Feulgen microdensitometry (Fe), both overall and since 1997. In 1997 we identified an imminent problem, likely to limit future estimations. This was the failure and non- replacement of densitometers long used by many groups to estimate DNA C-values. Manufacturers were ending their support for such equipment, and users faced difficulty in funding new equipment for this purpose. Moreover, this problem was likely to be most acute in regions where some of the greatest gaps in our knowledge lay. Reviewing the position at the second Plant Genome Size Workshop confirmed that, as predicted, the `obsolescence time bomb' had exploded. By 2003 several laboratories that had long published C-values listed in the Angiosperm DNA C-values database were now unable to estimate C-values by this (e.g. in Mexico, the USA), or any method (e.g. in Argentina). Vickers Instruments no longer supports their M85 microdensitometer, and spare parts for it are unobtain- able. A few laboratories, including ours, can still use such machines, but now without servicing and only until they fail catastrophically. As expected, one response to this problem was the increased use of flow cytometry (FC) to replace Fe. Analysis of data in the Appendix table shows a higher proportion of C-values obtained by FC (58Á4 %), mostly since 1997, than noted previously (48Á6 %) for data listed in Bennett and Leitch (2000), whilst in Bennett and Leitch (1995, 1997) FC averaged 26Á7 %. Several groups have undertaken careful studies to compare DNA estimates made by FC and Fe, to define best practice for FC, or to show that FC can be applied widely to most plants across the full range of known DNA C-values (e.g. see review by Dolezzel and Bartos, 2005, this volume). Fortunately, the cost of a basic flow cytometer for such work has fallen, and suitable models (e.g. Partec PAII) have recently been set up for this use for approx. 20K (US$30K). If this technology con- tinues to improve, and its costs continue to fall, FC should be more easily available. However, FC easily yields poor data in unskilled hands and by itself does not provide the cytological view of test material(s) that is essential to count chromosome number(s). Its use in some less-developed countries (where the greatest gaps in our knowledge still remain) will depend on training local operators, but such capacity-building may be thwarted by a lack of in-country support by the suppliers of flow cytometers. A second solution to the problem is a new availability of relatively inexpensive computer-based image analysis (CIA) systems, which can estimate DNA amounts using Feulgen-stained cytological preparations in place of a micro- densitometer. Although proprietary hard-wired CIA systems have been available since the 1970s (e.g. Zeiss Quantimet system), they cost much more than microdensitometers, and analysis of the literature shows they have not been used to estimate plant C-values. However, in the 1990s, with advances in computer technology, less expensive systems were developed (e.g. CIRES system) primarily for medical use, and these have also been used to good effect for plant C-value estimations (e.g. Temsch et al., 1998; Greilhuber et al., 2000). Sadly, the CIRES system that adapted well for this pur- pose is no longer available, as the software is incompatible with the operating system used on modern PCs. However, computer-literate groups can assemble the kit needed to estimate C-values using CIA, and several software packages written specifically for this purpose are available (Vilhar et al., 2001; Hardie et al., 2002). Hardie et al. (2002) give an excellent review of this technique and practical issues concerned with its use for animal materials, and Vilhar et al. (2001) have compared CIA, Fe and FC, to help define best practice for CIA, demonstrating that CIA can be applied to plants with an approx. 100-fold range of C-values. Vilhar et al. (2001) concluded that `DNA image photometry gives accurate and reproducible results, and may be used as an alternative to photometric cytometry in plant nuclear DNA measurements'. CIA can use an existing microscope, costs less than FC to set up, and is easier to service in countries that lack FC manufacturers' support. The field would benefit from development of a standard inexpensive CIA `kit', an agreed best practice CIA technique, and easy access to leading laboratories for training and technology transfer. Given this, CIA could soon become the method of choice for estimating C-values in angiosperms, replacing Fe as a method of choice along with FC, but with the advantage that, unlike FC, it uses microscope slide preparations, allowing users to make cyto- logical observations. Errors and inexactitudes Swift (1950) defined the DNA content of an unreplicated haploid complement as its 1C-value (C standing for `constant'). Thus, replicated diplophase nuclei have a 4C DNA amount and produce two unreplicated 2C nuclei by mitotic division, and four 1C gametic nuclei after meio- sis, irrespective of the organism's ploidy level. This con- vention applies well to polyploid taxa with diploidized meiotic chromosome pairing such as hexaploid breadwheat, which produce mainly functional, balanced polyhaploid gametes with 1C DNA amounts at meiosis (Rees and Walters, 1965). Consequently, for several previous refer- ence lists, 4C DNA estimates for all taxa were divided by 2 and 4 to generate 2C- and 1C-values respectively (e.g. Bennett et al., 2000). However, a problem with this Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms 49 practice was identified for the few taxa with odd ploidy levels in release 3.1 of the Angiosperm DNA C-values database (namely 45 out of 3493 listed taxa, $1Á3 %), as the resulting 1C-values are not biologically meaningful. For example, triploids with a 4C amount in their fully replicated metaphase nuclei do regularly produce two 2C nuclei at mitosis, but do not regularly produce four 1C products at meiosis. The authors are grateful to several colleagues who noted this problem and suggested solutions. This problem has several practical consequences. (i) Regrettably, researchers who use 1C data from the literature or downloaded from the Angiosperm DNA C-values database may have included this error in the samples that they used for comparative analyses. However, this is unlikely to have influenced their conclusions signific- antly, since the magnitude of the error is relatively small (ranging between 0Á25C for a triploid, to +0Á25C for a pentaploid--which tend to cancel out), and affects only 1Á3 % of all taxa listed. Overall, errors in mean DNA amounts for samples are probably less than 0Á5 %. Studies that used data from the 2C or 4C columns for samples of odd-ploid taxa are unaffected by the error. (ii) To ensure that researchers are aware of the problem and do not generate 1C data for taxa with odd ploidy levels in the future, release 4.0 of the Angiosperm DNA C-values database gives 2C- and 4C-values for the 45 out of 3493 entries with odd ploidy levels, plus a warning note in response to any queries for 1C-values. This approach is also followed in the present Appendix table (see footnote t). (iii) This problem also high- lights a general need to re-assess definitions of `C-value' and `genome size' in light of recent usage and new theore- tical understanding, a topic explored by Greilhuber et al. (2005). Indeed, the above problem shows the need for care when handling data, and the danger of using computer- generated numbers uncritically. It is clearly perilous to ignore basic biology or the literature, as the recent history of genome size, `complete' genome sequencing, and interest in the smallest angiosperm genome clearly shows. Genome size, `complete' genome sequencing, and, the euchromatic genome A growing semantic problem concerns different uses of the term `genome' (Greilhuber et al., 2005). As originally defined by Winkler (1920), genome referred to a monoploid chromosome complement. Since a monoploid is defined as `having one chromosome set with the basic (x) number of chromosomes' (Rieger et al., 1991), it followed by defini- tion that any polyploid taxon had three or more genomes. However, an alternative meaning, now in common usage, uses genome as an interchangeable alternative for the 1C-value to refer to the DNA content of an unreplicated gametic nuclear complement, irrespective of ploidy level. Unless the meaning intended is clearly defined on each occasion, this can be confusing, especially when authors use both meanings for a polyploid taxon in the same paper. For example, Devos and Gale (1997) used the term `genome' to refer to both the entire complement of nuclear DNA in a hexaploid wheat nucleus and to the individual A, B and D `genomes'. Further potential for confusion comes from new uses of the term `genome' recently spawned by genome sequencers. These concern the counter-intuitive meaning of a `wholly', `completely' or `entirely' sequenced genome, or of equating `genome' with `euchromatic genome'--a confusing con- cept in which `genome' equals the parts which could be cloned and sequenced, but not the rest (see below). None of these qualitative new uses of genome equates to its quanti- tative use to mean either a 1C-value, or one monoploid parental genome in a polyploid. The completely sequenced genome Since 2000 the scientific and popular press has reported and celebrated the `complete' sequencing of the first insect (Drosophila melanogaster) and plant genome (Arabidopsis thaliana) and the human genome (in 2001). For example, a title in Nature reported: `The sequencing of an entire plant genome is now complete.' Readers could be forgiven for assuming this meant the entire linear sequence of the nuclear DNA had been sequenced and assembled, so that the total size of the nuclear genome in these organisms was now known with certainty, and hence much more accurately than any previous estimate based on other methods subject to various experimental errors. The popular and scientific literature easily gives that impression, and unfortunately that is what many, incorrectly, understood. The truth is otherwise, as a `completely sequenced' genome is a very relative concept. In the same issue of Science where Brenner (2000) wrote `We have the complete sequence of the 125-megabase genome of the fruit-fly Drosophila', Pennisi (2000) noted that `the fly sequence still has c. 1000 small gaps'--referring only to the sequenced euchromatin part. But what of the rest? Speaking of heterochromatin, Adams et al. (2000) explained that the `genomes of eukaryotes generally contain heterochromatic regions surrounding the centromeres that are intractable to all current sequencing methods' and that `Because of the unclonable repetitive DNA surrounding the centromeres it is highly unlikely that the genomic sequence of chromosomes from eukar- yotes such as Drosophila or human will ever be `complete'. Moreover, Adams et al. (2000) stated that the unsequenced centric heterochromatin regions comprised `one third' of the approx.180 Mb genome of Drosophila. But how was its size determined? Careful reading revealed that the Mb size of these unsequenced centromeric heterochromatic segments was measured not by any modern molecular method, but by using a ruler on one cell of a plate in a paper by Yamamoto et al. (1990). This important detail is not stated in the main text, but in the legend to fig. 1 in Adams et al. (2000). As Bork and Copley (2001) clearly explain, `There are regions, often highly repetitive, that are difficult or impossible to clone (one of the initial steps in a sequencing project) or sequence with current technology. . . . The extent of these regions varies widely in different species. So, rather than applying a universal gold standard, each sequen- cing project has made pragmatic decisions as to what constitutes a sufficient level of coverage for a particular genome. For example, as much as one-third of the sequence of the fruitfly Drosophila melanogaster was not 50 Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms stable in the cloning systems used, and so was not sequenced.' Thus, workers interested in C-values should clearly understand that a `completely', `entirely' or `wholly' sequenced genome is not what those words might imply if taken at face value, and the size given for such a genome may indicate either the amount of DNA sequenced, or the size of that euchromatic genome sequenced plus a best- guess estimate of a lot of unsequenced heterochromatin. Further, it can mean that every type of sequence in an organism has been sequenced, but it need not mean that all copies of all types have been sequenced, or that their copy numbers are known. Without this information total genome size (the DNA C-value) cannot be determined based on genome sequencing (Bennett et al., 2003). Swift (1953) stated that, `in general estimates of the nucleic acids in cells are at present accurate to 10 or 20 %'. Later, Bennett and Smith (1976) concluded that `While a few estimates are not accurate even to within 20 %, careful measurements of 4C DNA amounts in species with 0Á5­2Á0 times that of a standard species are probably accurate to within 5­10 %'. Greilhuber (1998) noted `much suspect or demonstrably wrong data have accumulated and continue to be accumulated in the literature'. Sadly, the `complete' genome sequencing of Arabidopsis (Arabidopsis Genome Initiative, 2000), which was expected to provide a new baseline, only added to this phenomenon. Plant genome size researchers have long recognized the need for an exact calibration standard, whose C-value is not subject to technical errors. Thus, the publication of a precise C-value for the first plant to have its genome completely sequenced was eagerly awaited, as it was expected to provide a baseline, gold-standard reference point, against which all other plants could be compared and expressed. Arabidopsis thaliana ecotype `Columbia' was chosen for complete genome sequencing, partly because its tiny genome should be less costly to sequence than larger genomes in other species. In 2000 the Arabidopsis Genome Initiative (AGI) pub- lished the genome size of Arabidopsis thaliana as 125 Mb, comprising 115Á4 Mb in the sequenced regions plus a rough estimate of 10 Mb in unsequenced centromere and ribo- somal DNA regions. The accuracy of this estimate was set not by the precision of sequencing and assembling con- tigs, but by the total inaccuracy in the sizes assumed for the unsequenced gaps (Bennett et al., 2003) and hence was no more accurate than many estimates in the range 150­180 Mb made by other methods. Further analysis showed that the AGI's rough estimate of 10 Mb in the unsequenced gaps was highly inaccurate. Thus, new comparisons using flow cytometry, which co-ran A. thaliana ecotype `Columbia' with three animal species including Caenorhabditis elegans Bristol N2 (whose genome size is accurately established by genome sequencing as just over 100 Mb), gave C-value estimates for A. thaliana in the range 154­162 Mb (with 157 Mb when C. elegans was used as the standard) (Bennett et al., 2003). This value is about 25 % larger than the AGI estimate of 125 Mb which was clearly a gross under- estimate, and hence is not the long-awaited first benchmark C-value for a completely sequenced plant genome--giving those words their natural meaning. Other molecular work has confirmed this conclusion (e.g. Hosouchi et al., 2002). More recently, the draft DNA sequence of the rice (Oryza sativa) genome was published (O. sativa ssp. japonica, Goff et al., 2002; O. sativa ssp. indica, Yu et al., 2002). However, while the estimated genome sizes based on DNA sequencing did not suffer from the serious shortcomings of the Arabidopsis estimate, neither did they fulfil the criteria essential for a new benchmark calibration standard. Yu et al. (2002) gave a new C-value of 466 Mb for O. sativa ssp. indica calculated by adding up the DNA sequencing data for 362 Mb of sequenced scaffolds and 104 Mb of `unas- sembled data'. In contrast Goff et al. (2002) reported the sequencing of DNA which covered a total of 389 809 244 bp of the O. sativa ssp. japonica genome. They stated that this represented 93 % of the 420 Mb rice genome but did not give a reference to the source of 420 Mb. It is therefore unclear whether the C-value of 420 Mb given by Goff et al. (2002) represents a new C-value based on genome sequen- cing alone. The 1C-value for rice may yet prove to be slightly higher than the values assumed by Goff et al. (2002) and Yu et al. (2002), and approach 490 Mb, equival- ent to the 0Á5 pg estimated by Bennett and Smith (1991). Exact C-values based on complete genome sequences would be invaluable (Bennett et al., 2003). The need to complete sequencing gaps in Arabidopsis remains tech- nically difficult, and it is unclear how, when, or if it will be achieved. Genome sequencing becomes more difficult as genome size increases, and experience with Arabidopsis implies that exact C-values are unlikely to be obtained in this way soon for any larger plant genomes, including the established plant C-value standard Oryza sativa. The current situation poses a quandary for the plant genome size community, who have long paid serious attention to trying to maximize the accuracy and compar- ability of plant DNA C-values by using agreed calibration standards (both materials and assumed values; e.g. see http://www.rbgkew.org.uk/cval/conference.html#outline, Bennett et al., 2000), while eagerly awaiting the first absol- ute measurement for a plant obtained by really complete DNA sequencing. Current options include: (i) continue to use the existing small group of plant calibration standards until a plant C-value which meets the required criteria becomes available; (ii) adopt an animal C-value which meets these criteria as the baseline reference for expressing all other plant species values, e.g. Caenorhabditis elegans Bristol N2, whose C-value is known with confidence to within 1 % from genome sequencing to be just above 100 Mb (or roughly 0Á1 pg); (iii) adopt a plant value based on direct comparisons with C. elegans, as the base calibration standard for plants, and create a ladder of secondary calibration standards all measured against it in a study replicated between several groups able to use best practice. The C-value for Arabidopsis thaliana (1C = 157 Mb or 0Á16 pg), recently measured against C. elegans (Bennett et al., 2003), could be adopted as the basal plant calibration standard. Seed is readily available from stock centres and gives small, easily grown plants. Moreover, the ladder of values for its many endopolyploid nuclei would also provide convenient calibration reference points for higher values up Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms 51 to approx. 2500 Mb or 2Á5 pg (i.e. 0Á64 4C, 1Á28 8C, and 2Á56 16C). Weeding out erroneous data The value of the database is determined by the accuracy of the data it contains. Ideally, values should be exact, but in reality they are all subject to various technical and other errors, as noted above. This raises questions as to how accur- ate data are, and what level of error is acceptable in practice, or makes a datum valueless for a particular use or study. The existence of a database itself is a valuable means of identifying real or potential errors, and hence of improving the accuracy and quality of the whole body of data. For example, where estimates for the same taxon (with the same chromosome number) disagree greatly this suggests an error. Further, where a body of data for a taxon shows close agreement except for one major departure, this iden- tifies the outlier as almost certainly incorrect. For example, in the Appendix table, the 2C-value for diploid Acacia dealbata (1Á7 pg) reported by Blakesley et al. (2002) is similar to that reported by Bukhari (1997) of 2C = 1Á6 pg (listed in Bennett et al., 2000), but both values differ con- siderably from the 2C-value of 2Á9 pg reported by Mukerjee and Sharma (1993b) (see Notes to the Appendix bb). Another example concerns Brachypodium distachyon. In 1991, the PhD thesis of Shi reported a 1C-value of 0Á15 pg, but later Shi et al. (1993) gave its 1C-value as 0Á3 pg. To resolve this discrepancy, RBG, Kew obtained some original material studied by Shi and estimated its 1C-value to be 0Á36 pg, confirming the larger C-value for this species (see also footnote br). Thus, real errors can be identified with certainty, and potential errors flagged up for users in cautionary footnotes following Appendix tables. DNA C-values in angiosperms vary approx. 1000-fold (over three orders of magnitude) from approx. 0Á1 pg to over 100 pg. It is, therefore, often useful to know whether a species' 1C DNA amount has approximately 0Á1, 1, 10 or 100 pg, even if there is still uncertainty regarding whether a species with approximately 1 pg is really closer to 0Á8 pg than to 1Á2 pg (an error 620 %). In terms of its predictive value in nucleotypic correlations, such an error still permits useful conclusions to be drawn. The Arabidopsis com- munity laboured long under the misapprehension that its 1C DNA amount was approx. 70 Mb (Leutwiler et al., 1984), and later approx. 100 Mb (Meyerowitz, 1994), when in reality it is much higher (about 157 Mb, Bennett et al., 2003). The level of inaccuracy involved (approx. 50­100 %) was considerable, yet it did not prevent the selection of Arabidopsis as the model plant for first complete genome sequencing, in no small part on the basis of its `small genome size' (NSF, 1990; Somerville and Somerville, 1999). The Convention on Biological Diversity (United Nations Environment Programme, 1992) noted the need to make biodiversity data available, despite imperfections; a view which merits support (Bennett, 1998). Thus, it is better to list available C-value data subject to errors, until improved data with fewer errors become available. The body of data is needed by the scientific community and can clearly already be used to draw important conclusions, to make valuable predictions, and as a basis for necessary planning. What is the smallest reliable C-value for an angiosperm? The above examples show how seeing data in the comparative context of the database can help to identify real or potential errors in particular species. It can also facilitate broader enquiries such as `what is the smallest reliable C-value for an angiosperm?'. Again, the comparat- ive approach has enabled researchers to be active in iden- tifying potential errors in species with the smallest reported C-values, and to be transparent in correcting mistakes. Because of error variation, a population of 1C-value estimates for one taxon should vary according to a normal curve, so those in the lower tail are all too low (Fig. 3A). Too low Too high Numberofestimates 1C DNA amount 0 20 40 60 0­010 011­020 021­030 1C DNA amount range (pg) Numberofspecies A B AboutAbout rightright About right FI G . 3. (A) Expected error variation in a large population of DNA C-value estimates for one genotype as underestimates (in the lower tail) and overestimates (in the upper tail) surround more accurate, intermediate, genome size estimates. (B) Histogram showing frequency of C-values for the 85 smallest species in the database or Appendix. 52 Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms Such values are lost in the frequency histogram for all angiosperm C-value estimates except at its lowest tail where some of the lowest C-values claimed are expected to be too low. This expectation is strongly supported in practice, as shown below. There are 53 1C estimates in the Angiosperm DNA C-values database or the present Appendix with 0Á21­0Á30 pg, 29 with 0Á11­0Á20 pg, but only three with 0Á10 pg or below (Fig. 3B). Table 2 lists the 24 lowest estimates listed with 0Á175 pg or less, but how robust are they? Thirteen of the 24 estimates in Table 2 are for Arabidopsis thaliana. A comparative approach suggests that some, which featured among the lowest C-values reported for angiosperms, are too low. Thus several C-value estimates made by molecular means in the range 0Á05­0Á125 pg (Leutwiler et al., 1984; Francis et al., 1990; Arabidopsis Genome Initiative, 2000) are now seen as gross underestimates, while many others in the range 0Á15­0Á18 pg are shown to span the true value of about 0Á16 pg (Bennett et al., 2003). After discounting the 1C estimate for Arabidopsis thaliana of 0Á051 pg by Francis et al. (1990), the next smallest estimate listed is 0Á055 pg for Cardamine amara (communicated from S. R. Band in 1984). With only a third the DNA amount of its related crucifer A. thaliana (0Á16 pg), it seemed suspiciously low. Cardamine amara seed cannot survive drying, so it is unavailable from seed banks. However, we recently used flow cytometry to compare diploid C. amara collected near Sheffield with several cali- bration standards including A. thaliana ecotype `Columbia'. The 1C-value we obtained was around 0Á24 pg (almost five- fold the earlier report). This is in close agreement with independent estimates made elsewhere (e.g. see Bennett and Leitch, 2005; Johnston et al., 2005). Once the underestimates for Arabidopsis thaliana and Cardamine amara are discounted, few 1C-values of 0Á125 pg or below remain for other species. One is the 1C estimate of 0Á125 pg for Rosa wichuriana, estimated using callus material from Dr Andy Roberts (Bennett and Smith 1991). This value seemed questionably low in the context of the database, especially as it became clear that culturing may induce stain inhibitors. This concern led to a new collaboration with RBG, Kew using non-callous material, and our doubts were confirmed when it was re-estimated as 1C = 0Á575 pg (Yokoya et al., 2000). Perhaps all estimates below 0Á125 pg should be doubted until confirmed. Another candidate was Aesculus hippocastanum whose 1C-value was listed as 0Á125 pg (Bennett et al., 1982). This material is rich in tannins and a likely candidate for underestimating its DNA amount (Noirot et al., 2000, 2005). Recent work using flow cytome- try at RBG, Kew, showed that the 1C-value of 0Á125 pg was clearly an underestimate, as the true value is approx. 0Á60 pg (L. Hanson, RBG, Kew, pers. comm.). With 0Á125 pg for A. hippocastanum rejected, only one estimate below 0Á14 pg remains, namely 0Á11 pg for the Green strawberry, Fragaria viridis. Since there is considerable interest in knowing the smallest possible angiosperm genome, checks to establish whether this estimate is robust are now urgently required. What is the minimum C-value for a free-living angiosperm and other free-living organisms? Such comparative approaches can also facilitate broader questions such as: `what is the minimum genome size in angiosperms and other free-living organisms?'. There is a minimum compendium of nuclear genes essential for the life of any organism. This concept was behind Craig Venter's declared intension to synthesize from scratch a minimal bacterial genome (Check, 2002), and a project for a minimal eukaryote genome may eventually follow. Meanwhile we can only speculate on how small the minimum genome is for an angiosperm, and how closely extant species approach the minimum. It is, of course, below the lowest robust C-value for the group, i.e. less than 0Á16 pg established for Arabidopsis thaliana. The presence of six other species with C-values of 0Á15­0Á169 pg in Table 2 strongly supports this conclusion. The estimate(s) of approx. 0Á108 pg for Fragaria viridis may indicate a minimum C-value for extant angiosperms of about 100 Mb, but if so, is it a diploid, or a polyploid with three or more even smaller ancestral genomes? Whilst the robust 1C-value for A. thaliana is 0Á16 pg, this includes >25 % of repeated DNA (Bennett et al., 2003) and analysis of sequenced regions shows that >70 % of coding genes are duplicated (Bowers et al., 2003). Thus, in theory, a minimal genome without duplicated coding genes or rep- etitive DNA should not exceed approx. 50 Mb. Currently, there is no robust 1C estimate below 0Á1 pg for an angio- sperm, but if any of the seven species with C-values TA B L E 2. The 24 lowest angiosperm 1C DNA estimates among data listed in the present Appendix table and the Angiosperm DNA C-values database (release 4.0, January 2003) Taxon 1C (pg) Original reference Arabidopsis thaliana 0.051 Francis et al. (1990) Cardamine amara 0.055 Band SR (pers. comm. 1984) Arabidopsis thaliana 0.073 Leutwiler et al. (1984) Fragaria viridis 0.108 Antonius and Ahokas (1996) Rosa wichuriana 0.125 Bennett and Smith (1991) Aesculus hippocastanum 0.125 Bennett et al. (1982) Arabidopsis thaliana 0.128 Arabidopsis Genome Initiative (2000) Sedum album 0.145 Hart (1991) Arabidopsis thaliana 0.150 Arumaganathan and Earle (1991) Carex nubigera 0.150 Nishikawa et al. (1984) Carex paxii 0.150 Nishikawa et al. (1984) Epilobium palustre 0.150 Band SR (pers. comm. 1984) Hypericum hirsutum 0.150 Hanson, Leitch and Bennett (pers. comm. 2002) Thlaspi alpestre 0.150 Band SR (pers. comm. 1984) Arabidopsis thaliana 0.153 Bennett et al. (2003) Arabidopsis thaliana 0.160 Bennett et al. (2003) Arabidopsis thaliana 0.160 Galbraith et al. (1991) Arabidopsis thaliana 0.165 Galbraith et al. (1991) Arabidopsis thaliana 0.167 Krisai and Greilhuber (1997) Arabidopsis thaliana 0.167 Bennett et al. (2003) Amoreuxia wrightii 0.168 Hanson et al. (2001a) Arabidopsis thaliana 0.170 Galbraith et al. (1991) Arabidopsis thaliana 0.175 Bennett and Smith (1991) Arabidopsis thaliana 0.175 Marie and Brown (1993) Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms 53 between 0Á14­0Á15 pg is a tetraploid, this would indicate a minimum genome size in extant taxa of approx. 75 Mb, or approx. 50 Mb if it is a hexaploid. The comparative approach is usefully extended to include other groups of organisms. Table 3 shows minimum C-value estimates for multicellular organisms in several widely differing groups obtained by genome sequencing or other methods. Such minima for groups as diverse as nematodes, insects, algae and angiosperms range from 59 to 160 Mb. Thus, the minimum C-value known in extant free-living multicellular higher organisms is around 60 Mb. All may be diploidized paleopolyploids (Wendel, 2000), but except for one early and unconfirmed report of a 1C-value of approx. 39 Mb in a most simple multicellular placozoan animal (Ruthmann and Wenderoth, 1975) there is no evi- dence for extant diploid multicellular eukaryotic life forms with only 40­50 Mb. This tantalizing possibility will be an interesting driver for new work to find a first angiosperm whose 1C-value is <100 Mb, or a first free-living multi- cellular plant or animal with a robust 1C-value <50 Mb. PROSPECTS FOR THE NEXT TEN YEARS Apart from better defining the limits of genome size variation, what key developments are targeted, or likely, to occur in angiosperm genome size research in the next decade? The first concerns the expected progress to increase the total number and representation of angiosperms in the C-values database. As noted above, estimating first values for species reached a historic high during recent years (Fig. 1). At least 1700 such values were added in 1997­ 2002, and the total number of species' C-value estimates probably reached around 4300. In 2003 the second Plant Genome Size Workshop set a goal of estimating a further 1 % (i.e. approx. 2500 species) in the next five years, and a similar target is likely for the following quinquennium. If so, there is a reasonable prospect that the number of species with a C-value estimate will reach, or significantly exceed 7500 by 2014. More important than the expected increase in total numbers is the predicted improvement in the spread of new values across taxa, geographical regions and life forms, making the sample more representative of the global angiosperm flora, based on careful targeting to identify and fill knowledge gaps. The next decade should see almost complete representation for families, and a greatly increased representation for genera (especially in monocots), as work focuses increasingly at this taxonomic level. Representation at the generic level is currently approx. 1042 out of an estimated 14 000 genera (7Á4 %) and is targeted to rise to 10 % by 2009, and might reasonably be expected to approach 15 % within a decade. Moreover, this may approach 100 % for monocots, as they are targeted for holistic genomic studies (including C-values) for the global Monocot Checklist Project (Govaerts, 2004). Recent experience shows that identifying a gap and setting a target may still not provoke the work needed to fill it. Positive monitoring of trends in published C-value data may also be required to achieve a significant change in research activity (e.g. as with the level of family representa- tion in angiosperms; Hanson et al., 2003). Thus it will be important to monitor by 2009 whether the gaping chasms in the representation of African, South American and Chinese floras noted previously have yet resulted in a significant rise in first estimates for taxa from those regions. If not, then a major effort will be needed to correct this. The same applies to other groups of plants that have been identified as poorly represented in the Angiosperm DNA C-values database (e.g. halophytes, parasitic species and their hosts and tundra species). Whilst less certain, there is a good prospect that this vital process will occur in the next decade, driven by the Genome Size Initiative (GESI: see Bennett and Leitch, 2005). TA B L E 3. Robust minimum 1C-value estimates for several widely different groups of free-living, multicellular, higher organisms obtained by genome sequencing (*), other best practice techniques, or static cytometry using the fluorochrome DAPI for algae1 Group Species Mb Original reference ANIMALS Nematode Caenorhabditis elegans 100* C. elegans sequencing Consortium (1998) Platyhelminthes (flatworms) Stenostomum brevipharyngium 59 Gregory et al. (2000) Crustacea Scapholeberis kingii (water flea) 157 Beaton (1988) Annelid Dinophilus gyrociliatus (polychaete worm) 59 Soldi et al. (1994) Tardigrades (water bears) Isohypsibius lunulatus 78 Redi and Garagna (1987) Insect Peristenus stygicus 98 TR Gregory (pers. comm.) Arachnid Tetranychus urticae (spider mite) 78 TR Gregory (pers. comm.) Urochordates (tunicates) Oikopleura dioica 72 Seo et al. (2001) PLANTS Chlorophyta (green alga) Caulerpa paspaloides 88 Kapraun (2005) Rhodophyta (red algae) Heydrichia wolkerlingii 69 Kapraun (2005) Phaeophyta (brown algae) Stilophora rhizodes 98 Kapraun (2005) Bryophyte Holomitrium arboreum 167 Voglmayr (2000) Lycophyte Selaginella kraussiana 157 Obermayer et al. (2002) Angiosperm Arabidopsis thaliana 157 Bennett et al. (2003) 1 Theuseofthebase-specificfluorochromeDAPIforestimatingDNAamountsmaybelessreliablethanusingintercalatingfluorochromessuchaspropidium iodide (e.g. Dolezzel et al., 1992). 54 Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms Hitherto, when a question regarding C-value was framed (e.g. is genome size related to weediness?), it was often necessary to estimate C-values for many species before it could be addressed (Bennett et al., 1998). Clearly, the prime aim is to create a sample of C-values that is sufficiently representative for systematic, regional and life form varia- tion as to allow most questions to be answered with confidence using the available dataset, without recourse to further C-value estimations. This goal is likely to be achieved in the next ten years. Thus, the next decade may be the last to see major efforts devoted to estimating first DNA C-values for taxa. Thereafter, new C-value research will probably concentrate on using and under- standing such data, rather than acquiring them. What important questions regarding genome size in angiosperms are likely to be answered in the next decade? Three closely interrelated issues concerning the possible significance of genome size for extinction, conservation and pollution are worth mentioning here. The possibility that a large C-value might correlate with an increased risk and rate of extinction was suggested by Rejmanek (1996) and by Bennett et al. (2000). To test this, Vinogradov (2003) identified 3036 diploid species from the Plant DNA C-values database and compared each one against the United Nations Environmental Programme World Conservation Monitoring Centre (UNEP-WCMC) species database to determine its conservation status (i.e. global concern, local concern or no concern). He noted a striking relationship between genome size and conservation status; species with large genomes appeared to be at greater risk of extinction that those with smaller genomes. Clearly, this was an important finding that now requires independent confirmation, drawn from further independent samples of species in different local regions and environ- ments. Obtaining data for meaningfully large samples of species for such studies will probably be one main driver determining which taxa are targeted for C-value estimates in the future. If so, the next decade offers the prospect of a more definite and detailed understanding of any relation- ships between C-value and/or genome size and the risk of extinction. This, in turn, may have important practical and theoretical implications for conservation models and strategies. A key question is whether a large nuclear DNA amount gives an increased risk of extinction equally in diploid or polyploid taxa? Vinogradov (2003) tested whether ploidy played a role in increasing a species' risk of extinction, concluding that C-value per se was most important. Polyploidy is supposed to confer many advant- ages based on increased gene dosage and diversity, but do such advantages overcome the possible risks of a high C-value? If so, the proportion of polyploids should be higher for species with very high C-values than for those with lower C-values. In a test different from that of Vinogradov (2003), we compared the percentage of polyploids in 3400 extant species with known DNA amount and ploidy level in the Angiosperm DNA C-values database, ranked in order of increasing DNA amount and divided into five groups each containing 680 species. We found the percentage of poly- ploids for species in group 5 with the highest C-values (29Á9 %) was actually lower than for species in group 4 (32Á1 %) (Fig. 4). This confirms Vinogradov's finding that the prime factor determining increased risk of extinc- tion is high C-value, and that polyploidy does not reduce this risk. Other enquiries should test whether the risk of extinction in relation to high C-value or genome size varies for different threats and environments. This should compare variation in internal factors affecting the structure and eco- logy of the genome (e.g. increased ploidy level, and hetero- chromatin distribution), and in external factors (e.g. pollution and increased competition for space, minerals, light, and pollinators). Vilhar (pers. comm., and Vidic et al., 2003) investigated the effect of genome size on plant survival in lead-polluted soils. With increasing lead concentration in the soil the percentage of species with large genomes decreased significantly, suggesting that spe- cies with large genomes were at a selective disadvantage. Similar work on local floras in different areas with various threats is now needed to test whether their results are typical for other pollutants and environments. Understanding which species survive locally is always important, but especially as local loss equals global extinction if a species range is restricted to just that one locality. Such work will increasingly inform local environmental action plans and conservation strategies. Holistic genomics Early interest in plant genome size variation (c. 1950s and 1960s) ranged broadly across many fields including its genetic, developmental, ecological and evolutionary implications. However, after the molecular revolution the field fragmented somewhat as interest in DNA sequences was largely separated from more macro interests in C- values. However, given `complete sequences' for genomes and homoeologous segments, and greater computing 299321 232256 132 0 20 40 60 80 100 1 2 3 4 5 Group %ofspecies FI G . 4. The percentage of diploids (open bars) and polyploids (closed bars) among 3400 species of known DNA amount and ploidy level ranked in order of increasing DNA amount and divided into five groups with 680 species per group. Data taken from the Angiosperm DNA C-values database (release 4.0, January 2003) and the present Appendix. Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms 55 power, this post-genomic age is seeing a strong converg- ence of these interests. Thus, leading scientists who work at comparative sequence levels can also work on questions of genome size and evolution (e.g. Zhang and Wessler, 2004; Bennetzen et al., 2005). This is the age of holistic genomics in which knowledge of variation in genome size and C-value can be seamlessly joined up with information at all other levels to embrace information from sequences to ecology and from evolution to the environment. This power- ful approach should permit or provoke quantum leaps in understanding the significance of extant variation in C-value and genome size, the processes that produce it, the rate at which it occurs, the factors that limit its extent and the advantages and disadvantages that it confers. Together, such understanding will link across biological fields to explain patterns of genome size variation in development, floras, ecological niches and evolution. The next ten years offer many exciting prospects for angiosperm genome size research. Work on DNA amount will remain a key core interest in biological research, but will increasingly become one integrated strand in holistic genomic studies and under- standing, covering its origin(s), mechanisms of change, phenotypic and phenological effects, and its significance for ecological, developmental and environmental issues. LITERATURE CITED Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD et al. 2000. The genome sequence of Drosophila melanogaster. Science 287: 2185­2195. Akpinar N, Bilaloglu R. 1997. Cytological investigations of certain species of Vicia L. Turkish Journal of Botany 21: 197­207. Antonius K, Ahokas H. 1996. Flow cytometric determination of polyploidy level in spontaneous clones of strawberries. Hereditas 124: 285. APG II. 2003. An update of the AngiospermPhylogenyGroup classification for the orders and families of flowering plants. Botanical Journal of the Linnean Society 141: 399­436. Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796­815. Arumuganathan K, Earle ED. 1991. Nuclear DNA content of some important plant species. Plant Molecular Biology Reporter 9: 208­218. Asif MJ, Mak C, Othman RY. 2001. Characterization of indigenous Musa species based on flow cytometric analysis of ploidy and nuclear DNA content. Caryologia 54: 161­168. Ayonoadu UW. 1974. Nuclear DNA variation in Phaseolus. Chromosoma 48: 41­49. Babcock EB. 1947. The genus Crepis. II. Systematic treatment. University of California Publications in Agricultural Science 22: 199­1030. BaranyiM,GreilhuberJ,SwiecickiWK.1996.GenomesizeinwildPisum species. Theoretical and Applied Genetics 93: 717­721. Beaton MJ. 1988. Genome size variation in the Cladocera. M.Sc. thesis, University of Windsor, Windsor, Ontario. Belletti P, Marzachí C, Lanteri S. 1998. Flow cytometric measurement of nuclear DNA content in Capsicum (Solanaceae). Plant Systematics and Evolution 209: 85­91. Bennett MD. 1972. Nuclear DNA content and minimum generation time in herbaceous plants. Proceedings of the Royal Society of London Series B, Biological Sciences 181: 109­135. Bennett MD. 1998. Plant genome values: How much do we know? Proceedings of the National Academy of Sciences of the USA 95: 2011­2016. Bennett MD, Bhandol P, Leitch IJ. 2000. Nuclear DNA amounts in angiosperms and their modern uses ­ 807 new estimates. Annals of Botany 86: 859­909. Bennett MD, Leitch IJ. 1995. Nuclear DNA amounts in angiosperms. Annals of Botany 76: 113­176. Bennett MD, Leitch IJ. 1997. Nuclear DNA amounts in angiosperms--583 new estimates. Annals of Botany 80: 169­196. BennettMD,LeitchIJ.2003.AngiospermDNAC-valuesdatabase(release 4Á0, Jan. 2003). http://www.rbgkew.org.uk/cval/homepage.html Bennett MD, Leitch IJ. 2005. Plant genome size research--a field in focus. Annals of Botany 95: 1­6. Bennett MD, Leitch IJ, Hanson L. 1998. DNA amounts in two samples of angiosperm weeds. Annals of Botany 82: 121­134. Bennett MD, Leitch IJ, Price HJ, Johnston JS. 2003. Comparisons with Caenorhabditis ($100 Mb) and Drosophila ($175 Mb) using flow cytometry show genome size in Arabidopsis to be $157 Mb and thus 25 % larger than the Arabidopsis genome initiative estimate of $125 Mb. Annals of Botany 91: 547­557. Bennett MD, Smith JB. 1976. Nuclear DNA amounts in angiosperms. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 274: 227­274. Bennett MD, Smith JB. 1991. Nuclear DNA amounts in angiosperms. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 334: 309­345. BennettMD,SmithJB,Heslop-HarrisonJS.1982.NuclearDNAamounts in angiosperms. Proceedings of the Royal Society of London Series B, Biological Sciences 216: 179­199. Bennetzen J, Ma J, Devos KM. 2005. Mechanisms of recent genome size variation in flowering plants. Annals of Botany 95: 127­132. Blakesley D, Allen A, Pellny TK, Roberts AV. 2002. Natural and induced polyploidy in Acacia dealbata Link. and Acacia mangium Willd. Annals of Botany 90: 391­398. Blanco A, Simeone R, Resta P, DePace C, Delre V, Caccia R, Mugnozza GTS, Frediani M, Cremonini R, Cionini PG. 1996. Genomic relationships between Dasypyrum villosum (L) Candargy and D. hordeaceum (Cosson et Durieu) Candargy. Genome 39: 83­92. Bork P, Copley R. 2001. The draft sequences ­ filling in the gaps. Nature 409: 818­820. Boscaiu M, Vicente O, Ehrendorfer F. 1999. Chromosome numbers, karyotypesandnuclearDNAcontentsfromperennialpolyploidgroups of Cerastium (Caryophyllaceae). Plant Systematics and Evolution 218: 13­21. Bowers JE, Chapman BA, Rong JK, Paterson AH. 2003. Unravelling angiosperm genome evolution by phylogenetic analysis of chromo- somal duplication events. Nature 422: 433­438. Brandizzi F, Grilli Caiola M. 1996. Quantitative DNA analysis in different Crocus species (Iridaceae) by means of flow cytometry. Giornale Botanico Italiano 130: 643­645. Brenner S. 2000. The end of the beginning. Science 287: 2173­2174. Bukhari YM. 1997. Nuclear DNA amounts in Acacia and Prosopis (Mimosaceae) and their evolutionary implications. Hereditas 126: 45­51. C. elegans Sequencing Consortium. 1998. Genome sequence of the nematode C. elegans: A platform for investigating biology. Science 282: 2012­2018. Cavalier-Smith T. 1985. Eukaryotic gene numbers, non-coding DNA and genome size. In: Cavalier-Smith T, ed. The evolution of genome size. Chichester, UK: John Wiley & Sons Ltd, 69­103. Chaudhuri D, Sen S. 2001. Genotypic diversity in species of Scilla. Cytobios 104: 75­81. Check E. 2002. Venter aims for maximum impact with minimal genome. Nature 420: 350. ChooiWY.1971.VariationinnuclearDNAcontentingenusVicia.Genetics 68: 195­211. Chung J, Lee JH, Arumuganathan K, Graef GL, Specht JE. 1998. Relationships between nuclear DNA content and seed and leaf size in soybean. Theoretical and Applied Genetics 96: 1064­1068. Cremonini R, Funari S, Mazzuca S. 1992. Cytology of Vicia species: nuclear structure, karyological analysis and DNA content. Chromatin 1: 135­146. Devos KM, Gale MD. 1997. Comparative genetics in the grasses. Plant Molecular Biology 35: 3­15. DimitrovaD,GreilhuberJ.2000.KaryotypeandDNAcontentevolutionin ten species of Crepis (Asteraceae) distributed in Bulgaria. Botanical Journal of the Linnean Society 132: 281­297. 56 Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms Dolezzel J, Bartos J. 2005. Plant DNA flow cytometry and estimation of nuclear genome size. Annals of Botany 95: 99­110. Dolezzel J, Dolezzelova M, Novak FJ. 1994. Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminata and M. balbisiana). Biologia Plantarum 36: 351­357. Dolezzel J, Greilhuber J, Lucretti S, Meister A, Lysak MA, Nardi L, Obermayer R. 1998. Plant genomesize estimationby flow cytometry: Inter-laboratory comparison. Annals of Botany 82 (Suppl. A): 17­26. Dolezzel J, Sgorbati S, Lucretti S. 1992. Comparison of three DNA fluoro- chromes for flow cytometric estimation of nuclear DNA content in plants. Physiologia Plantarum 85: 625­631. Emshwiller E. 2002. Ploidy levels among species in the `Oxalis tuberosa Alliance'asinferredbyflowcytometry.AnnalsofBotany89:741­753. Francis DM, Hulbert SH, Michelmore RW. 1990. Genome size and com- plexityoftheobligatefungalpathogen,Bremialactucae.Experimental Mycology 14: 299­309. Frediani M, Sassoli O, Cremonini R. 1992. Nuclear DNA characterization of two species of Vicia ­ Vicia bithynica L. and Vicia narbonensis L. Biologia Plantarum 34: 335­344. Galbraith DW, Harkins KR, Knapp S. 1991. Systemic endopolyploidy in Arabidopsis thaliana. Plant Physiology 96: 985­989. Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E. 1983. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220: 1049­1051. Gammar ZG, Puech S, Zouaghi M. 1999. Flow cytometry DNA assay of Mediterranean lupins. Candollea 54: 45­56. Godelle B, Cartier D, Marie D, Brown SC, Siljakyakovlev S. 1993. Heterochromatin study demonstrating the non-linearity of fluorometry useful for calculating genomic base composition. Cytometry 14: 618­626. Goff SA, Ricke D, Lan TH, Presting G, Wang RL et al. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296: 92­100. Govaerts R. 2004. The Monocot Checklist Project. Taxon 53: 144­146. Graham MJ, Nickell CD, Rayburn AL. 1994. Relationship between genome size and maturity group in soybean. Theoretical and Applied Genetics 88: 429­432. Gregory TR, Hebert PDN, Kolasa J. 2000. Evolutionary implications of the relationship between genome size and body size in flatworms and copepods. Heredity 84: 201­208. Greilhuber J. 1979. Evolutionary changes of DNA and heterochromatin amounts in the Scilla bifolia group (Liliaceae). Plant Systematics and Evolution Suppl. 2: 263­280. Greilhuber J. 1998. Intraspecific variation in genome size: A critical reassessment. Annals of Botany 82 (Suppl. A): 27­35. GreilhuberJ.2005.Intraspecificvariationingenomesizeinangiosperms-- identifying its existence. Annals of Botany 95: 91­98. Greilhuber J, Dolezzel J, Lysak MA, Bennett MD. 2005. The origin, evolution and proposed stabilization of the terms `Genome Size' and `C-Value' to describe nuclear DNA contents. Annals of Botany 95: 255­260. Greilhuber J, Ebert I. 1994. Genome size variation in Pisum sativum. Genome 37: 646­655. Greilhuber J, Ebert I, Lorenz A, Vyskot B. 2000. Origin of facultative heterochromatin in the endosperm of Gagea lutea (Liliaceae). Protoplasma 212: 217­226. Greilhuber J, Obermayer R. 1997. Genome size and maturity group in Glycine max (soybean). Heredity 78: 547­551. Greilhuber J, Speta F. 1985. Geographical variation of genome size at low taxonomic levels in the Scilla bifolia alliance (Hyacinthaceae). Flora 176: 431­438. Greuter W, Barrie FR, Burdet HM, Chaloner WG, Demoulin V, Hawksworth DL, Jrgensen PM, Nicolson DH, Silva PC, PTrehane P, McNeil J. 1994. International code of botanical momenclature (Tokyo Code) adopten by the Fifteenth International Botanical Congress, Yokohama, August-September 1993. Regnum Vegetabile 131. Hanson L, Brown RL, Boyd A, Johnson MAT, Bennett MD. 2003. First nuclear DNA C-values for 28 angiosperm genera. Annals of Botany 91: 1­8. Hanson L, McMahon KA, Johnson MAT, Bennett MD. 2001a. First nuclear DNA C-values for 25 angiosperm families. Annals of Botany 87: 251­258. Hanson L, McMahon KA, Johnson MAT, Bennett MD. 2001b. First nuclear DNA C-values for another 25 angiosperm families. Annals of Botany 88: 851­858. Hardie DC, Gregory TR, Hebert PDN. 2002. From pixels to picograms: A beginners' guide to genome quantification by Feulgen image analysis densitometry. Journal of Histochemistry and Cytochemistry 50: 735­749. Hart H. 1991. Evolution and classification of the European Sedum species (Crassulaceae). Flora Mediterranea 1: 31­61. Hartman TPV, Jones J, Blackhall NW, Power JB, Cocking EC, Davey MR. 2000. Cytogenetics, molecular cytogenetics and genome size in Leucaena (Leguminosae, Mimosideae). In: Guttenberger H, Borzan Z, Schlarbaum SE, Hartman TPV, eds. Cytogenetic studies of forest trees and shrubs--review, present status, and outlook on the future. Zvolen, Slovakia: Arbora Publishers, 57­70. Hosouchi T, Kumekawa N, Tsuruoka H, Kotani H. 2002. Physical map-based sizes of the centromeric regions of Arabidopsis thaliana chromosomes 1, 2, and 3. DNA Research 9: 117­121. Ingle J, Timmis JN, Sinclair J. 1975. Relationship between satellite deoxyribonucleic acid, ribosomal ribonucleic acid gene redundancy, and genome size in plants. Plant Physiology 55: 496­501. Joachimiak A, Kula A, Sliwinska E, Sobieszczanska A. 2001. C-banding and nuclear DNA amount in six Bromus species. Acta Biologica Cracoviensia Series Botanica 43: 105­115. Johnston JS, Bennett MD, Rayburn AL, Galbraith DW, Price HJ. 1999. Reference standards for determination of DNA content of plant nuclei. American Journal of Botany 86: 609­613. Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G, Drabek J, Lopez R, Price HJ. 2005. Evolution of genome size in Brassicaceae. Annals of Botany 95: 229­235. Jussieu AL. 1803. Sur le Petunia, genre nouveau de la famille des plantes solanees. Annals du Museum National d'Histoire Naturelle 2: 214­216. Kaneko T, Kotani H, Nakamura Y, Sato S, Asamizu E, Miyajima N, Tabata S. 1998. Structural analysis of Arabidopsis thaliana chromo- some5. V.Sequencefeaturesofthe regionsof1,381,565bp coveredby twenty one physically assigned P1 and TAC clones. DNA Research 5: 131­145. Kapraun DF. 2005. Nuclear DNA content estimates in multicellular eukaryotic green, red and brown algae: phylogenetic considerations. Annals of Botany 95: 7­44. Knight CA, Ackerly DD. 2002. Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. Ecology Letters 5: 66­76. Koce JD, Vilhar B, Bohanec B, Dermastia M. 2003. Genome size of Adriatic seagrasses. Aquatic Botany 77: 17­25. Ko¨nig C, Ebert I, Greilhuber J. 1987. A DNA cytophotometric and chromosome banding study in Hedera helix (Araliaceae), with reference to differential DNA replication associated with juvenile- adult phase change. Genome 29: 498­503. Krisai R, Greilhuber J. 1997. Cochlearia pyrenaica DC., das Lo¨ffelkraut, in Obero¨stererreich (mit Anmerkungen zur Karyologie und zur Genomgro¨sse. Beitra¨ge zur Naturkunde Obero¨sterreichs 5: 151­160. Laurie DA, Bennett MD. 1985. Nuclear DNA content in the genera Zea and Sorghum ­ Intergeneric, interspecific and intraspecific variation. Heredity 55: 307­313. Lee JH, Yen Y, Arumuganathan K, Baenziger PS. 1997. The absolute DNA content of wheat monosomics at interphase measured by laser-based flow cytometry. Theoretical and Applied Genetics 95: 1300­1304. LeitchIJ,BennettMD.2002a.Thegenome:integratinggenomiccharacters for a holistic approach to understanding plant genomes. In: Baijnath H, Singh Y eds. Rebirth of science in Africa ­ a shared vision for life and environmental sciences. Pretoria: Umdaus Press, 39­50. Leitch IJ, Bennett MD. 2002b. New insights into patterns of nuclear genome size evolution in plants. Current Genomics 3: 551­562. Leitch IJ, Bennett MD. 2004. Genome downsizing in polyploid plants. Biological Journal of the Linnean Society 82: 651­663. Leitch IJ, Hanson L. 2002. DNA C-values in seven families fill phylo- genetic gaps in the basal angiosperms. Botanical Journal of the Linnean Society 140: 175­179. Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms 57 Leitch IJ, Soltis DE, Soltis PS, Bennett MD. 2005. Evolution of DNA amounts across land plants (Embryophyta). Annals of Botany 95: 207­217. Leutwiler LS, Hough-Evans BR, Meyerowitz EM. 1984. The DNA of Arabidopsis thaliana. Molecular & General Genetics 194: 15­23. Lin S, Lee H-C, Chen W-H, Chen C-C, Kao Y-Y, Fu Y-M, Chen Y-H, Lin T-Y. 2001. Nuclear DNA contents of Phalaenopsis sp. and Doritis pulcherrima. Journal of the American Society of Horticultural Science 126: 195­199. Lysák MA, Dolezzel J. 1998. Estimation of nuclear DNA content in Sesleria (Poaceae). Caryologia 52: 123­132. Marie D, Brown SC. 1993. A cytometric exercise in plant DNA histograms, with 2C values for 70 species. Biology of the Cell 78: 41­51. Meyerowitz EM. 1994. Structure and organization of the Arabidopsis thaliana nuclear genome. In: Meyerowitz EM, Somerville CR, eds. Arabidopsis. New York: Cold Spring Harbor Laboratory Press, 21­36. Mishiba KI, Ando T, Mii M, Watanabe H, Kokubun H, Hashimoto G, Marchesi E. 2000. Nuclear DNA content as an index character discriminating taxa in the genus Petunia sensu Jussieu (Solanaceae). Annals of Botany 85: 665­673. Mowforth MAG. 1986. Variation in nuclear DNA amounts in flowering plants: an ecological analysis. Ph.D. thesis, University of Sheffield, Sheffield, UK. Mukherjee S, Sharma AK. 1993a. Cytophotometric DNA estimation in Luzula species. Current Science 65: 987­989. Mukherjee S, Sharma AK. 1993b. In situ nuclear DNA content in perennial fast and slow growing acacias from arid zones. Cytobios 75: 33­36. Mukherjee S, Sharma AK. 1995. In situ nuclear DNA varation in Australian species of Acacia. Cytobios 83: 59­64. Nagl W, Frisch B, Frolich E. 1979. Extra DNA during floral induction. Plant Systematics and Evolution Suppl. 2: 111­118. Nagl W, Jeanjour M, Kling H, Kuhner S, Michels I, Muller T, Stein B. 1983. Genome and chromatin organization in higher plants. Biologisches Zentralblatt 102: 129­148. Nagl W, Treviranus A. 1995. A flow cytometric analysis of the nuclear 2C DNA content in 17 Phaseolus species (53 genotypes). Botanica Acta 108: 403­406. Nishikawa K, Furuta Y, Ishitoba K. 1984. Chromosomal evolution in the genus Carex as viewed from nuclear DNA content, with special reference to its aneuploidy. Japanese Journal of Genetics 59: 465­472. Noirot M, Barre P, Duperray C, Hamon S, De Kochko A. 2005. Investigation on the origins of stoichiometric error in genome size estimation using heat experiments. Consequneces on data inter- pretation. Annals of Botany 95: 111­118. Noirot M, Barre P, Louarn J, Duperray C, Hamon S. 2000. Nucleus- cytosol interactions ­ A source of stoichiometric error in flow cytometric estimation of nuclear DNA content in plants. Annals of Botany 86: 309­316. NSF. 1990. Document 90­80. A long range plan for the multinational coordinated Arabidopsis thaliana genome research project. Washington, DC: National Science Foundation. Obermayer R, Greilhuber J. 1999. Genome size in Chinese soybean accessions ­ stable or variable? Annals of Botany 84: 259­262. Obermayer R, Leitch IJ, Hanson L, Bennett MD. 2002. Nuclear DNA C-values in 30 species double the familial representation in pteridophytes. Annals of Botany 90: 209­217. Obermayer R, Swiecicki WK, Greilhuber J. 1999. Flow cytometric determination of genome size in some old world Lupinus species (Fabaceae). Plant Biology 1: 403­407. Ohri D. 2002. Genome size variation in some tropical hardwoods. Biologia Plantarum 45: 455­457. Ohri D, Singh PS. 2002. Karyotypic and genome size variation in Cajanus cajan (L.) Millsp. (pigeonpea) and some wild relatives. Genetic Resources and Crop Evolution 49: 1­10. Pennisi E. 2000. Ideas fly at gene-finding jamboree. Science 287: 2182­2184. Punina EO, Alexandrova TV. 1992. The chromosome volume and relative DNA content in Caucasian representatives of the genus Paeonia. Botanichesky Zhurnal 77: 16­23. Raina SN, Bisht MS. 1988. DNA amounts and chromatin compactness in Vicia. Genetica 77: 65­77. Raina SN, Rees H. 1983. DNA variation between and within chromosome complements of Vicia species. Heredity 51: 335­346. Rayburn AL, Biradar DP, Bullock DG, Nelson RL, Gourmet C, Wetzel JB. 1997. Nuclear DNA content diversity in Chinese soybean introductions. Annals of Botany 80: 321­325. RayburnAL,PriceHJ,SmithJD,GoldJR.1985.C-bandheterochromatin and DNA content in Zea mays. American Journal of Botany 72: 1610­1617. Redi CA, Garagna S. 1987. Cytochemical evaluation of the nuclear DNA content as a tool for taxonomical studies in eutardigrades. In: Bertolani R, ed. Biology of Tardigrades. Mucchi: Modena, 73­80. Redondo N, Horjales M, Brown S, Villaverde C. 1996. Biometric and cytometric study of nuclear DNA within Saxifraga granulata L. Boletin da Sociedade Broteriana, Séries 2 67: 287­301. Rees H, Walters MR. 1965. Nuclear DNA and the evolution of wheat. Heredity 20: 73­82. Rejmanek M. 1996. A theory of seed plant invasiveness: the first sketch. Biological Conservation 78: 171­181. Rieger R, Michaelis A, Green MM. 1991. Glossary of genetics; classical and molecular, 5th edn. Berlin: Springer-Verlag. Robinson JG. 2004. The natural history of Madagascar. Science 304: 53­53. Rosato M, Chiavarino AM,NaranjoCA, HernandezJC, PoggioL. 1998. Genome size and numerical polymorphism for the B chromosome in races of maize (Zea mays ssp. mays, Poaceae). American Journal of Botany 85: 168­174. Ruthmann A, Wenderoth H. 1975. Der DNA-Gehalt der Zellen bei dem primitiven Metazoon Trichoplax adhaerens F.E. Schulze. Cytobiologie 10: 421­431. Sakamoto K, Akiyama Y, Fukui K, Kamada H, Satoh S. 1998. Characterization: genome sizes and morphology of sex chromosomes in Hemp (Cannabis sativa L.). Cytologia 63: 459­464. Seo HC, Kube M, Edvardsen RB, Jensen MF, Beck A, Spriet E, Gorsky G, Thompson EM, Lehrach H, Reinhardt R, Chourrout D. 2001. Miniature genome in the marine chordate Oikopleura dioica. Science 294: 2506­2506. Shi Y. 1991. Molecular studies of the evolutionary relationships of Brachpodium (Poaceae). Ph.D., University of Leicester, UK. Shi Y, Draper D, Stace C. 1993. Ribosomal DNA variation and its phylogenetic implication in the genus Brachypodium (Poaceae). Plant Systematics and Evolution 188: 125­138. Sirokyy J, Lysák MA, Dolezzel J, Kejnovsky E, Vyskot B. 2001. Heterogeneity of rDNA distribution and genome size in Silene spp. Chromosome Research 9: 387­393. Soldi R, Ramella L, Gambi MC, Sordino P, G. S. 1994. Genome size in polychaetes: relationship with body length and life habit. In: Dauvin J-C, Laubier L, Reish DJ, eds. Actes de la 4ie`me Conférence internationale des Polyche`tes, Museum national de Histoire naturelle, 129­135. Somerville C, Somerville S. 1999. Plant functional genomics. Science 285: 380­383. Swift H. 1950. The constancy of desoxyribose nucleic acid in plant nuclei. Proceedings of the National Academy of Sciences of the USA 36: 643­654. Swift H. 1953. The quantitative aspects of nuclear nucleoproteins. Inter- national Review of Cytology 2: 1­76. Taliaferro CM, Hopkins AA, Henthorn JC, Murphy CD, Edwards RM. 1997. Use of flow cytometry to estimate ploidy level in Cynodon species. International Turfgrass Society Research Journal 8: 385­392. Temsch EM, Greilhuber J. 2000. Genome size variation in Arachis hypogaea and A. monticola re-evaluated. Genome 43: 449­451. Temsch EM, Greilhuber J, Krisai R. 1998. Genome size in Sphagnum (peat moss). Botanica Acta 111: 325­330. Thibault J. 1998. Nuclear DNA amount in pure species and hybrid willows (Salix): a flow cytometric investigation. Canadian Journal of Botany 76: 157­165. Tiersch TR, Chandler RW, Wachtel SS, Elias S. 1989. Reference standards for flow cytometry and application in comparative studies of nuclear DNA content. Cytometry 10: 706­710. 58 Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms Unal F, Callow RS. 1995. Estimation of genome size by Feulgen photometry. Turkish Journal of Botany 19: 523­529. United Nations Environment Programme. 1992. Convention on biological diversity. Nairobi, Kenya: United Nations Environment Programme. Van't Hof J. 1965. Relationships between mitotic cycle duration S period duration and average rate of DNA synthesis in root meristem cells of several plants. Experimental Cell Research 39: 48­58. Vidic T, Greilhuber J, Vilhar B. 2003. Genome size is associated with differential survival of plant species. Abstracts of the Second Plant Genome Size Meeting held at The Royal Botanic Gardens, Kew, September 2003. Vilhar B, Greilhuber J, Koce JD, Temsch EM, Dermastia M. 2001. Plant genome size measurement with DNA image cytometry. Annals of Botany 87: 719­728. VinogradovAE. 2003.SelfishDNA is maladaptive: evidencefromthe plant Red List. Trends in Genetics 19: 609­614. Voglmayr H. 2000. Nuclear DNA amounts in mosses (Musci). Annals of Botany 85: 531­546. Wendel JF. 2000. Genome evolution in polyploids. Plant Molecular Biology 42: 225­249. Wendel JF, Cronn RC, Johnston JS, Price HJ. 2002. Feast and famine in plant genomes. Genetica 115: 37­47. White J, Rees H. 1985. The chromosome cytology of a somatic hybrid Petunia. Heredity 55: 53­59. White J, Rees H. 1987. Chromosome weights and measures in Petunia. Heredity 58: 139­143. Wijsman HJW. 1990. On the interrelationships of certain species of Petunia. 6. New names for the species of Calibrachoa formerly included into Petunia (Solanaceae). Acta Botanica Neerlandica 39: 101­102. Winkler H. 1920. Verbreitung und Ursache der Parthenogenese im Pflanzen- und Tierreiche. Jena: Fischer. Yamamoto M-T, Mitchelson A, Tudor M, Ohare K, Davies JA, Miklos GLG. 1990. Molecular and cytogenetic analysis of the hetero- chromatin-euchromatinjunctionregionoftheDrosophilamelanogaster X-chromosomeusing cloned DNA sequences. Genetics 125: 821­832. YokoyaK,RobertsAV,MottleyJ,LewisR,BrandhamPE.2000.Nuclear DNA amounts in roses. Annals of Botany 85: 557­562. YuJ,HuSN,WangJ,WongGKS,LiSGetal.2002.Adraftsequenceofthe rice genome (Oryza sativa L. ssp. indica). Science 296: 79­92. Zhang X, Wessler SR. 2004. Genome-wide comparative analysis of the transposable elements in the related species Arabidopsis thaliana and Brassica oleracea. Proceedings of the National Academy of Sciences USA 101: 5589­5594. Zonneveld BJM. 2001. Nuclear DNA contents of all species of Helleborus (Ranunculaceae)discriminatebetweenspeciesandsectionaldivisions. Plant Systematics and Evolution 229: 125­130. Zonneveld BJM. 2002. Genome size analysis of selected species of Aloe (Aloaceae) reveals the most primitive species and results in some new combinations. Bradleya 20: 5­12. Zonneveld BJM, Van Iren F. 2000. Flow cytometric analysis of DNA content in Hosta reveals ploidy chimeras. Euphytica 111: 105­110. Zonneveld BJM, Van Iren F. 2001. Genome size and pollen viability as taxonomic criteria: Application to the genus Hosta. Plant Biology 3: 176­185. APPENDIX Notes to the Appendix The Appendix appears on pp. 59­88. Named references in the following notes are given above in `Literature Cited', while numbered references are given in `Original references for DNA values' below. (a) The original references for species DNA amounts in the Appendix are given in a numbered list following the Appendix table. Reference numbers follow on sequen- tially from those given in `Notes to Table 8' by Bennett and Smith (1976, references 1­54) `Notes to Table 1' by Bennett et al. (1982, references 55­107), Bennett and Smith (1991, references 108­163), `Notes to the Appendix' by Bennett and Leitch (1995, references 164­269), `Notes to the Appendix' by Bennett and Leitch (1997, references 270­ 306), and `Notes to the Appendix' by Bennett et al. (2000, references 307­377). (b1) Bennett and Smith (1991) gave absolute 4C DNA values for 11 angiosperm species recommended for use as calibration standards to estimate DNA amounts in other species. These species and their 4C DNA amounts are given in Table 4. If a species was calibrated in direct com- parison with any one or more of the 11 standard species then the standard species used is identified in column 15 of the Appendix by the appropriate Key letter given above (e.g. F is Hordeum vulgare, etc.). If a species was first calibrated using a standard species listed above, then the original standard species is identified first and the intermediate stand- ard species used to calibrate those species listed with it is also denoted by its number in column 1 of the Appendix. For instance, standard G (P. sativum) was used to calibrate Capsicum annuum `Doux Long des Landes' (species 212 h in the Appendix), which was then used as an intermediate standard to estimate other Capsicum species given by Belletti et al. (1998, Ref. 434). The calibration standard for such Capsicum species is therefore given as G-212h. (b2) In Refs 444 (Wendel et al., 2002) and 447 (Lin et al., 2001) Pisum sativum `Minerva Maple' was used as the calibration standard but they assumed a 4C DNA value of 19Á12 pg (Johnston et al., 1999) instead of 19Á46 pg, which is the value given in Bennett and Smith (1976) and listed in Table 4. The 4C-value of P. sativum `Minerva Maple' used in Refs 444 and 447 was estimated using Hordeum vulgare `Sultan' as the calibration standard with an assumed 4C DNA content of 22Á24 pg (Johnston et al., 1999). (c) In several references listed in `Original references for DNA values' the authors used a cultivar of a standard species different from that listed in Table 4, these are listed in Table 5. In some cases the C-value of the cultivar used was assumed to be the same as that of the cultivar given in Table 4. Evidence of intraspecific variation in a number of species suggests that such assumptions may sometimes be incorrect. In other cases the C-value of the cultivar was determined by the authors and was different from that of the standard species listed in Table 4. For example Refs 386, TA B L E 4. The eleven angiosperm species recommended for use as calibration standards (see Notes to the Appendix, b1) Key Standard species 4C DNA amount (pg) A Triticum aestivum `Chinese Spring' 69.27 B Allium cepa `Ailsa Craig' 67.00 C Vicia faba PBI, inbred line 6 53.31 D Anemone virginiana line AV 200 35.67 E Secale cereale `Petkus Spring' 33.14 F Hordeum vulgare `Sultan' 22.24 G Pisum sativum `Minerva Maple' 19.46 H Zea mays `W64A' 10.93 I Senecio vulgaris (PBI population) 6.33 J Vigna radiata `Berken' 2.12 K Oryza sativa `IR36' 2.02 Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms 59 397, and 453 used the cultivar `Express Long' of Pisum sativum with a 4C DNA value of 16Á74 pg. This value is lower than the 4C DNA amount of the cultivar `Minerva Maple' of 19Á46 pg given in Table 4. (d) In References 407, 408 and 457 the cultivar of the calibration standard was not given. Refs 407 and 408 used Vicia faba as a calibration standard, whereas Ref. 457 used Allium cepa. In Ref. 408 Cremonini et al. (1992) assumed the same 4C-value for Vicia faba as for PBI line 6 (i.e. 53Á3 pg) given in Table 4. If this species exhibits intra- specific variation then such assumptions may be incorrect. (e) In a number of original references the authors used a plant species not listed in Table 4 as a calibration standard. These are listed in Table 6. (f ) Several papers listed in `Original references for DNA values' used animal cells as the calibration standards. Thus Refs 387, 417, 426, 442, 456, 463 used chicken erythrocytes with an assumed 4C DNA value of 4Á66 pg (Galbraith et al., 1983). The calibration standard is abbreviated to Gallus in column 15 of the Appendix. In Ref. 438 blood cells from the catfish Ictalurus punctatus were used as a standard with an assumed 4C-value of 4Á00 pg (Tiersch et al., 1989), this is abbreviated to Ictal. in the Appendix. In Ref. 438 domestic swine (Sus scrofa) erythrocytes were used as a standard with an assumed 4C-value of 11Á34 pg (Taliaferro et al., 1997), and is abbreviated to Sus in the Appendix. Human cells with an assumed 4C DNA amount of 14Á00 pg (Tiersch et al., 1989) were used as calibration standards in Refs 384, 428 and 419 (leucocytes, Ref. 384, 428; lymphocytes, Ref. 419) and the abbreviation of Homo is used in the Appendix. Finally, Drosophila melanogaster with an assumed 1C DNA amount of 180 Mb (Adams et al., 2000) and Caenorhabditis elegans with a 1C DNA amount of 100Á25 Mb, based on complete genome sequencing (see C. elegans Sequencing Consortium, 1998 and http://wormbase.org), were used as calibration standards for Ref. 461, and the abbreviation of Dros. and Caeno. respectively are used. If a plant species was calibrated using an animal species and then subsequently used as the calibration species for other plants, then the animal species is identified first, and the intermediate plant species is identified by its entry number given in column 1 of the Appendix. Thus Mishiba et al. (2000, Ref. 387) used Gallus with an assumed 4C DNA amount of 4Á66 pg (Galbraith et al., 1983) to calibrate Hordeum vulgare `New Golden' (species 398p in Appendix), this was then used as the calibration standard to estimate DNA C-values of Petunia and Calibrachoa species given by Mishiba et al. (2000). The calibration standard for these Petunia and Calibrachoa species is given as Gallus-398p. (g) When a new estimate (or estimates) is given for a species or subspecies already listed by Bennett and Smith (1976, 1991), Bennett et al. (1982, 2000) or Bennett and Leitch (1995, 1997), the estimate is given a number and a lower case letter in column 1 of the Appendix. An `a' implies that the value is preferred to any estimate for that species listed previously by the first author. Where several estimates are available for the same species, the `a' value would automatically be chosen in any arithmetical or statistical calculations. In this context, single estimates for species and `a' values are referred to as `prime entries'. (h) Intraspecific variation in nuclear DNA amount is claimed to occur in this species. Consequently the values given in the Appendix should not be assumed to be correct for all accessions of the species. Where several C-values are listed for a single species with the same ploidy level or chromosome number within a taxon, then only the minimum and maximum values reported from a single reference are listed in the Appendix. (i) A range of DNA amounts was reported for this species in the reference cited in column 13 of the Appendix. Intra- specific variation was not claimed to occur, so the nature of this variation is unclear. Where estimates differed by more than 10 % the minimum and maximum values are given for the same ploidy level or chromosome number in the Appendix, otherwise only the highest value is given. (j) According to the International Code of Botanical Nomenclature (Greuter et al., 1994), the names of plant families must end in -aceae. However, eight plant families are exceptions in that each has two alternative names, both of TA B L E 5. Cultivars of standard species used that differ from those listed in Table 4 Original reference number Plant calibration standard used Assumed 4C DNA amount and reference (pg) Allium cepa 413 `Fruuhstamm' 67.0 (reference not given) 409 `Kantar topu' 67.0 (Van't Hof, 1965; Bennett and Smith, 1976) 435, 443, 449, 454, 455 `Nasik Red' 67.0 (Van't Hof, 1965) 427 `Stuttgarter Reisen' 67.0 (Bennett and Smith, 1976) 388, 411, 420, 422 var. aggregata ­ (amount and reference not given) Hordeum vulgare 417 `Stark' 21.36 (reference not given) 423 strain NE 86954 20.48 (Lee et al., 1997) Oryza sativa 424 type japonica 2.20 (Bennett and Smith, 1991) Pisum sativum 386, 397, 453, `Express Long' 16.74 (Marie and Brown, 1993) 393, 394, 395, 396, 429, 458 `Kleine Rheinla¨nderin' 17.68 (Greilhuber and Ebert, 1994) 434 `Lincoln' 18.14 (Dolezzel et al., 1992) 418 ssp. sativum convar. sativum var. ponderosum `Viktoria' 18.18 (Dolezzel et al., 1998) Secale cereale 418 ssp. cereale 32.38 (Dolezzel et al., 1998) 394 `Dankovske' 31.16 (Dolezzel et al., 1998) Vicia faba 418 ssp. minor var. minor subvar. rigida `Tinova' 54.00 (Dolezzel et al., 1998) 405 `Aquadulce' 53.31 (pers. comm. 2002) 430 `Superguadulce' 53.30 (Bennett and Smith, 1976) Zea mays 391 `CE-777' 10.86 (Lysák and Dolezzel, 1998) 437 `C-777' 10.86 (Lysák and Dolezzel, 1998) 382 Va35 10.93 (Bennett and Leitch, 1995) 60 Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms which are correct under the Botanical Code. One is a standard name, ending in -aceae, the other is an exception, sanctioned by long usage. These and their alternatives are the follow- ing: Palmae (Arecaceae), Gramineae (Poaceae), Cruciferae (Brassicaceae), Leguminosae (Fabaceae), Guttiferae (Clusiaceae), Umbelliferae (Apiaceae), Labiatae (Lamiaceae) and Compositae (Asteraceae). To be con- sistent with previous DNA lists (Bennett and Smith, 1976, 1991; Bennett et al., 1982, 2000; Bennett and Leitch, 1995, 1997) the `non-standard' plant names are retained in the present work. (k) Recent cladistic analysis using both molecular and non-molecular phylogenetic data has resulted in a revised classification of families by the Angiosperm Phylogeny Group (APG) (APG II, 2003). Familial names used in the APG classification are followed in the Appendix. Thus, although Zonneveld (2002, Ref. 440) placed Aloe in Aloeaceae, recent molecular and non-molecular phylo- genetic data recognizes that this family is embedded within the newly circumscribed Xanthorrhoeaceae (APG II, 2003) so Xanthorrhoeaceae is given in the Appendix. Similarly, the APG II (2003) now recognizes that Hostaceae is embedded within the Asparagaceae, so Hosta, which was placed in Hostaceae in Ref. 384 (Zonneveld and Van Iren, 2000), is listed under Asparagaceae in the Appendix. (l) The authority for this species is either unknown or unclear to the present authors. (m) Whether or not voucher specimens exist for this species is unknown to the present authors. (n) The chromosome number of this species is either unknown or unclear to the present authors. (o) The chromosome count for this species was taken from the literature and not determined by the authors of the reference cited. (p) The ploidy level of this species is either uncertain or unclear to the present authors. (q) The life cycle type of this species is either unknown or unclear to the present authors. (r) The method used to measure the DNA amount is unclear. (s) The factor of 1 pg = 980 Mbp was used to convert picograms to Mbp (Cavalier-Smith, 1985; Bennett et al., 2000). (t) As a rule, replicated diplophase nuclei contain a 4C DNA amount producing two unreplicated 2C nuclei by mitotic division and four 1C gametic nuclei after meiosis (irrespective of ploidy level). This convention applies well to polyploid taxa with diploidized meiotic chromosome pairing which produce functional balanced polyhaploid gametes with 1C DNA amounts at meiosis. Thus 4C esti- mates were automatically divided by 4 to generate 1C- values given for all taxa of even ploidy level listed in the Appendix. However the resulting `1C' data are not biologi- cally meaningful for taxa with odd ploidies. Consequently the Appendix gives only 2C- and 4C-values for such taxa. (u) There is no obvious basic number for the genus Luzula due to the presence of holocentric chromosomes. It is therefore impossible to allocate Luzula species TA B L E 6. Plant species used as calibration standards but not listed in Table 4 Original reference number Plant calibration standard used Assumed 4C DNA amount and reference (pg) Abbreviation used in column 15 of Appendix 383 Agave americana 31.80 (Zonneveld and Van Iren, 2001) Agave Arabidopsis thaliana 389 `Columbia' ­ (amount and reference not given) Arab. 414 `Columbia' 0.53 (Kaneko et al., 1998) '' 427 Cerastium eriophorum 5.20 (Boscaiu et al., 1999) Cerastium Glycine max 393 `Ceresia' 4.54 (Greilhuber and Obermayer, 1997) Glycine 429 `Ceresia' 4.51 (Obermayer and Greilhuber, 1999) '' 421 var. Palmetto 5.00 (Dolezzel et al., 1994) '' 432 `Burlison' 5.56 (Graham et al., 1994) '' 402 `Polanka' 5.00 (Dolezzel et al., 1994) '' Lycopersicon esculentum 380, 382, 465 `Gardener's Delight' 4.00 (Obermayer et al., 2002) Lycopers. 437 `Stukické' 3.92 (Dolezzel et al., 1992) '' 385 `Montfavet' 4.02 (Marie and Brown, 1993) '' Nicotiana tabacum 427 `Petit Havana SR1' 18.00 (Bennett and Leitch, 1995) Nicot. 417 `Samsun' 18.15 (reference not given) '' Petunia hybrida 390, 410, 433, 452 `PxPC6' 5.70 (Godelle et al., 1993; Marie and Brown, 1993) Petunia 390 `Hit Parade Blau' R 5.70 (Marie and Brown, 1993) '' 401 No cultivar given 5.70 (Marie and Brown, 1993) '' Rhaphanus stativus 404 `Saxa' 2.20 (Dolezzel et al., 1992) Rhaphanus Sorghum bicolor 439 Line TX623 3.52 Price and Levin (pers. comm.) Sorghum 462 No cultivar given 3.20 (Bennett and Smith, 1991) '' 406 Vicia narbonensis 29.10 (Frediani et al., 1992) Vicia narb. Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms 61 with high chromosome numbers to any ploidy level with certainty. (v) Unal and Callow (1995, Ref. 412) obtained a regression of the nuclear fluorescence of Allium cepa (4C = 67Á0 pg), Crepis capillaris (4C = 9Á6 pg), Hordeum vulgare (4C = 22Á2 pg), Pisum sativum (4C = 20Á2 pg), Secale cereale (4C = 33Á2 pg) and Vicia faba (4C = 47Á9 pg) versus nuclear DNA content, and used this to estimate the DNA C-values of 13 Lathryus species. However, it is noted that the 4C-values for P. sativum, and Vicia faba are non-standard values compared with those given for these species in footnote (b1) above. (w) The standard species used to convert arbitrary units into absolute DNA amounts is unclear to the present authors. (x) The DNA value given for this species in the original reference differs considerably (i.e. >100 %) from that given in other original references cited in previous compiled lists of DNA amounts (i.e. Bennett and Smith, 1976, 1991; Bennett et al., 1982, 2000; Bennett and Leitch, 1995, 1997). The reason(s) for this is unknown. This C-value should therefore be used with caution until the question is resolved. (y) The specific status of the material available for study is unclear. The data are included since information on DNA amounts for this genus is relatively sparse, so an indication of genome size in the genus may be useful. (z) Zonneveld (2001, Ref. 383) gave C-values for 16 hybrid cultivars which fall within the range that he reported for Helleborus species listed in the Appendix. Our compiled lists have usually been restricted to C-values for species. Following this practice, C-values for Helleborus hybrids were not included in the present Appendix. (aa) Zonneveld and Van Iren (2000, Ref. 384) gave DNA amounts for 94 accessions of Hosta which were recognised as 23 different species. Their table 1 gives a DNA amount for each accession together with a mean value for each recognised species. Only the later value is given in the present Appendix. They also included C-values for 16 Hosta cultivars (in their table 3). These were once recognized as species, but following pollen viability tests Zonneveld and Van Iren (2000) concluded they were hybrids. Our compiled lists have usually been restricted to C-values for species. Accordingly, C-values for Hosta hybrids were not included in the present Appendix. (ab) Zonneveld and Van Iren (2000, Ref. 384) and Zonneveld (2002, Ref. 440) used male human leucocytes (2C = 7Á0 pg; Tiersch et al., 1989) as their primary standard to estimate the DNA amount of three Agave species, namely: (i) Agave stricta (ii) A. americana and (iii) A. sisalana. A. americana was then used as internal calibration standard for most Hosta (Ref. 384) and Aloe (Ref. 440) taxa. However, in a few cases where the DNA content of Hosta or Aloe coincided with that of A. americana, one of the other two Agave species was used as the internal standard. As neither reference identified which Agave species was used, the calibration standard in column 15 of the present Appendix is given as Agave sp. (ac) Thibault (1998, Ref. 385) claimed intraspecific variation ranging from 6 to 11 % in the Salix species he studied, but only a mean DNA C-value for each species was given in his table 3. It is these values that are listed in the present Appendix. Thibault (loc. cit.) also included C-values for five hybrids. Our compiled lists have usually been restricted to C-values for species, thus C-values for Salix hybrids are not included in the Appendix. In addition, Thibault (1998, Ref. 385) listed a C-value for `S. triandra?' but concluded its identity was `hard to specify'. Consequently, this taxon was not included in the Appendix. (ad) Thibault (1998, Ref. 385) used DNA C-values to predict the ploidy level of each Salix species given in his table 3, assuming direct proportionality. Moreover, their chromosome numbers were not counted by him, but derived by him assuming a constant basic chromosome number of n = 19 for the genus. These predictions are entered in columns 6 and 7 of the Appendix. (ae) Some taxa once included in Petunia are now included in Calibrachoa. The taxonomy for most Petunia species listed in Mishiba et al. (2000, Ref. 387) follows that of Wijsman (1990) who split the genus Petunia sensu Jussieu (1803) into two; Petunia sensu Wijsman and Calibrachoa. However, five species listed in Mishiba et al. (2000) were not reclassified by Wijsman and so they were listed under the generic name of Petunia sensu Jussieu in Mishiba et al. (2000) although they `were regarded as Calibrachoa' (see their table 3). By following the taxonomy of Petunia sensu Wijsman, several species originally listed under the genus Petunia, now belong to Calibrachoa (e.g. parviflora was listed in the genus Petunia by White and Rees, 1985, 1987) and this generic name was used in the list of Bennett and Leitch (1995). Yet Mishiba et al. (2000) assigned this species to Calibrachoa. To avoid confusion readers looking under Petunia are referred to Calibrachoa in the Appendix. (af ) Joachimiak et al. (2001, Ref. 391) reported chromo- some numbers and C-values for six Bromus species. Chromosome numbers varied considerably in roots of three species, but variation in C-values was `virtually absent within leaf mesophyll cells'. The C-values given by Joachimiak et al. (2001) were obtained using leaf mesophyll cells and are listed in the Appendix. (ag) The study by Rosato et al. (1998, Ref. 392) was primarily concerned with polymorphism in Zea mays ssp. mays races with B-chromosomes, but gave C-values only for plants lacking B-chromosomes. Thus, they listed DNA amounts for 17 populations which differed by 36 % (2C = 5Á008­6Á757 pg) in plants with 2n = 20. Similar intraspecific variation in this species was reported previously (Laurie and Bennett, 1985; Rayburn et al., 1985). Mean DNA amounts for only the populations with the largest and smallest C-values for A-chromosomes, are listed in the Appendix. (ah) Dimitrova and Greilhuber (2000, Ref. 394) reported significant intraspecific variation in Crepis biennis (P < 0Á05) and C. sancta (P < 0Á01), some of which had variable numbers of B-chromosomes. As only means were given for material with 0­2 B-chromosomes, it was impossible to give values (presumably the largest) for the 2B comple- ment. Consequently, the Appendix just lists the smallest and largest C-values for accessions without B-chromosomes. 62 Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms (ai) Dimitrova and Greilhuber (2000, Ref. 394) reported significant (P < 0Á001) intraspecific variation of 11 % for Crepis pulchra. They suggested that the two accessions with the higher C-values may belong to sub- species turkestanica. This is not recognized in the Bulgarian flora (where these accessions were collected), but was described by Babcock (1947). In the Appendix the higher C-values listed for this species (entry numbers 305c and e) may thus correspond to C. pulchra ssp. turkestanica. (aj) Temsch and Greilhuber (2000, Ref. 395) estimated C-values in 11 accessions of Arachis hypogaea using both Feulgen microdensitometry and flow cytometry. C-values for different accessions showed great stability, so they calculated a mean C-value for each method in the `Results and Discussion' of their paper. Only these mean values are listed in the Appendix. (ak) Previous estimates for Vicia melanops (2n = 10) (e.g. Chooi, 1971; Raina and Rees, 1983; Raina and Bisht, 1988) all report a 4C-value of approx. 40 pg, which is much higher than the value of 27Á6 pg given in Cremonini et al. (1992, Ref. 408, entry number 780d). Thus, this estimate should be viewed with caution until confirmed independently. (al) Akpinar and Bilaloglu (1997, Ref. 409) gave a 2C-value of 13Á1 pg for Vicia cracca ssp. cracca (with 2n = 2x = 14; their original count). However, six previous reports for V. cracca listed in the database (Bennett and Leitch, 2003) gave similar 2C-values (from 10 to 13 pg), but for 2n = 4x = 28. The cause of this discrepancy is unknown, thus the estimate by Akpinar and Bilaloglu (loc. cit.) should be viewed with caution until confirmed independently. (am) Sakamoto et al. (1998, Ref. 414) estimated the C-value of Cannabis sativa using Arabidopsis thaliana `Columbia' (1C = 130 Mb, Kaneko et al., 1998) as the calibration standard. However, the 1C-value assumed for A. thaliana was low compared with its recently confirmed estimate of 157 Mb (Bennett et al., 2003). If 157 Mb is assumed for A. thaliana, then the 1C-value for C. sativa would be 988 Mb = 1Á01 pg (female) and 1016 Mb = 1Á04 pg (male). (an) Gammar et al. (1999, Ref. 416) gave DNA amounts for eight Lupinus species in arbitrary units (a.u.) listed as Mn(x) values in their Figs. 1­4. Bennett and Smith (1976) gave the 4C DNA amount of L. luteus as 4Á0 pg (allowing for recalibration of Senecio vulgaris from 5Á88 pg to 6Á33 pg, see Bennett and Smith, 1991). Gammar et al. (loc. cit.) gave Mn(x) values for three L. luteus populations as 60Á4, 58Á4, and 63Á8 in figure 1A, noting they were not statistically different. The mean of these three values was calculated to be 60Á86 a.u. To convert the Mn(x) values for each Lupinus species into absolute DNA amounts, they were multiplied by a conversion factor of 0Á07 (i.e. 4Á0 pg , 60Á86 a.u.). In some Lupinus species more than one population was studied, and several Mn(x) values were listed. If these did not differ significantly, the average Mn(x) value was calcul- ated and converted into absolute DNA amounts. However, chromosome counts of 2n = 38, 42 and 44 were reported in L. angustifolius, so variation in Mn(x) may correspond to different cytotypes. Some absolute DNA amounts calculated for Gammar et al. (loc. cit) do differ greatly from those previously reported for the same species (e.g. L. pilosus, 4C = 4Á9 pg, is almost double the value of 2Á5 pg given by Obermayer et al., 1999). Similarly, the 4C-value of 3Á1 pg calculated for L. angustifolius with 2n = 38, 42, or 44 is similar to the estimate (4C = 3Á7 pg) by Barlow (pers. comm., listed in Bennett et al., 1982), yet the latter was for material with 2n = 26. Data from Gammer et al. give a useful approxi- mation of C-values in the five species not previously listed, but should be treated with caution unless confirmed independently. (ao) Brandizzi and Grilli Caiola (1996, Ref. 419) gave 2n = 18 for Crocus biflorus in their table 1, but 2n = 8 in the first paragraph of their text. They also stated in their final paragraph: `However, C. biflorus and C. etruscus, having half the chromosome number with respect to C. thomasii and C. cartwrightianus . . . ..' As C. thomasii and C. cartwrightianus were both recorded with 2n = 16 by Brandizzi and Grilli Ciola (1996), we conclude that C. biflorus had 2n = 8, and so this number is entered in the Appendix. (ap) The 4C DNA amounts reported by Mukerjee and Sharma (1993a, Ref. 420) for Luzula nivea and L. luzuloides are over 50 % larger than those reported by Barlow (pers. comm. 1976; reference 36 in Bennett and Smith, 1976). The chromosome numbers for each species were the same, so the cause of the discrepancy is unknown. How- ever, Mukerjee and Sharma (1993a) used a single wave- length method, which may suffer from distributional error (Greilhuber, 2005, this volume). Thus, estimates for Luzula in Mukerjee and Sharma (1993a) should be viewed with caution until confirmed independently for these species. (aq) Asif et al. (2001, Ref. 421) estimated DNA amounts in 14 genotypes of Musa acuminata. Genotype BC3 (belonging to the separate subspecies truncata) had the highest DNA amount and its C-value was shown to be significantly different (P < 0Á01) from the other thirteen genotypes. Only the DNA amount of genotype BC3, corre- sponding to M. acuminata ssp. truncata, and the highest DNA amount out of the 13 other genotypes of M. acuminata are entered in the Appendix. (ar) Chaudhuri and Sen (2001, Ref. 422) examined two Scilla indica cytotypes (entry numbers 710b and c) which differed considerably in both DNA amount and karyotype structure, although both had 2n = 30. The differences may reflect problems with taxonomy. Studies by Greilhuber and colleagues (Greilhuber, 1979; Greilhuber and Speta, 1985) have shown that large intraspecific differences in C-values in other Scilla species (e.g. S. bifolia) reduce to a level hardly more than methodological error following taxonomic splitting. (as) Chung et al. (1998, Ref. 423) estimated C-values in 12 soybean (Glycine max) strains varying in seed size. They reported statistically significant differences of 4Á6 % in the 2C-values between strains. Only the smallest and largest C-values are entered in the Appendix. Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms 63 (at) Hartman et al. (2000, Ref. 425) estimated C-values in 22 Leucaena species using flow cytometry. Three species (Pisum sativum 4C = 17Á6 pg, Oryza sativa 4C = 1Á8 pg and Vicia faba 4C = 53Á0 pg) were used as calibration standards at various times, but unfortunately the authors did not state which standard(s) was compared with which Leucaena species. (au) Boscaiu et al. (1999, Ref. 427) referred to plants of Cerastium with 2n = 36 as diploids in contrast with various other authors who consider them as tetraploids. The assumption was based on Boscaiu et al.'s observa- tions that, while the base chromosome number in Cerastium may be x = 9, no Cerastium species is known with 2n = 18. (av) The C-values reported for Hedera helix by Obermayer and Greilhuber (1999, Ref. 429) agree well with previous reports by Ko¨nig et al. (1987) of 2C = 3Á0 pg, but are only about one third the value reported by Marie and Brown (1993) of 2C = 8Á2 pg, which is unsupported. (aw) Blanco et al. (1996, Ref. 431) gave DNA amounts for Dasypyrum hordaceum and D. villosum in arbitrary units (a.u.), listed as mean values in their fig. 3. The value for D. hordaceum was converted into an absolute DNA amount by multiplying the mean value of 381Á7 a.u. by a conversion factor of 0Á11. This conversion factor was obtained as the ratio of the 4C estimate for Dasypyrum villosum (listed as the synonym Haynaldia villosa) reported by Bennett (1972) as 21Á4 pg, and the estimate of 193Á7 a.u. reported by Blanco et al. (1996). (ax) Rayburn et al. (1997, Ref. 432) estimated C-values in 90 accessions of Glycine max. Accessions showed a 12 % variation in DNA amount and these differences were statistically significant. Only the smallest and largest C-values are listed in the Appendix. (ay) Comparing C-values given by Belletti et al. (1998, Ref. 434) with those previously published showed DNA amounts for Capsicum baccatum, C. chinese, C. eximium, C. frutescens and C. pubescens were around one third greater than those of Owens (pers. comm.) listed in Bennett and Smith (1976). Belletti et al. (1998) suggested that the cause of the discrepancy could be that Owens used Allium cepa as the calibration standard, whose 2C-value of 33Á5 pg differs considerably from those reported in Capsicum species studied. (az) Širokyy et al. (2001, Ref. 437) investigated C-values in four Silene species, including S. latifolia, which has previously been listed by Bennett and Leitch (1995) under its synonym Melandrium album. (ba) Taliaferro et al. (1997, Ref. 438) gave DNA C-values for 18 accessions of Cynodon corresponding to two species: C. transvaalensis (2n = 2x = 18), and C. dactylon var. dactylon (2n = 4x = 36 and 2n = 6x = 54). Only small differences in DNA amounts were noted between five diploid and five tetraploid accessions, and a mean 2C-value for each ploidy level was also given in table 2 of their paper. This mean value is listed in the Appendix. However, the three hexaploid accessions examined comprised one accession of C. dactylon var. dactylon and two hybrids. Thus, only the C-value estimate for hexaploid C. dactylon var. dactylon is entered in the Appendix, rather than the mean for the three hexaploid accessions given in table 2 of Taliaferro et al. (1997). (bb) Blakesley et al. (2002, Ref. 441) examined seven populations of Acacia dealbata and four of A. mangium to determine ploidy and DNA amount. In A. dealbata, they identified naturally occurring diploid, triploid and tetraploid genotypes. Chromosome numbers were counted in only one diploid and one tetraploid genotype, and C-values for only these populations are given in the Appendix. In naturally occurring A. mangium only diploid populations were found, and the C-value for the only population whose chromosome number was deter- mined is given in the Appendix. C-values for colchicine- induced tetraploid genotypes of A. mangium are not included. The 2C-value for diploid A. dealbata (1Á7 pg) is similar to that reported by Bukhari (1997) as 2C = 1Á6 pg. In contrast the 2C-value (2Á9 pg) reported by Mukherjee and Sharma (1993b) is nearly twice that of Blakesley et al. (2002). Perhaps this discrepancy reflects the use of Allium cepa (2C = 33Á5 pg), whose genome size is over an order of magnitude greater than that of Acacia, as a calibration standard by Mukherjee and Sharma (1993b). Similar discrepancies were noted between DNA estimates for A. mangium reported by Blakesley et al. (loc. cit.) of 2C = 1Á3 pg, and those by Mukherjee and Sharma (1995) of 2C = 2Á3 pg. (bc) Ohri and Singh (2002, Ref. 443) listed C-values for 20 wild relatives of cultivated pigeon pea (Cajanus cajan). However, C-values for 14 of these species had already been communicated to MD Bennett in 1996 and listed in the Appendix of Bennett and Leitch (1997) under Original reference number 303. To avoid duplication of data in the database, only C-values for six species not listed previously are included in the Appendix. (bd) Wendel et al. (2002, Ref. 444) listed DNA amounts for 13 species in the tribe Gossypieae. However, C-values for three of these species had already been communicated to MD Bennett in 1999 and listed in the Appendix of Bennett et al. (2000) under Original reference number 349. To avoid duplication of data in the database, only C-values for ten species not listed previously are included in the Appendix. (be) The C-value of Arabidopsis thaliana given by the Arabidopsis Genome Initiative (2000, Ref. 448) was based on DNA sequencing data for 115Á4 Mb of the genome, plus a guestimate of 10 Mb for several unsequenced gaps in the genome. Recent work places its 1C-value around 157 Mb (Bennett et al., 2003). (bf ) Ohri (2002, Ref. 449) listed DNA amounts for 36 tropical hardwood species belonging to 13 families. However, C-values of 35 of these had already been communicated to MD Bennett in 1996 and listed in the Appendix of Bennett and Leitch (1997) under Original reference number 301. To avoid duplication of data in the database, a C-value for the only species not included in a previous compilation (Drypetes roxburghii) is listed in the present Appendix. A new C-value for Melaleuca leucadendra, double that given in Bennett and Leitch (1997), is also listed in the Appendix, to correct 64 Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms an error in communication which confused the 2C- and 4C- values for this species. (bg) The C-value of 466 Mb for Oryza sativa ssp. indica given in Yu et al. (2002, Ref. 450) was based on DNA sequencing data for 362 Mb of sequenced scaffolds, and 104 Mb of `unassembled data' subject to numerous assump- tions (see Yu et al., loc. cit. ­ page 80). (bh) The C-value of 420 Mb for Oryza sativa ssp. japonica given in Goff et al. (2002, Ref. 451) was derived from DNA sequencing data for 389Á9 Mb, and their assump- tion that this equals 93 % of the genome, perhaps using some previously published 1C-value. The source of this assumption, as of any such DNA estimate, and the method by which it was obtained, was not clearly cited by Goff et al. (2002). (bi) Redondo et al. (1996, Ref. 453) estimated C-values in four populations of Saxifraga granulata. In one population chromosome numbers ranged from 2n = 44 to 56, but 2n = 44 was predominant. They noted that the DNA amount was also variable but gave only one C-value, which is listed in the Appendix. However, intraspecific variation in DNA amount may occur in this species, so the C-value listed may not apply to all members of the population. (bj) Redondo et al. (1996, Ref. 453) estimated DNA amounts in four populations of Saxifraga granulata. They reported DNA amounts for a population in which they could not obtain a chromosome count (entry number 706), but based on the DNA amount, they suggested this population may have 2n = 30. (bk) Emshwiller (2002, Ref. 456) estimated C-values in 10 accessions of cultivated oca (2n = 8x = 64; Oxalis tuberosa), two tetraploid wild species, and 78 diploid accessions which were provisionally identified as 35 species. As variation in 2C DNA amounts was usually no more than 0Á1 pg, and considered to be technical in nature, only the highest C-value was reported in table 3 of Emshwiller (2002) for most species and is entered in the Appendix. Variation in DNA amounts greater than 0Á1 pg was con- sidered real for O. spiralis (2C = 1Á062­1Á339 pg) and O. peduncularis (2C = 0Á927­1Á163 pg), so both the lowest and highest values are entered in the Appendix for these species. Emshwiller (2002) noted that this variation may reflect problems of taxonomy and species boundaries. (bl) Emshwiller (2002, Ref. 456) estimated the DNA amounts in ten accessions of cultivated oca (2n = 8x = 64; Oxalis tuberosa). Variation was noted, even in measure- ments made for all accessions estimated on one day (see table 3 of Emshwiller, 2002), but she did not consider it to represent intraspecific variation and a mean 2C estimate calculated from all measurements made was given in her `Results' section as 2C = 3Á514 pg. It is this value that is entered in the Appendix. (bm) Nagl et al. (1983, Ref. 457) included DNA amounts for 49 species. However, C-values for 20 of these had been published elsewhere, and already included in previous compilations by Bennett and colleagues (listed under original reference numbers 34, 36, 60, 61, 81, 82, 84, 85, 86). To avoid duplication only C-values for 29 species that had not been listed previously are included in the Appendix. (bn) Values for Phaseolus coccineus and P. vulgaris given in Nagl et al. (1983, Ref. 457) are around twice those given in another paper by Nagl and Treviranus (1995, Ref. 390), listed in the present Appendix. 2C-values for both species given in Nagl et al. (loc. cit.) agree with those reported by Ayonoadu (1974), but are around twice that reported in Ingle et al. (1975) and Arumuganathan and Earle (1991). The basis of this discrepancy is unclear, so C-values for these Phaseolus taxa should be viewed with caution until confirmed independently. (bo) The value for Sambucus nigra (2C = 30Á5 pg ) given by Nagl et al. (1983, Ref. 457) is similar to the value of 2C = 21Á8 pg for a related species, S. racemosa, reported by Nagl et al. (1979) and listed under Ref. 86 in Bennett et al. (1982). However, it is very different from 2C = 3Á1 pg reported for S. nigra by Mowforth (1986) and listed under Ref. 158 in Bennett and Smith (1991). The cause for the discrepancy remains unclear, so C-values for S. nigra should be used with caution until confirmed independently. (bp) Baranyi et al. (1996, Ref. 458) investigated C-values in 75 accessions of four wild Pisum species. Results were given as percentages relative to P. sativum `Kleine Rheinla¨nderin' ( = 100 %) which was used as the calibration standard. To convert these into absolute DNA amounts the 4C-values were multiplied by the value of Pisum sativum `Kleine Rheinla¨nderin' of 17Á68 pg (Greilhuber and Ebert, 1994) and then divided by 100. Pisum fulvum was homogeneous in DNA amount size (4C = approx. 19Á3 pg), but wide variation was seen between accessions of the other species studied (P. abyssinicum, P. humile and P. elatius). This variation was interpreted to show that these taxa with variable genome sizes were genetically heterogeneous, suggesting that the current spe- cies delimitations did not reflect the true biological species groups adequately. Only the smallest and largest C-values for each of these species are listed in the Appendix. (bq) Punina and Alexandrova (1992, Ref. 459) estimated DNA amounts in 11 Paeonia species but gave the results as percentage values relative to P. caucasica. Since Mulry and Hanson (pers. comm. 1999) had estimated the 4C DNA value of this species as 65Á2 pg (see entry number 602 in Bennett et al., 2000), the relative percentage values given in Punina and Alexandrova (loc. cit.) were converted into absolute DNA amounts by multiplying by 0Á652. (br) A PhD thesis by Shi (1991) gave a 1C-value of 0Á15 pg for two accessions of diploid Brachypodium dis- tachyon (2n = 10), plus values for four other Brachypodium species. Later, Shi et al. (1993, Ref. 460) gave the 1C-value for diploid B. distachyon as 1C = 0Á3 pg, but cited the PhD thesis (Shi, 1991) as the source for this figure. In order to confirm which was correct, Clive Stace kindly supplied seed of one original accession (B306) and RBG, Kew estimated its DNA amount as 0Á36 pg using Oryza sativa `IR36' (4C = 2Á02 pg) as a calibration standard (see entry number 161a in the present Appendix). This was much closer to the value in Shi et al. (1993). As C-values for four other Brachypodium species in Shi (1991) may also be under- estimates, they are therefore not included in the present Appendix, and should be viewed with caution until confirmed independently. Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms 65 APPENDIX.Chromosomenumber,ploidylevel,life-cycletype,andnuclearDNAcontentin804angiospermspecies(thesuperscriptlettersrefertonotesprecedingthistable) Ploidy level (x) Life cycle typex DNAamount Entry numberg SpeciesVoucherFamily Higher group# 2nz 1C (Mbps ) 1C (pg) 2C (pg) 4C (pg) Original ref.a Present amounty Standard species*b1 Methodyy 1aAcaciadealbataLink.NoLeguminosaeE262P8530.91.73.5441bb OJFC:PI 2AcaciadealbataLink.NoLeguminosaeE39 3P--t --t 2.55.1441bb OJFC:PI 3AcaciadealbataLink.NoLeguminosaeE524P1,6711.73.46.8441bb OJFC:PI 4aAcaciamangiumWilld.NoLeguminosaeE262P6370.71.32.6441bb OJFC:PI 5AcridocarpusnatalitiusA.Juss.NoMalpighiaceaeEc.21624P1,4901.53.06.1379OJFe 6AdenantheramicrospermaTeijsm&Binn.NoLeguminosaeE--n --p P6810.71.42.8454OBc Fe 7AdenantherapavoninaL.NoLeguminosaeE26 --p P6660.71.42.7454OBc Fe 8Adinacordifolia(Roxb.)Hook.f.NoRubiaceaeE22 2P8160.81.73.3454OBc Fe 9AeoniumhaworthiiWebb&Berth.NoCrassulaceaeE72 4or8P7600.81.63.1378OJFe 10aAesculushippocastanumL.NoSapindaceaeE402P5880.61.22.4465OLycopers.c FC:PI 11bAgaveamericanaL.--m AsparagaceaeM1204P7,7918.015.931.8384aa OHomof FC:PI 12dAgavesisalanaPerr.--m AsparagaceaeM1505P--t --t 20.040.0384aa OHomof FC:PI 13AgavestrictaSalm.--m AsparagaceaeM602P3,8223.97.815.6384aa OHomof FC:PI 14AgrostispalustrisHuds.NoGramineaeM284P2,7692.85.711.3417OGallusf FC:PI 15AilanthusgrandisPrainNoSimaroubaceaeE64 --p P2,1342.24.48.7454OBc Fe 16aAlbucapendulaB.MathewNoAsparagaceaeM162P2,9673.06.112.1465OGFe 16bAlbucapendulaB.MathewNoAsparagaceaeM142P3,0333.16.212.4465OGFe 17kAlliumcepaL.NoAlliaceaek M16 2P16,41516.833.567.0457bm OBd Fe 18Allocasuarinaverticillata(Lam.) L.Johnson NoCasuarinaceaeE20-28 2P9311.01.93.8452OPetuniae FC:PI 19Alocasiacucullata(Lour)SchottNoAraceaeM98--p AP8,2008.416.733.5411OBc Fe 20AlocasiahilobeautyHost.NoAraceaeM32--p A3,6803.87.515.0411OBc Fe 21AloealbifloraGuillauminNoXanthorrhoeaceaek M14 2P15,33715.731.362.6440OAgavesp.ab FC:PI 22Aloealooides(Bolus)DrutenNoXanthorrhoeaceaek M14 2P13,08313.426.753.4440OAgavesp.ab FC:PI 23Aloeantandroi(Decary)H.PerrierNoXanthorrhoeaceaek M14 2P17,19917.635.170.2440OAgavesp.ab FC:PI 24Aloearborescens(yellowflowers)Mill.i NoXanthorrhoeaceaek M14 2P13,67114.027.955.8440OAgavesp.ab FC:PI 25aAloearistataHaw.NoXanthorrhoeaceaek M14 2P15,72916.132.164.2440OAgavesp.ab FC:PI 25bAloearistatavar.parvifoliaBakerHaw.NoXanthorrhoeaceaek M14 2P16,02316.432.765.4440OAgavesp.ab FC:PI 26AloebakeriScott-ElliotNoXanthorrhoeaceaek M14 2P15,92516.332.565.0440OAgavesp.ab FC:PI 27AloebarberaeDyerNoXanthorrhoeaceaek M14 2P15,04315.430.761.4440OAgavesp.ab FC:PI 28AloebellatulaReynoldsNoXanthorrhoeaceaek M14 2P16,26816.633.266.4440OAgavesp.ab FC:PI 29AloeboiteauiGuillauminNoXanthorrhoeaceaek M14 2P16,02316.432.765.4440OAgavesp.ab FC:PI 30AloebowieaSchult.&Schult.f.NoXanthorrhoeaceaek M14 2P16,26816.633.266.4440OAgavesp.ab FC:PI 31AloebrevifoliaMill.NoXanthorrhoeaceaek M14 2P14,55314.929.759.4440OAgavesp.ab FC:PI 32bAloecameroniiHemsl.NoXanthorrhoeaceaek M14 2P17,05217.434.869.6440OAgavesp.ab FC:PI 33AloecapitataBakerNoXanthorrhoeaceaek M14 2P15,38615.731.462.8440OAgavesp.ab FC:PI 34AloechabaudiiSchonlandNoXanthorrhoeaceaek M14 2P17,93418.336.673.2440OAgavesp.ab FC:PI 35Aloeciliarisvar.tidmarshiiSchonlandHaw.NoXanthorrhoeaceaek M14 2P10,53510.821.543.0440OAgavesp.ab FC:PI 36AloeciliarisHaw.NoXanthorrhoeaceaek M35 5P--t --t 53.3106.6440OAgavesp.ab FC:PI 37AloeciliarisHaw.NoXanthorrhoeaceaek M42 6P30,72331.462.7125.4440OAgavesp.ab FC:PI 38AloecomptoniiReynoldsNoXanthorrhoeaceaek M14 2P13,42613.727.454.8440OAgavesp.ab FC:PI 39aAloecryptopodaBakerNoXanthorrhoeaceaek M14 2P14,16114.528.957.8440OAgavesp.ab FC:PI 39bAloecryptopoda``Wickensii''BakerNoXanthorrhoeaceaek M14 2P14,35714.729.358.6440OAgavesp.ab FC:PI 40AloedaweiBergerNoXanthorrhoeaceaek M28 4P35,23136.071.9143.8440OAgavesp.ab FC:PI 41aAloedescoingsiiReynoldsNoXanthorrhoeaceaek M14 2P15,97416.332.665.2440OAgavesp.ab FC:PI 66 Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms 41bAloedescoingsiiReynoldsssp.augustina Lavranos NoXanthorrhoeaceaek M14 2P16,21916.633.166.2440OAgavesp.ab FC:PI 42aAloedichotomaMassonvar.ramosissima (Pillans)Glen&D.S.Hardy NoXanthorrhoeaceaek M14 2P12,00512.324.549.0440OAgavesp.ab FC:PI 42bAloedichotomaMassonNoXanthorrhoeaceaek M14 2P12,10312.424.749.4440OAgavesp.ab FC:PI 43AloedinteriA.BergerNoXanthorrhoeaceaek M14 2P16,36616.733.466.8440OAgavesp.ab FC:PI 44bAloedistansHaw.NoXanthorrhoeaceaek M14 2P13,62213.927.855.6440OAgavesp.ab FC:PI 45AloedorotheaeA.BergerNoXanthorrhoeaceaek M14 2P15,28815.631.262.4440OAgavesp.ab FC:PI 46AloeelegansTod.NoXanthorrhoeaceaek M14 2P17,34617.735.470.8440OAgavesp.ab FC:PI 47AloeerinaceaD.S.HardyNoXanthorrhoeaceaek M14 2P12,10312.424.749.4440OAgavesp.ab FC:PI 48AloeferoxMill.NoXanthorrhoeaceaek M14 2P14,89615.230.460.8440OAgavesp.ab FC:PI 49AloefleurentiniorumLavranos& L.E.Newton NoXanthorrhoeaceaek M14 2P18,17918.637.174.2440OAgavesp.ab FC:PI 50Aloegariepensis(?)PillansNoXanthorrhoeaceaek M14 2P15,72916.132.164.2440OAgavesp.ab FC:PI 51AloeglaucaMill.NoXanthorrhoeaceaek M14 2P15,68016.032.064.0440OAgavesp.ab FC:PI 52AloeglobuligemmaPole-EvansNoXanthorrhoeaceaek M14 2P16,61117.033.967.8440OAgavesp.ab FC:PI 53AloehaemanthifoliaA.Berger&MarlothNoXanthorrhoeaceaek M14 2P7,9388.116.232.4440OAgavesp.ab FC:PI z Chromosomenumber. x E,ephemeral;A,annual;B,biennial;P,perennial. y O,originalvalue;C,calibratedvalue * Thestandardspeciesusedtocalibratethepresentamount. yy Fe,Feulgenmicrodensitometry;FC,flowcytometryusingoneofthefollowingfluorochromes:PI,propidiumiodide;DAPI,40 ,6-diamidinophenylindole;EB,ethidiumbromide;MI,mithramycin;HO, Hoechst33258;GS,genomesequencing;CIA,computerimageanalysis;RK,reassociationkinetics. # E,eudicot;M,monocot;BA,basalangiosperm. Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms 67 APPENDIX.(continued,thesuperscriptlettersrefertonotesprecedingthistable) Ploidy level (x) Life cycle typex DNAamount Entry numberg SpeciesVoucherFamily Higher group# 2nz 1C (Mbps ) 1C (pg) 2C (pg) 4C (pg) Original ref.a Present amounty Standard species*b1 Methodyy 54AloehaworthioidesBakerNoXanthorrhoeaceaek M14 2P14,74915.130.160.2440OAgavesp.ab FC:PI 55AloehereroensisEngl.NoXanthorrhoeaceaek M14 2P18,13018.537.074.0440OAgavesp.ab FC:PI 56Aloehumilis(smallform)(L.)Mill.i NoXanthorrhoeaceaek M14 2P16,56216.933.867.6440OAgavesp.ab FC:PI 57AloejacksoniiReynoldsNoXanthorrhoeaceaek M28 4P32,48733.266.3132.6440OAgavesp.ab FC:PI 58AloejucundaReynoldsNoXanthorrhoeaceaek M14 2P17,59118.035.971.8440OAgavesp.ab FC:PI 59bAloejuvennaBrandham&CarterNoXanthorrhoeaceaek M28 4P34,79035.571.0142.0440OAgavesp.ab FC:PI 60Aloekrapohlianavar.dumoulinii Lavranos NoXanthorrhoeaceaek M14 2P17,34617.735.470.8440OAgavesp.ab FC:PI 61AloelinearifoliaA.BergerNoXanthorrhoeaceaek M14 2P12,93613.226.452.8440OAgavesp.ab FC:PI 62AloelomatophylloidesBalf.f.NoXanthorrhoeaceaek M14 2P17,24817.635.270.4440OAgavesp.ab FC:PI 63AloelongistylaBakerNoXanthorrhoeaceaek M14 2P15,58215.931.863.6440OAgavesp.ab FC:PI 64AloemacrosiphonBak.NoXanthorrhoeaceaek M14 2P17,93418.336.673.2440OAgavesp.ab FC:PI 65AloemaculataAllioniiNoXanthorrhoeaceaek M14 2P18,62019.038.076.0440OAgavesp.ab FC:PI 66aAloemarlothiiA.Berger``Spectabilis''NoXanthorrhoeaceaek M14 2P15,43515.831.563.0440OAgavesp.ab FC:PI 66bAloemarlothiiA.Bergervar.bicolor Reynolds NoXanthorrhoeaceaek M14 2P15,63116.031.963.8440OAgavesp.ab FC:PI 67bAloemcloughliniiChristianNoXanthorrhoeaceaek M14 2P16,21916.633.166.2440OAgavesp.ab FC:PI 68AloemelanacanthaA.BergerNoXanthorrhoeaceaek M14 2P12,29912.625.150.2440OAgavesp.ab FC:PI 69AloemicrostigmaSalm-DyckNoXanthorrhoeaceaek M14 2P15,09215.430.861.6440OAgavesp.ab FC:PI 70AloemitriformisMill.NoXanthorrhoeaceaek M14 2P13,47513.827.555.0440OAgavesp.ab FC:PI 71bAloengobitensisReynoldsNoXanthorrhoeaceaek M28 4P28,42029.058.0116.0440OAgavesp.ab FC:PI 72Aloeoccidentalis(H.Perrier)L.E.Newton& G.D.Rowley NoXanthorrhoeaceaek M14 2P20,28620.741.482.8440OAgavesp.ab FC:PI 73AloeparvulaA.BergerNoXanthorrhoeaceaek M14 2P16,56216.933.867.6440OAgavesp.ab FC:PI 74AloepearsoniiSchonlandNoXanthorrhoeaceaek M14 2P12,34812.625.250.4440OAgavesp.ab FC:PI 75bAloepeckiiBally&VerdoornNoXanthorrhoeaceaek M14 2P17,44417.835.671.2440OAgavesp.ab FC:PI 76AloepegleraeSchonlandNoXanthorrhoeaceaek M14 2P15,72916.132.164.2440OAgavesp.ab FC:PI 77AloepetricolaPole-EvansNoXanthorrhoeaceaek M14 2P15,09215.430.861.6440OAgavesp.ab FC:PI 78AloepillansiiL.GuthrieNoXanthorrhoeaceaek M14 2P12,59312.925.751.4440OAgavesp.ab FC:PI 79Aloeplicatilis(L.)Mill.NoXanthorrhoeaceaek M14 2P8,6248.817.635.2440OAgavesp.ab FC:PI 80AloepluridensHaworthNoXanthorrhoeaceaek M14 2P14,16114.528.957.8440OAgavesp.ab FC:PI 81AloepolyphyllaSchonlandNoXanthorrhoeaceaek M14 2P13,37713.727.354.6440OAgavesp.ab FC:PI 82AloeprinslooiVerdoorn&HardyNoXanthorrhoeaceaek M14 2P17,44417.835.671.2440OAgavesp.ab FC:PI 83Aloeprostrata(H.Perrier)L.E.Newton& G.D.Rowley NoXanthorrhoeaceaek M14 2P20,13920.641.182.2440OAgavesp.ab FC:PI 84AloerauhiiReynoldsNoXanthorrhoeaceaek M14 2P15,33715.731.362.6440OAgavesp.ab FC:PI 85AloerichardsiaeReynoldsNoXanthorrhoeaceaek M14 2P21,75622.244.488.8440OAgavesp.ab FC:PI 86AloeriviereiLavranos& L.E.Newton NoXanthorrhoeaceaek M14 2P16,56216.933.867.6440OAgavesp.ab FC:PI 87AloesecundifloraEngl.NoXanthorrhoeaceaek M14 2P17,59118.035.971.8440OAgavesp.ab FC:PI 88AloesinkatanaReynolds(redflowers)i NoXanthorrhoeaceaek M14 2P17,54217.935.871.6440OAgavesp.ab FC:PI 89AloesladenianaPole-EvansNoXanthorrhoeaceaek M14 2P15,97416.332.665.2440OAgavesp.ab FC:PI 90AloespeciosaBakerNoXanthorrhoeaceaek M14 2P14,11214.428.857.6440OAgavesp.ab FC:PI 91AloespicataL.f.NoXanthorrhoeaceaek M14 2P14,25914.629.158.2440OAgavesp.ab FC:PI 92AloestriataHaw.NoXanthorrhoeaceaek M14 2P18,91419.338.677.2440OAgavesp.ab FC:PI 93AloesuprafoliataPole-EvansNoXanthorrhoeaceaek M14 2P14,01414.328.657.2440OAgavesp.ab FC:PI 68 Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms 94AloesuzannaeDecaryNoXanthorrhoeaceaek M14 2P16,31716.733.366.6440OAgavesp.ab FC:PI 95bAloetenuiorHaw.NoXanthorrhoeaceaek M14 2P10,63310.921.743.4440OAgavesp.ab FC:PI 96AloetrichosanthaBergerNoXanthorrhoeaceaek M14 2P18,17918.637.174.2440OAgavesp.ab FC:PI 97AloevanbaleniiPillansNoXanthorrhoeaceaek M14 2P13,96514.328.557.0440OAgavesp.ab FC:PI 98aAloevariegataL.``Ausana''NoXanthorrhoeaceaek M14 2P16,26816.633.266.4440OAgavesp.ab FC:PI 98bAloevariegataL.NoXanthorrhoeaceaek M14 2P16,56216.933.867.6440OAgavesp.ab FC:PI 99Aloevera(L.)Burm.f.NoXanthorrhoeaceaek M14 2P16,07216.432.865.6440OAgavesp.ab FC:PI 100AlstoniamacrophyllaWall.ex G.Don. NoApocynaceaeE--n --p P7180.71.52.9454OBc Fe 101cAlstroemeriaaureaGrahamh NoAlstroemeriaceaeM162P24,84325.450.7101.4436OBFC:PI 101dAlstroemeriaaureaGrahamh NoAlstroemeriaceaeM162P27,09727.755.3110.6436OBFC:PI 102AlstroemeriaaureaGrahamh NoAlstroemeriaceaeM243P--t --t 80.9161.8436OBFC:PI 103dAlstroemerialigtuL.ssp. incarnataL.h NoAlstroemeriaceaeM162P34,30035.070.0140.0436OBFC:PI 103eAlstroemerialigtuL.ssp.simsiih NoAlstroemeriaceaeM162P31,94832.665.2130.4436OBFC:PI 103fAlstroemerialigtuL.ssp.simsiih NoAlstroemeriaceaeM162P38,66139.578.9157.8436OBFC:PI 103gAlstroemerialigtuL.ssp.ligtuh NoAlstroemeriaceaeM162P34,00634.769.4138.8436OBFC:PI 103hAlstroemerialigtuL.ssp.ligtuh NoAlstroemeriaceaeM162P33,36934.168.1136.2436OBFC:PI 104cAlstroemeriamagnificaHerb. ssp.magnificah NoAlstroemeriaceaeM162P17,88518.336.573.0436OBFC:PI 104dAlstroemeriamagnificaHerb. ssp.magnificah NoAlstroemeriaceaeM162P20,53121.041.983.8436OBFC:PI 105AlstroemeriamagnificaHerb. ssp.magnificah NoAlstroemeriaceaeM243P--t --t 61.6123.2436OBFC:PI 106AmborellatrichopodaBaill.NoAmborellaceaeBA26 --p P8700.91.83.6381OKFC:PI 107AmoreuxiawrightiiA.GrayNoCochlospermaceaeEc.12-142P1640.20.30.7378OJFe 108Anthemisaltissimal NoCompositaej E--n --p --q 7,7427.915.831.6457bm OBd Fe 109Anthemismontanal NoCompositaej E--n --p --q 8,2818.516.933.8457bm OBd Fe 110AnthuriumgrandeHost.NoAraceaeM28--p P13,25213.527.054.1411OBc Fe 111AnthuriumtetragonumSchottNoAraceaeM30--p P7,4857.615.330.6411OBc Fe 112AphyllanthesmonspeliensisL.NoAsparagaceaeMc.32--p P6350.61.32.6380OJFC:PI 113Arabidopsiskorshynskyil NoCruciferaej E--n --p --q 2450.30.51.0457bm OBd Fe 114aArabidopsisthaliana(L.)Heynh. ecotypeColumbia NoCruciferaeE102A1570.20.30.6461OCaeno.f FC:PI 114gArabidopsisthaliana(L.)Heynh. ecotypeColumbia NoCruciferaeE102A1640.20.30.7461OGallusf FC:PI 114hArabidopsisthaliana(L.)Heynh. ecotypeColumbia NoCruciferaeE102A1500.20.30.6461ODros.f FC:PI 114iArabidopsisthaliana(L.)Heynh.--m CruciferaeE102A125be 0.1be 0.3be 0.5be 448be O--GS 114jArabidopsisthaliana(L.)Heynh. ecotypeColumbia NoCruciferaeE102A1670.20.30.7463OGallusf FC:DAPI 114kArabidopsisthaliana(L.)Heynh. ecotypeColumbia NoCruciferaeE102A1620.20.30.7463OGallusf FC:HO 114lArabidopsisthaliana(L.)Heynh. ecotypeColumbia NoCruciferaeE102A1570.20.30.6463OGallusf FC:MI 114mArabidopsisthaliana(L.)Heynh. lineLandsbergerecta NoCruciferaeE102A510.050.100.21464O--RK 115aArachisduranensisKrapov.& W.C.Gregoryh NoLeguminosaej E202A1,2431.32.55.1396OGc FC:PI 115bArachisduranensisKrapov.& W.C.Gregoryh NoLeguminosaej E202A1,3241.42.75.4396OGc FC:PI 115cArachisduranensisKrapov.& W.C.Gregoryh NoLeguminosaej E202A1,3331.42.75.4396OGc Fe 116aArachishypogaeaL.NoLeguminosaeE404A2,8132.95.711.5395aj OGc Fe Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms 69 APPENDIX.(continued,thesuperscriptlettersrefertonotesprecedingthistable) Ploidy level (x) Life cycle typex DNAamount Entry numberg SpeciesVoucherFamily Higher group# 2nz 1C (Mbps ) 1C (pg) 2C (pg) 4C (pg) Original ref.a Present amounty Standard species*b1 Methodyy 116bArachishypogaeaL.NoLeguminosaeE404A2,8983.05.911.8395aj OGc FC:PI 116rArachishypogaeaL.NoLeguminosaej E40 4A1,5681.63.26.4457bm OBd Fe 117aArachismonticolaKrapov.& Rigoni NoLeguminosaeE404A2,8913.05.911.8395aj OGc Fe 117bArachismonticolaKrapov.& Rigoni NoLeguminosaeE404A2,9303.06.012.0395aj OGc FC:PI 118Archidendronmonadelphum(Roxb.) I.C.Neilsen NoLeguminosaeE--n --p P1,4701.53.06.0454OBc Fe 119cArtemisiaabsinthiumL.NoCompositaej E182P4,1754.38.517.0386OG-120dFC:PI 120dArtemisiaannuaL.NoCompositaej E182A1,7151.83.57.0386OGc FC:PI 121ArtemisiabarrelieriBesserNoCompositaej E364P6,3506.513.025.9386OGc FC:PI 122ArtemisiacaerulescensL.ssp.gallica (Willd.)K.Persson NoCompositaej E182P3,2633.36.713.3386OGc FC:PI 123ArtemisiacampestrisL.NoCompositaej E182P2,8762.95.911.7386OGc FC:PI 124ArtemisiacampestrisL.NoCompositaej E364P5,3905.511.022.0386OGc FC:PI 125ArtemisiacanaPursh.NoCompositaej E728P12,56912.825.751.3386OGc FC:PI 126ArtemisiachamaemelifoliaVill.NoCompositaej E182P2,9603.06.012.1386OGc FC:PI 127ArtemisiacrithmifoliaL.NoCompositaej E546P7,6447.815.631.2386OGc FC:PI 128ArtemisiadracunculusL.NoCompositaej E9010P11,37811.623.246.4386OGc FC:PI 129ArtemisiafragransWilld.NoCompositaej E182P2,6222.75.410.7386OGc FC:PI 130Artemisiaherba-albaAssossp. valentina(Lam.)Mascl. NoCompositaej E182P3,2193.36.613.1386OGc FC:PI 131Artemisiaherba-albaAssossp. herba-alba NoCompositaej E364P6,1156.212.525.0386OGc FC:PI 132cArtemisiajudaicaL.NoCompositaej E162P5,6455.811.523.0386OGc FC:PI 133ArtemisialucenticaO.Bolos, Valles&Vigo inO.Bolos&Vigo NoCompositaej E162P3,7633.87.715.4386OG-120dFC:PI 134ArtemisiamolinieriQuezel,Barbero& R.Loisel NoCompositaej E182P2,9203.06.011.9386OGc FC:PI 135ArtemisiamonospermaDelileNoCompositaej E364P5,4005.511.022.0386OGc FC:PI 136ArtemisiasplendensWilld.NoCompositaej E324P6,6596.813.627.2386OGc FC:PI 137ArtemisiathusculaCav.NoCompositaej E182P5,1555.310.521.0386OGc FC:PI 138ArtemisiatournefortianaReichenb.NoCompositaej E182AB3,2783.36.713.4386OGc FC:PI 139ArtemisiatridentataNutt.ssp.spiciformis Kartesz&Gandhi NoCompositaej E182P4,0084.18.216.4386OG-120dFC:PI 140ArtemisiaumbelliformisLam. ssp.umbelliformis NoCompositaej E344P6,0816.212.424.8386OGc FC:PI 141bArtemisiavulgarisL.NoCompositaej E162P2,9793.06.112.2386OGc FC:PI 142ArtemisiavulgarisL.NoCompositaej E344P4,7734.99.719.5386OGc FC:PI 143bArummaculatumL.NoAraceaeM56 8P10,68210.921.843.6457bm OBd Fe 144AsarumeuropaeumL.NoAristolochiaceaeBA--n --p P4,7534.99.719.4457bm OBd Fe 145AsteliafragransColensoNoAsteliaceaeMc.608P1,2401.32.55.1380OKFC:PI 146Atalantiaceylanica(Arn.)Oliv.)NoRutaceaeE18 2P5150.51.12.1426OGallusf FC:PI 70 Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms 147AustrobaileyascandensC.T.WhiteNoAustrobaileyaceaeBA44 --p P9,3279.519.038.1381OGFC:PI 148AverrhoacarambolaL.NoOxalidaceaeE--n --p P2350.20.51.0454OBc Fe 149AzadirachtaindicaA.JussNoMeliaceaeE28 --p P3850.40.81.6454OBc Fe 150Bauhiniahookeri(F.Muell.)PedleyNoLeguminosaeE26 --p P6200.61.32.5454OBc Fe 151bBauhiniapurpureaL.NoLeguminosaeE28 2P5730.61.22.3454OBc Fe 152BauhiniatomentosaL.NoLeguminosaeE28 2P6130.61.32.5454OBc Fe 153BellevaliarixiiP.WendalboNoAsparagaceaeM82P9,1029.318.637.2465OBFe 154BerberidopsiscorallinaHook.f.NoBerberidopsidaceaeEc.426P2520.30.51.0379OJFe 155Berryacordifolia(Willd.)BurretNoMalvaceaeE--n --p P5490.61.12.2454OBc Fe 156aBixaorellanaL.NoBixaceaeE142P1910.20.40.8379OJFe 156bBixaorellanaL.NoBixaceaeE14 2P2030.20.40.8454OBc Fe 157BlandfordiapuniceaSweet.NoBlandfordiaceaeM684P7,9708.116.332.5380OGFe 158BombaxceibaL.NoMalvaceaeE92 --p P1,5901.63.26.5454OBc Fe 159BoswelliaserrataRoxb.NoBurseraceaeE22 --p P6840.71.42.8454OBc Fe 160BrachychitondiscolorF.MuellNoMalvaceaeE40 --p P1,1321.22.34.6454OBc Fe 161aBrachypodiumdistachyon(L.)P.Beauv.NoGramineaeM102A3550.40.71.5465OKFC:PI 161bBrachypodiumdistachyon(L.)P.Beauv.--m GramineaeM102A2940.30.61.2460bh OJFe 162eBrassicanapusL.NoCruciferaej E38 4AB1,5681.63.26.4457bm OBd Fe 163bBromusarvensisL.NoGramineaeM142A5,6995.811.623.3391af OH-164bFC:PI 164bBromuscarinatusHooker&Arnottcv.BromaNoGramineaeM568P11,24111.522.945.9391af OHc FC:PI 165cBromuserectusHudsonNoGramineaeM568P12,07912.324.749.3391af OHc FC:PI 166cBromushordeaceusL.NoGramineaeM284A11,28511.523.046.1391af OHc FC:PI 167bBromusinermisLeysserNoGramineaeM568P12,02512.324.549.1391af OHc FC:PI 168BromuswilldenowiiKnuthNoGramineaeM426P6,3656.513.026.0391af OHc FC:PI 169Buchloedactyloides(Nutt.)Engelm.NoGramineaeM404P7790.81.63.2417OGallusf FC:PI 170BuddlejaglobosaHopeNoBuddlejaceaeE382P8400.91.73.4378OJFe 171BulbinealooidesWilld.NoXanthorrhoeaceaeM142P10,60110.821.643.3465OBFe 172BulbinefallaxPoelln.NoXanthorrhoeaceaeM142P11,20111.422.945.7465OBFe 173Bulbinelagopus(Thunb.)N.E.BrownNoXanthorrhoeaceaeM--n --p P7,9388.116.232.4465OBFe 174BulbinepraemorsaSpreng.NoXanthorrhoeaceaeM142P12,21312.524.949.9465OBFe 175aBuniaserucagoL.NoCruciferaeE142A2,0292.14.18.3393OGc Fe 175bBuniaserucagoL.NoCruciferaeE142A2,1362.24.48.7393OGlycinee FC:PI 176aBuniasorientalisL.NoCruciferaeE142P2,5382.65.210.4393OGc Fe 176bBuniasorientalisL.NoCruciferaeE142P2,6362.75.410.8393OGlycinee FC:PI 177BuxuspapillosaC.K.Schneid.NoBuxaceaeE--n --p P1,3891.42.85.7454OBc Fe 178Buxussempervirensl NoBuxaceaeE282or4P7940.81.63.2380OKFC:PI 179ByblislinifloraSalisb.NoByblidaceaeE322A8700.91.83.6378OJFe 180Cajanusalbicans(Wight.&Am.)MaesenNoLeguminosaeE222A1,2591.32.65.1443bc OBc Fe 181Cajanusmollis(Benth.)MaesenNoLeguminosaeE222B8040.81.63.3443bc OBc Fe 182Cajanussericeus(Benth.exBak.)MaesenNoLeguminosaeE222P1,4141.42.95.8443bc OBc Fe 183CaladiumbicolorVent.var.redpolkaNoAraceaeM32--p A5,4075.511.022.1411OBc Fe 184CaladiumbicolorVent.var.redpolkalargeNoAraceaeM66--p A9,92710.120.340.5411OBc Fe 185CalceolariaacutifoliaWitasekNoScrophulariaceaeE--n --p --q 1,3481.42.85.5465OJFe 186Calceolariagracilisl NoScrophulariaceaeE--n --p --q 1,3351.42.75.5465OJFe 187Calibrachoacalycina(Sendtn.)WijsmanNoSolanaceaeE182P1,5041.53.16.1387ae OGallus-398pFC:PI 188Calibrachoadusenii(R.E.Fr.)Stehmann& Semir. NoSolanaceaeE182P1,4011.42.95.7387ae OGallus-398pFC:PI 189CalibrachoaeglandulataStehmann&Semir.NoSolanaceaeE18 2P1,4111.42.95.8387ae OGallus-398pFC:PI 190Calibrachoaelegans(Miers)Stehmann& Semir. NoSolanaceaeE182P1,5631.63.26.4387ae OGallus-398pFC:PI 191Calibrachoaericaefolia(R.E.Fr.)WijsmanNoSolanaceaeE182P1,4361.52.95.9387ae OGallus-398pFC:PI 192Calibrachoaheterophylla(Sendtn.)WijsmanNoSolanaceaeE18 2P1,4551.53.05.9387ae OGallus-398pFC:PI 193Calibrachoalinearis(Hook.)WijsmanNoSolanaceaeE182P1,4851.53.06.1387ae OGallus-398pFC:PI 194Calibrachoalinoides(Sendtn.)WijsmanNoSolanaceaeE182P1,3971.42.95.7387ae OGallus-398pFC:PI Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms 71 APPENDIX.(continued,thesuperscriptlettersrefertonotesprecedingthistable) Ploidy level (x) Life cycle typex DNAamount Entry numberg SpeciesVoucherFamily Higher group# 2nz 1C (Mbps ) 1C (pg) 2C (pg) 4C (pg) Original ref.a Present amounty Standard species*b1 Methodyy 195Calibrachoamacrodactylon(L.B.Sm.&Downs) Wijsman NoSolanaceaeE182P1,4801.53.06.0387ae OGallus-398pFC:PI 196Calibrachoamicrantha(R.E.Fr.) Stehmann&Semir. NoSolanaceaeE182P1,4111.42.95.8387ae OGallus-398pFC:PI 197Calibrachoaparviflora(Juss.)WijsmanNoSolanaceaeE182A9361.01.93.8387ae OGallus-398pFC:PI 198Calibrachoapygmaea(R.E.Fr.)WijsmanNoSolanaceaeE182A7640.81.63.1387ae OGallus-398pFC:PI 199Calibrachoarupestris(Dusen)WijsmanNoSolanaceaeE18 2P1,5971.63.36.5387ae OGallus-398pFC:PI 200Calibrachoaselloviana(Sendtn.)WijsmanNoSolanaceaeE182P1,4551.53.05.9387ae OGallus-398pFC:PI 201Calibrachoasendtneriana(R.E.Fr.) Stehmann&Semir. NoSolanaceaeE18 2P1,4501.53.05.9387ae OGallus-398pFC:PI 202Calibrachoaserrulata(L.B.Sm.&Downs) Stehmann&Semir. NoSolanaceaeE182P1,4461.53.05.9387ae OGallus-398pFC:PI 203Calibrachoaspathulata(L.B.Sm.&Downs) Stehmann&Semir. NoSolanaceaeE182P1,4161.42.95.8387ae OGallus-398pFC:PI 204Calibrachoathymifolia(A.St.-Hil.) Stehmann&Semir. NoSolanaceaeE182P1,4851.53.06.1387ae OGallus-398pFC:PI 205Callistemoncitrinus(Curtis)SkeelsNoMyrtaceaeE22 --p P1,0141.02.14.1454OBc Fe 206CallistemonrigidusR.Br.NoMyrtaceaeE--n --p P1,5261.63.16.2454OBc Fe 207CamelliasinensisKuntzeNoTheaceaeE302P3,8243.97.815.6379OGFe 208Cannaindical NoCannaceaeM182P7060.71.42.9379OJFe 209aCannabissativaL.(female)NoCannabaceaeE202A818.am 0.8am 1.7am 3.3am 414OArab.e FC:DAPI 209bCannabissativaL.(male)NoCannabaceaeE202A843.am 0.9am 1.7am 3.4am 414OArab.e FC:DAPI 210CanotiaholacanthaTorr.NoCelastraceaeE302P1810.20.40.7378OJFe 211bCapsellabursa-pastoris(L.)Medic.NoCruciferaej E32 4A6860.71.42.8457bm OBd Fe 212hCapsicumannuumL.cv.DouxLongdes Landes NoSolanaceaeE242--q 3,7343.87.615.2434OGc FC:PI 213cCapsicumbaccatumL.ssp.pendulumNoSolanaceaeE242--q 4,1114.28.416.8434ay OG-212hFC:PI 213dCapsicumbaccatumL.ssp.baccatumNoSolanaceaeE242--q 4,1314.28.416.9434ay OG-212hFC:PI 214CapsicumcardenasiiHeiser&SmithNoSolanaceaeE24 2--q 4,3954.59.017.9434OG-212hFC:PI 215CapsicumchacoenseA.T.Hunz.NoSolanaceaeE24 2--q 3,7533.87.715.3434OG-212hFC:PI 216bCapsicumchinenseJacq.NoSolanaceaeE242--q 3,9404.08.016.1434ay OG-212hFC:PI 217bCapsicumeximiumA.T.Hunz.NoSolanaceaeE24 2--q 4,2634.48.717.4434ay OG-212hFC:PI 218bCapsicumfrutescensL.NoSolanaceaeE24 2--q 3,8914.07.915.9434ay OG-212hFC:PI 219CapsicumpraetermissumHeiser&SmithNoSolanaceaeE24 2--q 4,4744.69.118.3434OG-212hFC:PI 220bCapsicumpubescensR.&P.NoSolanaceaeE24 2--q 4,7634.99.719.4434ay OG-212hFC:PI 221CapsicumtovariiEshbaugh,Smith&NickrentNoSolanaceaeE24 2--q 3,8864.07.915.9434OG-212hFC:PI 222aCardamineamaraL.NoCruciferaeE162P2380.20.51.0465OLycopers.c FC:PI 223CastanospermumaustraleA.Cunn.&C.FraserNoLeguminosaeE--n --p P5540.61.12.3454OBc Fe 224CasuarinaglaucaSieb.exSpring.NoCasuarinaceaeE18 2P3430.40.71.4452OPetuniae FC:PI 225Catunaregamspinosa(Thunb.)TrivengadumNoRubiaceaeE22 --p P3430.40.71.4454OBc Fe 226bCentaureascabiosal NoCompositaeE--n --p P1,2541.32.65.1465OJFe 227CephalotusfollicularisLabill.NoCephalotaceaeE20 2P6250.61.32.6378OJFe 228aCerastiumalpinumL.NoCaryophyllaceaeE724P1,8131.93.77.4427OCerastiume FC:DAPI 228bCerastiumalpinumL.NoCaryophyllaceaeE724P1,9702.04.08.0427OBc Fe 229CerastiumarcticumLanges.str.NoCaryophyllaceaeE1086P3,1263.26.412.8427OCerastiume FC:DAPI 72 Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms 230CerastiumarvenseL.ssp.glandulosum (Kit.)Soo NoCaryophyllaceaeE362au P6660.71.42.7427OCerastiume FC:DAPI 231CerastiumarvenseL.ssp.arvenseNoCaryophyllaceaeE724P1,2741.32.65.2427OCerastiume FC:DAPI 232aCerastiumbanaticum(Rochel)Heuff.NoCaryophyllaceaeE362au P1,4701.53.06.0427OBc Fe 232bCerastiumbanaticum(Rochel)Heuff.NoCaryophyllaceaeE362au P1,5291.63.16.2427OCerastiume FC:DAPI 233CerastiumcarinthiacumVestNoCaryophyllaceaeE362au P1,4801.53.06.0427OCerastiume FC:DAPI 234aCerastiumeriophorumKit.inSchult.NoCaryophyllaceaeE362au P1,2641.32.65.2427OBc Fe 234bCerastiumeriophorumKit.inSchult.NoCaryophyllaceaeE362au P1,2741.32.65.2427ONicot.e FC:DAPI 235bCerastiumfontanumBaumg.NoCaryophyllaceaeE1448P3,4693.57.114.2427OCerastiume FC:DAPI 236aCerastiumlatifoliumL.NoCaryophyllaceaeE362au P1,4211.52.95.8427OBc Fe 236bCerastiumlatifoliumL.NoCaryophyllaceaeE362au P1,4701.53.06.0427OCerastiume FC:DAPI 237aCerastiumtranssylvanicumSchurexGriseb.& Schenk NoCaryophyllaceaeE1086P3,0383.16.212.4427OCerastiume FC:DAPI 237bCerastiumtranssylvanicumSchurexGriseb.& Schenk NoCaryophyllaceaeE1086P3,0483.16.212.4427OBc Fe 238CeratophyllumdemersumL.NoCeratophyllaceaeBAc.706P6740.71.42.8381OJFe 239ChenopodiumalbumL.h NoAmaranthaceaeE18 2A7500.81.53.1455OBc Fe 240ChenopodiumalbumL.h NoAmaranthaceaeE36 4A1,5971.63.36.5455OBc Fe 241bChenopodiumalbumL.h NoAmaranthaceaeE54 6A2,4232.54.99.9455OBc Fe 242Chenopodiumberlandieri(Saff.)Wilson& Heiserssp.nuttalliaeh NoAmaranthaceaeE36 4A1,4461.53.05.9455OBc Fe 243ChenopodiumbushianumAellenNoAmaranthaceaeE36 4A1,5581.63.26.4455OBc Fe 244ChenopodiumficifoliumSm.NoAmaranthaceaeE18 2A6490.71.32.7455OBc Fe 245ChenopodiumgiganteumD.DonNoAmaranthaceaeE54 6A2,1512.24.48.8455OBc Fe 246ChenopodiummuraleL.NoAmaranthaceaeE18 2A6100.61.22.5455OBc Fe 247ChenopodiumopulifoliumSchrad.exKoch& Ziz NoAmaranthaceaeE36 4A1,3031.32.75.3455OBc Fe 248bChenopodiumpallidicauleAellenNoAmaranthaceaeE18 2A6170.61.32.5455OBc Fe 249bChenopodiumquinoaWilld.h NoAmaranthaceaeE36 4A1,5851.63.26.5455OBc Fe 250Chenopodiumugandae(Aell.)Aell.NoAmaranthaceaeE32 --p A1,4011.42.95.7455OBc Fe 251ChenopodiumvulvariaL.NoAmaranthaceaeE18 2A6220.61.32.5455OBc Fe 252ChloranthusspicatusMak.NoChloranthaceaeBA30--p P3,5263.67.214.4381OGFC:PI 253ChorisiaspeciosaSt.HillNoMalvaceaeE86 --p P8450.91.73.5454OBc Fe 254Ciccaacida(L.)Merr.NoEuphorbiaceaeE--n --p P9381.01.93.8454OBc Fe 255CicersongaricumSteph.exDC.NoLeguminosaeE162P1,3281.42.75.4435OBc Fe 256CienfuegosiatripartitaH.B.K.Gurke--m MalvaceaeE202--q 9311.01.93.8444bd OGb2 FC:PI 257CienfuegosiayucatanensisMillspaugh--m MalvaceaeE222--q 9801.02.04.0444bd OGb2 FC:PI 258CistusalbanicusE.F.WarburgexHeywoodNoCistaceaeE18 2P2,6172.75.310.7404ORaphanuse FC:PI 259CistusalbidusL.NoCistaceaeE18 2P2,3422.44.89.6404ORaphanuse FC:PI 260CistusclusiiDunalNoCistaceaeE18 2P2,5872.65.310.6404ORaphanuse FC:PI 261CistuscreticusL.NoCistaceaeE18 2P2,1272.24.38.7404ORaphanuse FC:PI 262CistuscrispusL.NoCistaceaeE18 2P1,9212.03.97.8404ORaphanuse FC:PI 263CistusheterophyllusDesf.ssp.carthaginensis (Pau)Crespo&Mateo NoCistaceaeE18 2P2,3622.44.89.6404ORaphanuse FC:PI 264CistusladaniferL.NoCistaceaeE18 2P2,1812.24.58.9404ORaphanuse FC:PI 265CistuslaurifoliusL.NoCistaceaeE18 2P2,1852.24.58.9404ORaphanuse FC:PI 266CistuslibanotisL.NoCistaceaeE18 2P2,8272.95.811.5404ORaphanuse FC:PI 267CistusmonspeliensisL.NoCistaceaeE18 2P2,8812.95.911.8404ORaphanuse FC:PI 268CistusosbeckiaefoliusWebbexPitard&ProustNoCistaceaeE18 2P2,0242.14.18.3404ORaphanuse FC:PI 269CistusparviflorusLam.NoCistaceaeE18 2P2,4302.55.09.9404ORaphanuse FC:PI 270CistuspopulifoliusL.NoCistaceaeE18 2P2,1022.14.38.6404ORaphanuse FC:PI 271CistuspsilosepalusSweetNoCistaceaeE18 2P2,5582.65.210.4404ORaphanuse FC:PI 272CistussalviifoliusL.NoCistaceaeE18 2P2,3322.44.89.5404ORaphanuse FC:PI Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms 73 APPENDIX.(continued,thesuperscriptlettersrefertonotesprecedingthistable) Ploidy level (x) Life cycle typex DNAamount Entry numberg SpeciesVoucherFamily Higher group# 2nz 1C (Mbps ) 1C (pg) 2C (pg) 4C (pg) Original ref.a Present amounty Standard species*b1 Methodyy 273CistussymphytifoliusLam.NoCistaceaeE18 2P2,4062.54.99.8404ORaphanuse FC:PI 274bCitrusaurantiumL.NoRutaceaeE18 2P4310.40.91.8426OGallusf FC:PI 275bCitrusgrandis(L.)OsbeckNoRutaceaeE18 2P3770.40.81.5426OGallusf FC:PI 276bCitruslimon(L.)Burm.f.i NoRutaceaeE18 2P3920.40.81.6426OGallusf FC:PI 277CitruslimoniaOsbeckcv.BromeRangpurNoRutaceaeE18 2P4020.40.81.6426OGallusf FC:PI 278bCitrusparadisiMacfad.NoRutaceaeE18 2P3920.40.81.6426OGallusf FC:PI 279CitrusreshniHort.exTanakaNoRutaceaeE18 2P4020.40.81.6426OGallusf FC:PI 280eCitrussinensis(L.)Osbeckcv.Sargoins GrosseRondeh NoRutaceaeE18 2P3720.40.81.5426OGallusf FC:PI 280fCitrussinensis(L.)Osbeckcv.Pineappleh NoRutaceaeE18 2P4170.40.91.7426OGallusf FC:PI 280gCitrussinensis(L.)OsbeckNoRutaceaeE18 2P5880.61.22.4457bm OBd Fe 281CitrusvolkamerianaTen.&Pasq.NoRutaceaeE18 2P3870.40.81.6426OGallusf FC:PI 282CoccolobadiversifoliaJacq.NoPolygonaceaeE--n --p P1,1271.22.34.6454OBc Fe 283hCoffeaarabicaL.--m RubiaceaeE444P1,2791.32.65.2424OKc FC:PI 283iCoffeaarabicaL.NoRubiaceaeE44 4P1,1221.12.34.6454OBc Fe 284cCoffeabrevipesHiern.--m RubiaceaeE222P7600.81.63.1424OKc FC:PI 285dCoffeacanephoraPierre.exFroehn.--m RubiaceaeE222P7550.81.53.1424OKc FC:PI 286cCoffeacongensisFroehn.--m RubiaceaeE222P7940.81.63.2424OKc FC:PI 287dCoffeaeugenioidesS.Moore--m RubiaceaeE222P6810.71.42.8424OKc FC:PI 288cCoffeahumilisA.Cheval.--m RubiaceaeE222P8720.91.83.6424OKc FC:PI 289dCoffealibericaL.ssp.dewevreiWild& Dur.Hiern NoRubiaceaeE222P7030.71.42.9401OPetuniae FC:PI 289eCoffealibericaL.--m RubiaceaeE222P8230.81.73.4424OKc FC:PI 290dCoffeapseudozanguebariaeD.M.Bridson--m RubiaceaeE222P5340.51.12.2424OKc FC:PI 291cCoffearacemosal --m RubiaceaeE222P4660.51.01.9424OKc FC:PI 292cCoffeasessilifloraD.M.Bridson--m RubiaceaeE222P5100.51.02.1424OKc FC:PI 293Coffeasp.F.Bridsony --m RubiaceaeE222P6520.71.32.7424OKc FC:PI 294Coffeasp.Moloundouy --m RubiaceaeE222P8280.81.73.4424OKc FC:PI 295cCoffeastenophyllaG.Don.--m RubiaceaeE222P6620.71.42.7424OKc FC:PI 296bColocasiaantiquorumSchottvar.1i NoAraceaeM32--p AP4,9515.110.120.2411OBc Fe 297CommiphoramossambicensisEngl.NoBurseraceaeE262P6130.61.32.5379OJFe 298CoriariamyrtifoliaL.NoCoriariaceaeEc.728P3260.30.71.3378OJFe 299Cosmosatrosanguineusl NoCompositaeE48--p P7,1917.314.729.4465OFFe 300cCrepisbiennisL.h NoCompositaeEc.4010B7,4487.615.230.4394ah OGc CIA 300dCrepisbiennisL.h NoCompositaeEc.4010B7,9288.116.232.4394ah OGc CIA 300eCrepisbiennisL.h NoCompositaeEc.4010B8,1738.316.733.4394ah OGc Fe 300fCrepisbiennisL.h NoCompositaeEc.4010B8,5558.717.534.9394ah OGc Fe 301aCrepisbithynicavar.pirinicaAcht.i NoCompositaeE102P3,1563.26.412.9394OGc Fe 301bCrepisbithynicavar.bithynicaBoiss.i NoCompositaeE102P3,2443.36.613.2394OGc Fe 302hCrepiscapillaris(L.)Wallr.NoCompositaej E6 2A2,5972.75.310.6457bm OBd Fe 303aCrepisconyzaefolia(Gouan)A.Kerneri NoCompositaeE82P5,4005.511.022.0394OGc Fe 303bCrepisconyzaefolia(Gouan)A.Kerneri NoCompositaeE82P5,5765.711.422.8394OEc FC:PI 304aCrepispaludosa(L.)Moenchi NoCompositaeE122P4,0774.28.316.6394OGc Fe 304bCrepispaludosa(L.)Moenchi NoCompositaeE122P4,3614.58.917.8394OEc FC:PI 305bCrepispulchraL.h NoCompositaeE82A4,4594.69.118.2394OGc CIA 305cCrepispulchraL.h NoCompositaeE82A5,4495.611.122.2394ai OGc CIA 74 Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms 305dCrepispulchraL.h NoCompositaeE82A4,8515.09.919.8394OGc Fe 305eCrepispulchraL.h NoCompositaeE82A5,4005.511.022.0394ai OGc Fe 305fCrepispulchraL.h NoCompositaeE82A5,3805.511.022.0394OEc FC:PI 305gCrepispulchraL.h NoCompositaeE82A5,9886.112.224.4394OEc FC:PI 306aCrepissancta(L.)Babc.h NoCompositaeE102A2,0482.14.28.4394ah OGc Fe 306bCrepissancta(L.)Babc.h NoCompositaeE102A2,1762.24.48.9394ah OGc CIA 307CrepisschachtiiBabc.i NoCompositaeE102P2,7642.85.611.3394OGc Fe 308bCrepissetosaHallerf.i NoCompositaeE82A1,6951.73.56.9394OGc CIA 309aCrepisviscidulaFroel.i NoCompositaeE122P4,2834.48.717.5394OGc CIA 309bCrepisviscidulaFroel.i NoCompositaeE122P4,7824.99.819.5394OEc FC:PI 310bCrepiszacintha(L.)Babc.i NoCompositaeE62A1,0581.12.24.3394OGc CIA 311CrocusbiflorusMill.NoIridaceaeM8ao 2P4,2534.38.717.4419OHomof FC:PI 312CrocuscartwrightianusHerb.i NoIridaceaeM162P3,8864.07.915.9419OHomof FC:PI 313CrocusetruscusParl.NoIridaceaeM82P3,5533.67.314.5419OHomof FC:PI 314CrocussativusL.i NoIridaceaeM243P--t --t 11.823.6419OHomof FC:PI 315CrocusthomasiiTen.NoIridaceaeM162P4,2584.38.717.4419OHomof FC:PI 316Cyclamenhederifoliuml NoPrimulaceaeE--n --p P2,9233.06.011.9465OGFC:PI 317aCyclamentrochopteranthumO.Schwarzh NoPrimulaceaeE30--p P10,37310.621.242.3465OGFe 317bCyclamentrochopteranthumO.Schwarzh NoPrimulaceaeE30--p P13,45813.727.554.9465OGFe 318bCynodondactylon(L.)Pers.NoGramineaeM364P9561.02.03.9417OGallusf FC:PI 318cCynodondactylon(L.)Pers.var.dactylonNoGramineaeM364P1,1031.12.34.5438ba OSusf FC:PI 319Cynodondactylon(L.)Pers.var.dactylonNoGramineaeM546P1,4361.52.95.9438ba OIctal.f FC:PI 320aCynodontransvaalensisBurtt-DavyNoGramineaeM182P5050.51.02.1417OGallusf FC:PI 320bCynodontransvaalensisBurtt-DavyNoGramineaeM182P5440.61.12.2438ba OIctal.f FC:PI 321DalbergiahorridaDennst.NoLeguminosaeE202P1,9282.03.97.9445OGFe 322aDalbergialanceolariaLin.f.NoLeguminosaeE202P1,4311.52.95.8445OGFe 323aDalbergialatifoliaRoxb.NoLeguminosaeE202P1,6811.73.46.9445OGFe 324DalbergiamalabaricaPrain.NoLeguminosaeE202P1,8471.93.87.5445OGFe 325DalbergiamelanoxylonGuill&Perr.NoLeguminosaeE202P1,8061.83.77.4445OGFe 326DalbergiapaniculataRoxb.NoLeguminosaeE202P1,5511.63.26.3445OGFe 327DalbergiarubiginosaRoxb.NoLeguminosaeE202P1,8031.83.77.4445OGFe 328DalbergiasissoidesGrah.NoLeguminosaeE202P1,7641.83.67.2445OGFe 329aDalbergiasissooRoxb.exDC.NoLeguminosaeE202P1,5851.63.26.5445OGFe 329bDalbergiasissooRoxb.exDC.NoLeguminosaeE20 2P6910.71.42.8454OBc Fe 330DalbergiavolubilisRoxb.NoLeguminosaeE202P1,9011.93.97.8445OGFe 331DamasoniumalismaMill.NoAlismataceaeM--n --p A23,14323.647.294.5465OBFC:PI 332DasypogonhookeriDrumm.NoDasypogonaceaeM142P4260.40.91.7380OJFC:PI 333Dasypyrumhordeaceum(Cosson&Durieu) Candargy NoGramineaeM284P10,28810.521.042.0431C--aw Fe 334dDasypyrumvillosum(=Haynaldiavillosa) (L.)P.Candargyh NoGramineaeM142A10,40810.621.242.5430OCc Fe 334eDasypyrumvillosum(=Haynaldiavillosa) (L.)P.Candargyh NoGramineaeM142A6,2626.412.825.6430OCc Fe 335bDecaisneafargesiiFranch.NoLardizabalaceaek E40 2P2,4502.55.010.0457bm OBd Fe 336DeutziaprunifoliaRehderNoHydrangeaceaeE524P1,8351.93.77.5378OJFe 337DictamnusalbusL.NoRutaceaeE36 --p P3,3813.56.913.8457bm OBd Fe 338DieffenbachiapictaSchottNoAraceaeM36--p P12,08312.324.749.3411OBc Fe 339DiospyrosdiscolorWilld.NoEbenaceaeE30 --p P1,1741.22.44.8454OBc Fe 340DiospyrosmalabaricaKost.NoEbenaceaeE30 --p P1,4361.52.95.9454OBc Fe 341DissotiscanescensHook.f.NoMelastomataceaeEc.28-32--p P1810.20.40.7378OJFe 342aDoritispulcherrimaLindl.NoOrchidaceaeM382P6,6106.713.527.0447OGb2 FC:PI 343DoryanthespalmeriW.HillexBenth.NoDoryanthaceaeM48--p P3,2393.36.613.2380OGFC:PI 344DrimysvickerianaA.C.SmithNoWinteraceaeBA--n --p P1,1051.12.34.5381OKFC:PI 345DrypetesroxburghiiWall.NoPutranjavaceaek E42 --p P1,0021.02.04.1449bf OBc Fe Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms 75 APPENDIX.(continued,thesuperscriptlettersrefertonotesprecedingthistable) Ploidy level (x) Life cycle typex DNAamount Entry numberg SpeciesVoucherFamily Higher group# 2nz 1C (Mbps ) 1C (pg) 2C (pg) 4C (pg) Original ref.a Present amounty Standard species*b1 Methodyy 346Ehretialaevis(RottlerexG.Don)Roxb.NoBoraginaceaeE--n --p P3,5333.67.214.4454OBc Fe 347Eremochloaophiuroides(Munro)Hack.NoGramineaeM182P8130.81.73.3417OGallusf FC:PI 348Eriocaulonaquaticuml NoEriocaulaceaeM324P4,1014.28.416.7380OGFC:PI 349Escalloniarubral NoEscalloniaceaeE242P4140.40.81.7380OJFe 350EucnidegrandifloraRoseNoLoasaceaeEc.38-402or6P5880.61.22.4378OJFe 351EucommiaulmoidesOliverNoEucommiaceaeE342P7250.71.53.0379OGFe 352aFagussylvaticaL.var.tortuosaPepinWillk.NoFagaceaeE24 2P5440.61.12.2433OPetuniae FC:PI 352bFagussylvaticaL.NoFagaceaeE24 2P5440.61.12.2433OPetuniae FC:PI 352cFagussylvaticaL.var.purpureaAit.NoFagaceaeE24 2P5490.61.12.2433OPetuniae FC:PI 352dFagussylvaticaL.var.pendulaLodd.NoFagaceaeE24 2P5540.61.12.3433OPetuniae FC:PI 353dFestucaarundinaceaSchreb.NoGramineaeM426P7,6397.815.631.2417ONicot.e FC:PI 354FestucalongifoliaThuill.NoGramineaeM426P6,2236.412.725.4417OFc FC:PI 355Firmianacolorata(Roxb.)R.Br.NoMalvaceaeE40 --p P1,6151.63.36.6454OBc Fe 356FlagellariaguineensisSchum.NoFlagellariaceaeM38 2P8800.91.83.6380OKFC:PI 357FlemingiabracteataWightNoLeguminosaeE222P1,5701.63.26.4443bc OBc Fe 358FortunellahindsiiSwing.NoRutaceaeE36 4P6220.61.32.5426OGallusf FC:PI 359FouquieriasplendensEngelm.NoFouquieriaceaeE244P5190.51.12.1378OJFe 360Fragariaxananassacv.RedcoatDuch.--m RosaceaeE568P5980.61.22.4442OGallusf FC:M 361aGagealutea(L.)KerGawl.NoLiliaceaeM726P19,35519.839.579.0413OBc Fe 361bGagealutea(L.)KerGawl.NoLiliaceaeM726P19,82520.240.580.9413OBc FC:EB 362GardeniaresinifluaHiernNoRubiaceaeE--n --p P1,2691.32.65.2454OBc Fe 363GarryafremontiiTorr.NoGarryaceaeEc.202P1,4901.53.06.1380OLycopers.c FC:PI 364jGlycinemax(L.)Merr.strainT215h NoLeguminosaeE40 2A1,1611.22.44.7423as OFc FC:PI 364kGlycinemax(L.)Merr.strainPI423.894h NoLeguminosaeE40 2A1,2151.22.55.0423as OFc FC:PI 364lGlycinemax(L.)Merr.h --m LeguminosaeE40 2A1,2501.32.65.1432ax CGlycinee FC:PI 364mGlycinemax(L.)Merr.h --m LeguminosaeE40 2A1,4011.42.95.7432ax CGlycinee FC:PI 365GoodeniamimuloidesS.MooreNoGoodeniaceaeE162A5070.51.02.1379OGFe 366GossypioidesherbaceumL.--m MalvaceaeE26 2--q 1,8131.93.77.4444bd OGb2 FC:PI 367GossypioidesraimondiiUlbrich--m MalvaceaeE26 2--q 9801.02.04.0444bd OGb2 FC:PI 368GunneramanicataLindenNoGunneraceaeE342P7,2867.414.929.7379OFFe 369Gymnostomadeplancheana(Miq.)L.JohnsonNoMoraceaek E16 2P3680.40.81.5452OPetuniae FC:PI 370Haldinacordifolia(Roxb.)RidsdaleNoRubiaceaeE44 4P1,2961.32.65.3454OBc Fe 371Hampeaappendiculata(J.Donnell-Smith) Standley --m MalvaceaeE26 2--q 2,8913.05.911.8444bd OGb2 FC:PI 372HanguanamalayanaMerrillNoHanguanaceaeMc.170--p P1,6121.63.36.6380OFFe 373aHederacanariensisWilld.NoAraliaceaeE48 2P1,3721.42.85.6429OGlycinee FC:PI 373bHederacanariensisWilld.NoAraliaceaeE48 2P1,5091.53.16.2429OGc CIA 374aHederacolchicaC.Koch.NoAraliaceaeE1928P5,3415.510.921.8429OGlycinee FC:PI 374bHederacolchicaC.Koch.NoAraliaceaeE1928P5,5865.711.422.8429OGc CIA 375eHederahelixL.NoAraliaceaeE482P1,4601.53.06.0429av OGc CIA 375fHederahelixL.NoAraliaceaeE482P1,3721.42.85.6429av OGlycinee FC:PI 375gHederahelixL.f.arborescensC.K.SchneiderNoAraliaceaeE482P1,5091.53.16.2429OGc CIA 375hHederahelixL.f.arborescensC.K.SchneiderNoAraliaceaeE482P1,3821.42.85.6429OGlycinee FC:PI 376rHelianthusannuusL.NoCompositaeE342A3,5773.77.314.6403OGFC:PI 377HeliconiarostrataRuiz&Pav.NoHeliconiaceaeM242P4410.50.91.8379OJFe 76 Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms 378HelleborusargutifoliusViv.NoRanunculaceaeE322P9,2619.518.937.8383z OAgavee FC:PI 379aHelleborusatrorubensWaldst.&Kit. `Cupreus'i NoRanunculaceaeE322P14,50414.829.659.2383z OAgavee FC:PI 379bHelleborusatrorubensWaldst.&Kit.i NoRanunculaceaeE322P15,09215.430.861.6383z OAgavee FC:PI 380Helleboruscyclophyllus(A.Br.)Boiss.NoRanunculaceaeE322P14,65115.029.959.8383z OAgavee FC:PI 381HelleborusdumetorumWaldst.&Kit.NoRanunculaceaeE322P15,87616.232.464.8383z OAgavee FC:PI 382aHelleborusfoetidusL.`WesterFlisk'NoRanunculaceaeE322P11,41711.723.346.6383z OAgavee FC:PI 382bHelleborusfoetidusL.i NoRanunculaceaeE322P11,46611.723.446.8383z OAgavee FC:PI 383HelleboruslividusAitonNoRanunculaceaeE322P9,3109.519.038.0383z OAgavee FC:PI 384aHelleborusmultifidusVis.ssp.hercegovinus (Martinis)B.Mathew NoRanunculaceaeE322P14,50414.829.659.2383z OAgavee FC:PI 384bHelleborusmultifidusVis.ssp.istriacus (Schiffner)Merxm&Podl. NoRanunculaceaeE322P14,74915.130.160.2383z OAgavee FC:PI 384cHelleborusmultifidusVis.ssp.multifidusNoRanunculaceaeE322P14,79815.130.260.4383z OAgavee FC:PI 384dHelleborusmultifidusVis.ssp.bocconeisiculusNoRanunculaceaeE322P15,04315.430.761.4383z OAgavee FC:PI 384eHelleborusmultifidusVis.ssp.bocconei (Tenore)B.Mathew NoRanunculaceaeE322P15,09215.430.861.6383z OAgavee FC:PI 385aHelleborusnigerL.(doubleflower)i NoRanunculaceaeE322P13,72014.028.056.0383z OAgavee FC:PI 385bHelleborusnigerL.i NoRanunculaceaeE322P13,86714.228.356.6383z OAgavee FC:PI 385cHelleborusnigerL.ssp.macranthus (Freyn)Schiffneri NoRanunculaceaeE322P14,40614.729.458.8383z OAgavee FC:PI 386HelleborusodorusWaldst.&Kit.i NoRanunculaceaeE322P15,04315.430.761.4383z OAgavee FC:PI 387aHelleborusorientalisLamarckssp.orientalisi NoRanunculaceaeE322P14,55314.929.759.4383z OAgavee FC:PI 387bHelleborusorientalisLamarcki NoRanunculaceaeE322P14,72515.030.160.1383z OAgavee FC:PI 387cHelleborusorientalisLamarckssp.guttatus (A.Br.&Sauer)B.Mathewi NoRanunculaceaeE322P14,74915.130.160.2383z OAgavee FC:PI 387dHelleborusorientalisLamarckssp. abchasicus(A.Br.)B.Mathewi NoRanunculaceaeE322P14,79815.130.260.4383z OAgavee FC:PI 387eHelleborusorientalisLamarck`Kochii'i NoRanunculaceaeE322P14,99415.330.661.2383z OAgavee FC:PI 388HelleboruspurpurascensWaldst.&Kit.NoRanunculaceaeE322P14,94515.330.561.0383z OAgavee FC:PI 389HelleborusthibetanusFranchetNoRanunculaceaeE322P17,49317.935.771.4383z OAgavee FC:PI 390aHelleborustorquatusArcherHind`Dido' (doubleflowers)i NoRanunculaceaeE322P14,60214.929.859.6383z OAgavee FC:PI 390bHelleborustorquatusArcherHindi NoRanunculaceaeE322P14,74915.130.160.2383z OAgavee FC:PI 390cHelleborustorquatusArcherHind`Croaticus'i NoRanunculaceaeE322P14,70015.030.060.0383z OAgavee FC:PI 391HelleborusvesicariusAucherNoRanunculaceaeE322P13,86714.228.356.6383z OAgavee FC:PI 392aHelleborusviridisL.ssp.viridisNoRanunculaceaeE322P14,89615.230.460.8383z OAgavee FC:PI 392bHelleborusviridisL.ssp.occidentalis(Reut.) Schiffner NoRanunculaceaeE322P15,09215.430.861.6383z OAgavee FC:PI 393Hernandianymphaeifolia(C.Presl.)KubitzkiNoHernandiaceaeBA--n --p P2,3402.44.89.6454OBc Fe 394HerniariaglabraLinn.NoCaryophyllaceaeE182AP5150.51.12.1465OJFe 395bHieraciumaurantiacumL.NoCompositaej E36 4P3,6263.77.414.8457bm OBd Fe 396HolopteleaintegrifoliaPlanch.NoUlmaceaeE28 --p P6660.71.42.7454OBc Fe 397HomalomenarubescensKunthNoAraceaeM34--p AP8,9559.118.336.6411OBc Fe 398pHordeumvulgareL.cv.NewGoldenNoGramineaeM14 2A5,0965.210.420.8387ae OGallusf FC:PI 399Hostacapitata(Koidzumi)NakaiNoAsparagaceaek M602P9,4579.719.338.6384aa OAgavesp.ab FC:PI 400Hostaclausavar.normalisF.MaekawaNoAsparagaceaek M602P9,4089.619.238.4384aa OAgavesp.ab FC:PI 401HostaclausaNakaivar.clausaNoAsparagaceaek M903P--t --t 28.557.0384aa OAgavesp.ab FC:PI 402HostagracillimaF.MaekawaNoAsparagaceaek M602P10,82911.122.144.2384aa OAgavesp.ab FC:PI 403HostahypoleucaMurataNoAsparagaceaek M602P12,49512.825.551.0384aa OAgavesp.ab FC:PI 404HostajonesiiM.ChungNoAsparagaceaek M602P8,5758.817.535.0384aa OAgavesp.ab FC:PI 405HostakikutiiF.MaekawaNoAsparagaceaek M602P11,17211.422.845.6384aa OAgavesp.ab FC:PI 406HostakiyosumiensisF.MaekawaNoAsparagaceaek M602P11,90712.224.348.6384aa OAgavesp.ab FC:PI Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms 77 APPENDIX.(continued,thesuperscriptlettersrefertonotesprecedingthistable) Ploidy level (x) Life cycle typex DNAamount Entry numberg SpeciesVoucherFamily Higher group# 2nz 1C (Mbps ) 1C (pg) 2C (pg) 4C (pg) Original ref.a Present amounty Standard species*b1 Methodyy 407Hostalongipesvar.longipesMatsumuraNoAsparagaceaek M602P12,74013.026.052.0384aa OAgavesp.ab FC:PI 408HostalongissimaHondaNoAsparagaceaek M602P9,6049.819.639.2384aa OAgavesp.ab FC:PI 409HostaminorNakai`Gosan'NoAsparagaceaek M602P8,4288.617.234.4384aa OAgavesp.ab FC:PI 410Hostaplantaginea(Lamarck)AschersonNoAsparagaceaek M602P12,10312.424.749.4384aa OAgavesp.ab FC:PI 411HostapulchellaN.FujitaNoAsparagaceaek M602P10,63310.921.743.4384aa OAgavesp.ab FC:PI 412HostapycnophyllaF.MaekawaNoAsparagaceaek M602P10,87811.122.244.4384aa OAgavesp.ab FC:PI 413bHostarectifoliaNakaiNoAsparagaceaek M602P10,43710.721.342.6384aa OAgavesp.ab FC:PI 414HostarupifragaNakaiNoAsparagaceaek M602P12,98513.326.553.0384aa OAgavesp.ab FC:PI 415HostashikokianaN.FujitaNoAsparagaceaek M602P11,22111.522.945.8384aa OAgavesp.ab FC:PI 416Hostasieboldianavar.sieboldiana (Hooker)Engler NoAsparagaceaek M602P11,56411.823.647.2384aa OAgavesp.ab FC:PI 417HostasieboldiiP.O.(Paxton)IngramNoAsparagaceaek M602P11,02511.322.545.0384aa OAgavesp.ab FC:PI 418HostatibaeF.MaekawaNoAsparagaceaek M602P8,6248.817.635.2384aa OAgavesp.ab FC:PI 419HostatsushimensisN.FujitaNoAsparagaceaek M602P8,4778.717.334.6384aa OAgavesp.ab FC:PI 420HostaventricosaStearnNoAsparagaceaek M1204P19,20819.639.278.4384aa OAgavesp.ab FC:PI 421HostavenustaF.MaekawaNoAsparagaceaek M602P8,4778.717.334.6384aa OAgavesp.ab FC:PI 422HostayingeriS.B.JonesNoAsparagaceaek M602P9,3599.619.138.2384aa OAgavesp.ab FC:PI 423aHydrangeaanomalaD.Donssp.petiolaris Sieb.&Zucc. NoHydrangeaceaeE362P1,3281.42.75.4397OGc FC:EB 423bHydrangeaanomalaD.Donssp.anomala McClint. NoHydrangeaceaeE362P1,5341.63.16.3397OGc FC:EB 424HydrangeaarborescensL.NoHydrangeaceaeE362P1,1321.22.34.6397OGc FC:EB 425aHydrangeaasperaDon.ssp.robustaMcClint. (=H.longipesFranch.) NoHydrangeaceaeE342P1,4801.53.06.0397OGc FC:EB 425bHydrangeaasperaDon.ssp.sargentiana (Rehder)McClint. NoHydrangeaceaeE342P1,5291.63.16.2397OGc FC:EB 425cHydrangeaasperaDon.ssp.strigosaMcClint.NoHydrangeaceaeE342P1,7001.73.56.9397OGc FC:EB 425dHydrangeaasperaDon.ssp.asperaMcClint.NoHydrangeaceaeE362P2,3232.44.79.5397OGc FC:EB 426HydrangeaheteromallaD.DonNoHydrangeaceaeE362P1,4461.53.05.9397OGc FC:EB 427HydrangeainvolucrataSieb.NoHydrangeaceaeE302P2,4502.55.010.0397OGc FC:EB 428aHydrangeamacrophylla(Thunb.)Ser.ssp. serrata(Thunb.)Makino NoHydrangeaceaeE362P1,8871.93.97.7397OGc FC:EB 428bHydrangeamacrophylla(Thunb.)Ser.ssp. macrophyllaMcClint. NoHydrangeaceaeE362P2,1072.24.38.6397OGc FC:EB 429HydrangeapaniculataSieb.NoHydrangeaceaeE362P1,8471.93.87.5397OGc FC:EB 430HydrangeaquercifoliaBartr.NoHydrangeaceaeE362P9561.02.03.9397OGc FC:EB 431aHydrangeascandens(L.f.)ssp.scandens McClint. NoHydrangeaceaeE362P1,8031.83.77.4397OGc FC:EB 431bHydrangeascandens(L.f.)ssp.luikinensis (Nakai)McClint. NoHydrangeaceaeE362P1,8721.93.87.6397OGc FC:EB 432HydrangeaseemanniiRileyNoHydrangeaceaeE362P1,0241.02.14.2397OGc FC:EB 433Hypericumhirsutuml NoHypericaceaeE--n --p P1470.20.30.6465OJFe 434Ingadulcis(Roxb.)Willd.NoLeguminosaeE--n --p P4020.40.81.6454OBc Fe 435aIrisstenophyllaHausskn.exBakerh NoIridaceaeM242P8,3598.517.134.1465OBFe 435bIrisstenophyllaHausskn.exBakerh NoIridaceaeM262P10,74311.021.943.9465OBFe 435cIrisstenophyllaHausskn.exBakerh NoIridaceaeM262P11,43911.723.346.7465OBFe 78 Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms 436IxiolirionledebouriiFisch.&Mey.NoIxioliriaceaeMc.242P9951.02.04.1380OJFe 437IxoraarboreaRoxb.exSm.NoRubiaceaeE--n --p P1,3651.42.85.6454OBc Fe 438JacquiniaaristataJacq.NoTheophrastaceaeE382P5930.61.22.4378OJFe 439KentranthusruberDruceNoValerianaceaeE324P4070.40.81.7379OGFe 440Khayasenegalensis(Desr.)A.Juss.NoMeliaceaeE--n --p P8530.91.73.5454OBc Fe 441Kigeliaafricana(Lam.)Benth.NoBignoniaceaeE--n --p P1,7001.73.56.9454OBc Fe 442KirkiaacuminataOliverNoKirkiaceaeEc.302P3190.30.71.3378OJFe 443LagerstroemiatomentosaC.Presl.Presl.NoLythraceaeE--n --p P9651.02.03.9454OBc Fe 444LantanacamaraL.NoVerbenaceaeE22 --p P2,6972.85.511.0454OBc Fe 445LapageriaroseaRuiz&Pav.NoPhilesiaceaeM30+1B2P6,6446.813.627.1380OGFe 446bLathyrusamphicarposL.--m LeguminosaeE142A5,1235.210.520.9412O--v Fe 447eLathyrusannuusL.--m LeguminosaeE142A6,4296.613.126.2412O--v Fe 447fLathyrusannuusL.--m LeguminosaeE142A6,2826.412.825.6418OGc FC:PI 448jLathyrusaphacaL.--m LeguminosaeE142A4,5284.69.218.5418OC&Ec FC:PI 449bLathyruschloranthusBoiss.--m LeguminosaeE142A5,9446.112.124.3412O--v Fe 450fLathyrusciceraL.--m LeguminosaeE142A5,1945.310.621.2418OGc FC:PI 451eLathyrusclymenumL.--m LeguminosaeE142A4,2974.48.817.5418OC&Ec FC:PI 451fLathyrusclymenumL.--m LeguminosaeE142A6,3996.513.126.1412O--v Fe 452LathyrusgmeliniiFritsch--m LeguminosaeE142P8,7919.017.935.9412O--v Fe 453bLathyrusgrandiflorusSibth.&Sm.--m LeguminosaeE142P8,7248.917.835.6412O--v Fe 454bLathyrusheterophyllusL.--m LeguminosaeE142P8,6398.817.635.3412O--v Fe 455Lathyruslaevigatus(Waldst.&Kit.)--m LeguminosaeE142P11,00811.222.544.9412O--v Fe 456cLathyrusmaritimusBigelow--m LeguminosaeE142P6,7776.913.827.7412O--v Fe 457eLathyrusnissoliaL.--m LeguminosaeE142A4,8535.09.919.8412O--v Fe 458eLathyrusochrus(L.)DC--m LeguminosaeE142A4,5424.69.318.5418OC&Ec FC:PI 459iLathyrusodoratusL.NoLeguminosaej E14 2A8,1348.316.633.2457bm OBd Fe 460fLathyrussativusL.--m LeguminosaeE142A6,5516.713.426.7418OGc FC:PI 460gLathyrussativusL.--m LeguminosaeE142A6,8997.014.128.2412O--v Fe 461fLathyrussylvestrisL.--m LeguminosaeE142P10,10410.320.641.2412O--v Fe 462gLathyrustingitanusL.--m LeguminosaeE142A7,6937.915.731.4418OGc FC:PI 462hLathyrustingitanusL.--m LeguminosaeE142A7,6917.815.731.4412O--v Fe 465LawsoniainermisL.NoLythraceaeEc.30-344P3330.30.71.4378OJFe 464LebronneciakokioidesFosberg--m MalvaceaeE262--q 1,7641.83.67.2444bd OGb2 FC:PI 465LemnaminorL.NoAraceaeM1266P1,4261.52.95.8400OGFe 466LeucaenacollinsiiBritton&RoseNoLeguminosaeE52,?56 2P5290.51.12.2425O--at FC:EB 467bLeucaenaconfertifloraS.ZarateNoLeguminosaeE112 4P8280.81.73.4425O--at FC:EB 468LeucaenacuspidataStandleyNoLeguminosaeE--n --p P6860.71.42.8425O--at FC:EB 469Leucaenadiversifolia(Schltdl.Benth.NoLeguminosaeE1044P1,3281.42.75.4425O--at FC:EB 470cLeucaenaesculenta(Sesse&Moc.exDC) Benth. NoLeguminosaeE52(?56, ?112) --p P7060.71.42.9425O--at FC:EB 471LeucaenagreggiiS.WatsonNoLeguminosaeE56 2P8870.91.83.6425O--at FC:EB 472LeucaenainvolucrataS.ZarateNoLeguminosaeE--n --p P1,1221.12.34.6425O--at FC:EB 473cLeucaenalanceolataS.WatsonNoLeguminosaeE522P7060.71.42.9425O--at FC:EB 474LeucaenalempiranaC.E.HughesNoLeguminosaeE--n --p P4260.40.91.7425O--at FC:EB 475bLeucaenaleucocephala(Lam.)DeWit.NoLeguminosaeE1044P1,4551.53.05.9425O--at FC:EB 476LeucaenamacrophyllaBenth.NoLeguminosaeE?52 --p P2990.30.61.2425O--at FC:EB 477Leucaenamagnifica(C.E.Hughes)C.E.HughesNoLeguminosaeE?52 --p P5000.51.02.0425O--at FC:EB 478Leucaenamatudae(S.Zarate)C.E.HughesNoLeguminosaeE?52 --p P5190.51.12.1425O--at FC:EB 479LeucaenamulticapitulaScheryNoLeguminosaeE?52 --p P4700.51.01.9425O--at FC:EB 480LeucaenapallidaBritton&RoseNoLeguminosaeE104 (?110/112) 4P7740.81.63.2425O--at FC:EB 481LeucaenapueblanaBritton&RoseNoLeguminosaeE--n --p P4900.51.02.0425O--at FC:EB 482Leucaenapulverulenta(Schltdl.)Benth.NoLeguminosaeE562P6860.71.42.8425O--at FC:EB 483LeucaenaretusaBenth.NoLeguminosaeE56 2P7640.81.63.1425O--at FC:EB Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms 79 APPENDIX.(continued,thesuperscriptlettersrefertonotesprecedingthistable) Ploidy level (x) Life cycle typex DNAamount Entry numberg SpeciesVoucherFamily Higher group# 2nz 1C (Mbps ) 1C (pg) 2C (pg) 4C (pg) Original ref.a Present amounty Standard species*b1 Methodyy 484LeucaenasalvadorensisStandley exBritton&Rose NoLeguminosaeE?56 --p P8870.91.83.6425O--at FC:EB 485LeucaenashannoniiJ.D.SmithNoLeguminosaeE52 2P6910.71.42.8425O--at FC:EB 486Leucaenatrichandra(Zucc.)UrbanNoLeguminosaeE52(?56) 2P7640.81.63.1425O--at FC:EB 487Leucaenatrichodes(Jacq.)Benth.NoLeguminosaeE52 2P5390.61.12.2425O--at FC:EB 488LimnanthesdouglasiiR.Br.NoLimnanthaceaeE102A1,3621.42.85.6379OJFe 489Litseaglutinosa(Lour.)C.B.RobinsonNoLauraceaeBA48 --p P2,7662.85.611.3454OBc Fe 490cLoliumperenneL.NoGramineaeM142P2,7732.85.711.3417OGallusf FC:PI 491Loranthuseuropaeusl NoLoranthaceaek E--n --p --q 8,0858.316.533.0457bm OBd Fe 492bLupinusangustifoliusL.NoLeguminosaeE38,42,44--p A752.an 0.8an 1.5an 3.1an 416C--an FC:PI 493LupinusatlanticusGladst.NoLeguminosaeE38--p A1,458.an 1.5an 3.0an 6.0an 416C--an FC:PI 494LupinuscosentiniiGuss.NoLeguminosaeE32--p A1,126.an 1.1an 2.3an 4.6an 416C--an FC:PI 495LupinusdigitatusForssk.NoLeguminosaeE36--p A1,286.an 1.3an 2.6an 5.3an 416C--an FC:PI 496LupinusmicranthusGuss.NoLeguminosaeE52--p A461.an 0.5an 0.9an 1.9an 416C--an FC:PI 497LupinuspalaestinusBoiss.NoLeguminosaeE42--p A1,201.an 1.2an 2.5an 4.9an 416C--an FC:PI 498cLupinuspilosusMurr.NoLeguminosaeE42--p A1,201.an 1.2an 2.5an 4.9an 416C--an FC:PI 499cLuzulacampestris(L.)DC.NoJuncaceaeM12--u P1,4431.52.95.9420OBc Fe 500cLuzulaelegansGuthnickNoJuncaceaeM6--u P1,5121.53.16.2420OBc Fe 501dLuzulaluzuloides(Lam.)Dandy&WilmottNoJuncaceaeM12--u P1,722.ap 1.8ap 3.5ap 7.0ap 420OBc Fe 502dLuzulaniveaLam.&DC.NoJuncaceaeM12--u P1,482.ap 1.5ap 3.0ap 6.1ap 420OBc Fe 503cLuzulapedemontanaBoiss&Reut.NoJuncaceaeM30--u P1,7171.83.57.0420OBc Fe 504cLuzulapediformisDC.NoJuncaceaeM12--u P1,5831.63.26.5420OBc Fe 505LuzulaspicataDC.NoJuncaceaeM24--u P1,9041.93.97.8420OBc Fe 506LuzulasudeticaDC.NoJuncaceaeM48--u P1,6861.73.46.9420OBc Fe 507kLycopersiconesculentumMill.cv. Gardener'sDelight NoSolanaceaeE--n --p A9801.02.04.0382OHc FC:PI 508bMalvasylvestrisL.--m MalvaceaeE42 6P1,4701.53.06.0444bd OGb2 FC:PI 509bMangiferaindicaL.NoAnacardiaceaeE40 4P8820.91.83.6454OBc Fe 510Matthiolaincanal NoCruciferaej E--n --p --q 2,5972.75.310.6457bm OBd Fe 511aMelaleucaleucadendraL.NoMyrtaceaeE22 --p P1,1101.12.34.5449bfOBc Fe 512MelampyrumarvenseLinn.NoOrobanchaceaeE--n --p P8,0738.216.533.0465OGFC:PI 513MeliaazedarachL.NoMeliaceaeE28 --p P4210.40.91.7454OBc Fe 514MelianthusmajorL.NoMelianthaceaeE36,38 2or4P6270.61.32.6378OJFe 515Menthalongifolial NoLabiataeE242P3850.40.81.6465OJFe 516Merrilliodendronmegacarpum(Hemsl.) Sleum. NoIcacinaceaeE302P1,0711.12.24.4380OKFC:PI 517MimusopselengiL.NoSapotaceaeE24 --p P2740.30.61.1454OBc Fe 518aMonsteradeliciosaLiebm.NoAraceaeM50--p P9,3849.619.238.3411OBc Fe 519MonsteraobliquaMiq.NoAraceaeM44--p P8,8229.018.036.0411OBc Fe 520MontiniacaryophyllaceaThunb.NoMontiniaceaeE242P5540.61.12.3380OJFe 521dMusaacuminataCollassp.banksii--m MusaceaeM222P6000.61.22.5402OGlycinee FC:PI 521eMusaacuminataCollassp.siamea--m MusaceaeM222P6180.61.32.5402OGlycinee FC:PI 521fMusaacuminataCollassp.banksiih NoMusaceaeM22 2P5880.61.22.4410OPetuniae FC:EB 521gMusaacuminataCollassp.malaccensis AccessionSelangorh NoMusaceaeM22 2P5980.61.22.4410OPetuniae FC:EB 521hMusaacuminataCollassp.banksiih NoMusaceaeM22 2P6370.71.32.6410OPetuniae FC:EB 80 Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms 521iMusaacuminataCollassp.siamea AccessionSiamh NoMusaceaeM222P6520.71.32.7410OPetuniae FC:EB 521jMusaacuminataCollassp.truncata--m MusaceaeM222P6260.61.32.6421aq OGlycinee FC:PI 521kMusaacuminataCollagenotypePPC--m MusaceaeM222P6100.61.22.5421aq OGlycinee FC:PI 522cMusabalbisianaColla--m MusaceaeM222P5560.61.12.3421OGlycinee FC:PI 522dMusabalbisianaColla--m MusaceaeM222P5490.61.12.2402OGlycinee FC:PI 522eMusabalbisianaCollaAccessionTani(1120)NoMusaceaeM22 2P5680.61.22.3410OPetuniae FC:EB 523MusaornataRoxb.NoMusaceaeM22 2P6030.61.22.5410OPetuniae FC:EB 524Musaviolascensl --m MusaceaeM202P6910.71.42.8421OGlycinee FC:PI 525MuscariadiliiM.B.Guner&H.DumanNoAsparagaceaeM182P2,5502.65.210.4465OGFe 526Muscarimcbeathianuml NoAsparagaceaeM182P2,9893.16.112.2465OBFe 527MyoporummauritianumA.DC.NoMyoporaceaeE728P1,9041.93.97.8379OGFe 528MyricagaleLinn.NoMyricaceaeE16,48, 80,96 --p P4090.40.81.7379OJFe 529MyrsineafricanaL.NoMyrsinaceaeE46--p P1,2051.22.54.9380OJFe 530NartheciumossifragumHuds.NoNartheciaceaeM26 2P4040.40.81.7380OJFC:PI 531NavarretiasquarrosaHook.&Arn.NoPolemoniaceaeE182A1,2891.32.65.3378OJFe 532NelumbonuciferaGaertn.NoNelumbonaceaeE162P2380.20.51.0379OJFe 533NemophilamenziesiiHook.&Arn.NoBoraginaceaeE182A1,2201.22.55.0465OJFe 534NepenthespervilleiBlumeNoNepenthaceaeE--n --p P2740.30.61.1378OJFe 535kNicotianatabacumL.NoSolanaceaeE48 4A7,5467.715.430.8457bm OBd Fe 536Nyctanthesarbor-tristisL.NoOleaceaeE44 --p P1,2031.22.54.9454OBc Fe 537Odontitesluteal NoOrobanchaceaeE--n --p P5540.61.12.3465OJFe 538OdontitesvernaDum.NoOrobanchaceaeEc.182P5590.61.12.3465OJFe 539OdontostomumhartwegiiTorr.NoTechophilaeaceaeM202P2,5062.65.110.2380OGFC:PI 540OenotheraammophilaFockeNoOnagraceaeE142BP1,1421.22.34.7439OSorghume FC:PI 541OenotherabiennisL.NoOnagraceaeE142BP1,1961.22.44.9439OSorghume FC:PI 542OleaafricanaMill.NoOleaceaeE462P1,5481.63.26.3462OSorghume Fe 543OleacuspidataWall.NoOleaceaeE462P2,0292.14.18.3462OSorghume Fe 544aOleaeuropaeaL.cv.DolceAgogiah NoOleaceaeE462P1,9112.03.97.8462OSorghume Fe 544bOleaeuropaeaL.cv.Pendolinoh NoOleaceaeE462P2,2832.34.79.3462OSorghume Fe 545OleaferrugineaRoyaleNoOleaceaeE462P1,8131.93.77.4462OSorghume Fe 546OleaindicaKleinNoOleaceaeE462P1,6461.73.46.7462OSorghume Fe 547rOryzasativaL.ssp.indicaNoGramineaeM242A4660.51.01.9450bg O--GS 547sOryzasativaL.ssp.indicacv.IR8--m GramineaeM242A4400.40.91.8389OArab.e FC:PI 547tOryzasativaL.ssp.japonicacv.Nipponbare--m GramineaeM242A4010.40.81.6389OArab.e FC:PI 547uOryzasativaL.ssp.japonicacv.NipponbareNoGramineaeM242A4200.40.91.7451bh O--GS 548OxalisbolivianaBrittonNoOxalidaceaeE--n --p P4690.51.01.9456bk OGallusf FC:PI 549OxaliscoralleoidesR.KnuthNoOxalidaceaeE16 2P5210.51.12.1456bk OGallusf FC:PI 550OxaliscuzcensisR.KnuthNoOxalidaceaeE16 2AP5750.61.22.3456bk OGallusf FC:PI 551OxalisherreraeR.KnuthNoOxalidaceaeE16 2P4540.50.91.9456bk OGallusf FC:PI 552OxalishumbertiiR.KnuthNoOxalidaceaeE16 2P5100.51.02.1456bk OGallusf FC:PI 553OxalislotoidesKunthNoOxalidaceaeE16 2P4320.40.91.8456bk OGallusf FC:PI 554aOxalislucumayensisR.Knuthssp. lucumayensis NoOxalidaceaeE16 2P4550.50.91.9456bk OGallusf FC:PI 554bOxalislucumayensisR.Knuthssp.subiens Lourteig NoOxalidaceaeE16 2P4830.51.02.0456bk OGallusf FC:PI 555OxalismarcapatensisR.KnuthNoOxalidaceaeE16 2P4400.40.91.8456bk OGallusf FC:PI 556OxalismedicagineaKunthNoOxalidaceaeE16 2P4170.40.91.7456bk OGallusf FC:PI 557OxalismegalorrhizaJacquinNoOxalidaceaeE14or18 2P3990.40.81.6456bk OGallusf FC:PI 558OxalismollisKunthNoOxalidaceaeE16 2P4370.40.91.8456bk OGallusf FC:PI 559OxalisoulophoraLourteigNoOxalidaceaeE16 2P4330.40.91.8456bk OGallusf FC:PI 560OxalispaucartambensisR.KnuthNoOxalidaceaeE16 2P4700.51.01.9456bk OGallusf FC:PI 561aOxalispeduncularisKunthh NoOxalidaceaeE16 2P4540.50.91.9456bk OGallusf FC:PI Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms 81 APPENDIX.(continued,thesuperscriptlettersrefertonotesprecedingthistable) Ploidy level (x) Life cycle typex DNAamount Entry numberg SpeciesVoucherFamily Higher group# 2nz 1C (Mbps ) 1C (pg) 2C (pg) 4C (pg) Original ref.a Present amounty Standard species*b1 Methodyy 561bOxalispeduncularisKunthvar.pilosah NoOxalidaceaeE16 2P5700.61.22.3456bk OGallusf FC:PI 562OxalispetrophilaR.KnuthNoOxalidaceaeE16 2P4820.51.02.0456bk OGallusf FC:PI 563OxalisphaeotrichaDielsNoOxalidaceaeE32 4P8200.81.73.3456bk OGallusf FC:PI 564OxalispicchensisR.KnuthNoOxalidaceaeE32 4P8210.81.73.4456bk OGallusf FC:PI 565aOxalisptychocladaDielsNoOxalidaceaeE16 2P4340.40.91.8456bk OGallusf FC:PI 565bOxalisptychocladaDielsvar. trichocarpaLourteig NoOxalidaceaeE16 2P4660.51.01.9456bk OGallusf FC:PI 566Oxalissan-migueliiR.KnuthNoOxalidaceaeE16 2P4280.40.91.7456bk OGallusf FC:PI 567Oxalissp.cfr.melilotoidesZuccariniy NoOxalidaceaeE16 2P4560.50.91.9456bk OGallusf FC:PI 568Oxalissp.cfr.teneriensisR.Knuthy NoOxalidaceaeE16 2P4730.51.01.9456bk OGallusf FC:PI 569aOxalisspiralisR.&P.exG.Donh NoOxalidaceaeE16 2AP5200.51.12.1456bk OGallusf FC:PI 569bOxalisspiralisR.&P.exG.Donh NoOxalidaceaeE16 2AP6560.71.32.7456bk OGallusf FC:PI 570OxalistabaconasensisR.KnuthNoOxalidaceaeE16 2P5150.51.12.1456bk OGallusf FC:PI 571OxalistuberosaMolinaNoOxalidaceaeE64 8P1,7221.83.57.0456bl OGallusf FC:PI 572Oxalisunduavensis(Rusby)R.KnuthNoOxalidaceaeE16 2P5050.51.02.1456bk OGallusf FC:PI 573OxalisurubambensisR.KnuthNoOxalidaceaeE16 2P4310.40.91.8456bk OGallusf FC:PI 574OxalisvulcanicolaDonn.Sm.NoOxalidaceaeE16 2P4340.40.91.8456bk OGallusf FC:PI 575aPaeoniacaucasica(Schipcz.)Schipcz.h --m PaeoniaceaeE102P15,59215.931.863.6459C--bq Fe 575bPaeoniacaucasica(Schipcz.)Schipcz.h --m PaeoniaceaeE102P16,08716.432.865.7459C--bq Fe 576aPaeoniadauricaAndr.h --m PaeoniaceaeE102P11,80412.024.148.2459C--bq Fe 576bPaeoniadauricaAndr.h --m PaeoniaceaeE102P12,97013.226.552.9459C--bq Fe 577aPaeonialagodechianaKem.-Nath.h --m PaeoniaceaeE102P11,98112.224.548.9459C--bq Fe 577bPaeonialagodechianaKem.-Nath.h --m PaeoniaceaeE102P14,00914.328.657.2459C--bq Fe 578aPaeoniamacrophylla(Albov)Lomak.h --m PaeoniaceaeE204P29,44930.160.1120.2459C--bq Fe 578bPaeoniamacrophylla(Albov)Lomak.h --m PaeoniaceaeE204P30,08630.761.4122.8459C--bq Fe 579bPaeoniamlokosewitschiLomak.h --m PaeoniaceaeE102P16,79017.134.368.5459C--bq Fe 579cPaeoniamlokosewitschiLomak.h --m PaeoniaceaeE102P17,57117.935.971.7459C--bq Fe 580bPaeoniaofficinalisL.h --m PaeoniaceaeE204P25,99526.553.1106.1459C--bq Fe 581aPaeoniaruprechtianaKem.-Nath.h --m PaeoniaceaeE102P15,22415.531.162.1459C--bq Fe 581bPaeoniaruprechtianaKem.-Nath.h --m PaeoniaceaeE102P17,33117.735.470.7459C--bq Fe 582aPaeoniastevenianaKem.-Nath.h --m PaeoniaceaeE204P27,95528.557.1114.1459C--bq Fe 582bPaeoniastevenianaKem.-Nath.h --m PaeoniaceaeE204P29,93930.661.1122.2459C--bq Fe 583bPaeoniatenuifoliaL.h --m PaeoniaceaeE102P7,7007.915.731.4459C--bq Fe 583cPaeoniatenuifoliaL.h --m PaeoniaceaeE102P11,59811.823.747.3459C--bq Fe 584aPaeoniatomentosa(Lomak.)N.Buschh --m PaeoniaceaeE204P25,26025.851.6103.1459C--bq Fe 584bPaeoniatomentosa(Lomak.)N.Buschh --m PaeoniaceaeE204P27,39128.055.9111.8459C--bq Fe 585aPaeoniawittmannianaHartwissexLindl.h --m PaeoniaceaeE204P27,51428.156.2112.3459C--bq Fe 585bPaeoniawittmannianaHartwissexLindl.h --m PaeoniaceaeE204P31,04231.763.4126.7459C--bq Fe 586dPapaverrhoeasL.NoPapaveraceaeE14 2A2,5482.65.210.4457bm OBd Fe 587ParmentieracereiferaSeem.NoBignoniaceaeE--n --p P6470.71.32.6454OBc Fe 588PaspalumnotatumFlugge.NoGramineaeM202P7060.71.42.9417OGallusf FC:PI 589Peltophorumpterocarpum(DC.)Bakerex K.Heyne NoLeguminosaeE26 --p P7770.81.63.2454OBc Fe 590aPetroselinumcrispumcv.ChampionMoss Curledl NoUmbelliferaeE--n --p P2,2052.34.59.0382OLycopers.c FC:PI 82 Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms Petunia­Sometaxaonceincludedin Petuniaarenowincludedin Calibrachoa(seefootnoteae) 591PetuniaalpicolaL.B.Sm.&DownsNoSolanaceaeE182P1,4501.53.05.9387ae OGallus-398pFC:PI 592PetuniaaltiplanaT.Ando&Hashim.NoSolanaceaeE142P1,2741.32.65.2387ae OGallus-398pFC:PI 593bPetuniaaxillaris(Lam.)Britton,Sterns& Poggenb.ssp.axillaris NoSolanaceaeE142P1,4361.52.95.9387ae OGallus-398pFC:PI 593cPetuniaaxillaris(Lam.)Britton,Sterns& Poggenb.ssp.subandina NoSolanaceaeE14 2P1,4651.53.06.0387ae OGallus-398pFC:PI 593dPetuniaaxillaris(Lam.)Britton,Sterns& Poggenb.ssp.parodii NoSolanaceaeE142P1,4701.53.06.0387ae OGallus-398pFC:PI 594PetuniabajeensisT.Ando&Hashim.NoSolanaceaeE14 2P1,4501.53.05.9387ae OGallus-398pFC:PI 595PetuniabonjardinensisT.Ando&Hashim.NoSolanaceaeE142P1,4211.52.95.8387ae OGallus-398pFC:PI 596PetuniaexsertaStehmann.NoSolanaceaeE14 2P1,5391.63.16.3387ae OGallus-398pFC:PI 597PetuniaguarapuavensisT.Ando&Hashim.NoSolanaceaeE142P1,4991.53.16.1387ae OGallus-398pFC:PI 598PetuniahelianthemoidesSendtn.NoSolanaceaeE182P1,4361.52.95.9387ae OGallus-398pFC:PI 599ePetuniahybridaVilm.cv.PearlSkyBlueNoSolanaceaeE14 2P1,4411.52.95.9387ae OGallus-398pFC:PI 600aPetuniaintegrifolia(Hook.)Schinz& Thell.ssp.inflata(R.E.Fr.) NoSolanaceaeE142A1,3331.42.75.4387ae OGallus-398pFC:PI 600bPetuniaintegrifolia(Hook.)Schinz& Thell.ssp.integrifoliavar.integrifolia NoSolanaceaeE142P1,4361.52.95.9387ae OGallus-398pFC:PI 600cPetuniaintegrifolia(Hook.)Schinz& Thell.ssp.integrifoliavar. depauperata(R.E.Fr.) NoSolanaceaeE142P1,4901.53.06.1387ae OGallus-398pFC:PI 601PetuniainteriorT.Ando&Hashim.NoSolanaceaeE142P1,4551.53.05.9387ae OGallus-398pFC:PI 602PetuniakleiniiL.B.Sm.&DownsNoSolanaceaeE182P1,4361.52.95.9387ae OGallus-398pFC:PI 603PetunialittoralisL.B.Sm.&DownsNoSolanaceaeE142P1,4551.53.05.9387ae OGallus-398pFC:PI 604PetuniamantiqueirensisT.Ando&Hashim.NoSolanaceaeE14 2P1,5241.63.16.2387ae OGallus-398pFC:PI 605PetuniaoccidentalisR.E.Fr.NoSolanaceaeE142A1,3621.42.85.6387ae OGallus-398pFC:PI 606Petuniapubescens(Spreng.)R.E.Fr.NoSolanaceaeE182P1,4461.53.05.9387ae OGallus-398pFC:PI 607PetuniareitziiL.B.Sm.&Downs.NoSolanaceaeE142P1,4061.42.95.7387ae OGallus-398pFC:PI 608PetuniariograndensisT.Ando&Hashim.NoSolanaceaeE14 2P1,4601.53.06.0387ae OGallus-398pFC:PI 609PetuniasaxicolaL.B.Sm.&DownsNoSolanaceaeE142P1,4111.42.95.8387ae OGallus-398pFC:PI 610PetuniascheideanaL.B.Sm.&DownsNoSolanaceaeE142P1,4361.52.95.9387ae OGallus-398pFC:PI 611PetuniavariabilisR.E.Fr.NoSolanaceaeE182P1,4411.52.95.9387ae OGallus-398pFC:PI 612PhalaenopsisamboinensisJ.J.SmithNoOrchidaceaeM382P7,0367.214.428.7447OGb2 FC:PI 613PhalaenopsisaphroditeRchb.f.NoOrchidaceaeM382P1,3721.42.85.6447OGb2 FC:PI 614Phalaenopsisbellina(Rchb.f.)CristensonNoOrchidaceaeM382P7,3657.515.030.1447OGb2 FC:PI 615Phalaenopsiscornu-cervi(Breda)Bl&Rchb.f.NoOrchidaceaeM382P3,1563.26.412.9447OGb2 FC:PI 616aPhalaenopsisequestris(Schauer)Rchb.f.NoOrchidaceaeM382P1,6511.73.46.7447OGb2 FC:PI 617PhalaenopsisfasciataRchb.f.NoOrchidaceaeM382P3,2143.36.613.1447OGb2 FC:PI 618PhalaenopsisgiganteaJ.J.SmithNoOrchidaceaeM382P2,5872.65.310.6447OGb2 FC:PI 619aPhalaenopsislueddemannianaRchb.f.NoOrchidaceaeM382P3,1803.26.513.0447OGb2 FC:PI 620PhalaenopsismanniiRchb.f.NoOrchidaceaeM382P6,6156.813.527.0447OGb2 FC:PI 621PhalaenopsismariaeBurb.exWarn.&Wms.NoOrchidaceaeM382P3,1753.26.513.0447OGb2 FC:PI 622PhalaenopsismicholitziiRolfeNoOrchidaceaeM382P3,1803.26.513.0447OGb2 FC:PI 623PhalaenopsismodestaJ.J.SmithNoOrchidaceaeM382P2,5242.65.210.3447OGb2 FC:PI 624PhalaenopsisparishiiRchb.f.NoOrchidaceaeM382P8,1398.316.633.2447OGb2 FC:PI 625Phalaenopsispulchra(Rchb.f.)SweetNoOrchidaceaeM382P3,1213.26.412.7447OGb2 FC:PI 626PhalaenopsissanderianaRchb.f.i NoOrchidaceaeM382P1,3721.42.75.6447OGb2 FC:PI 627PhalaenopsisstuartianaRchb.f.NoOrchidaceaeM382P1,5341.63.16.3447OGb2 FC:PI 628PhalaenopsissumatranaKorth.&Rchb.f.NoOrchidaceaeM382P3,2443.36.613.2447OGb2 FC:PI 629PhalaenopsisvenosaShim&Fowl.NoOrchidaceaeM382P4,6654.89.519.0447OGb2 FC:PI 630cPhaseolusacutifoliusvar.latifoliusG.Freeman--m LeguminosaeE22 2A7940.81.63.2390OPetuniae FC:DAPI Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms 83 APPENDIX.(continued,thesuperscriptlettersrefertonotesprecedingthistable) Ploidy level (x) Life cycle typex DNAamount Entry numberg SpeciesVoucherFamily Higher group# 2nz 1C (Mbps ) 1C (pg) 2C (pg) 4C (pg) Original ref.a Present amounty Standard species*b1 Methodyy 630dPhaseolusacutifoliusvar.tenuifolius (Wood&Standl)A.Gray --m LeguminosaeE22 2A7990.81.63.3390OPetuniae FC:DAPI 630ePhaseolusacutifoliusvar.acutifoliusA.Gray--m LeguminosaeE22 2A8620.91.83.5390OPetuniae FC:DAPI 631PhaseolusangustissimusA.Gray--m LeguminosaeE22 2--q 6470.71.32.6390OPetuniae FC:DAPI 632ePhaseoluscoccineusL.--m LeguminosaeE22 2P7840.81.63.2390OPetuniae FC:DAPI 632fPhaseoluscoccineusL.ssp.Purpurascens--m LeguminosaeE22 2P7940.81.63.2390OPetuniae FC:DAPI 632gPhaseoluscoccineusL.ssp.coccineus cv.Hammond'sDwarfScarleth --m LeguminosaeE22 2P7940.81.63.2390OPetuniae FC:DAPI 632hPhaseoluscoccineusL.ssp.coccineuscv. Preisgewinnerh --m LeguminosaeE22 2P8090.81.73.3390OPetuniae FC:DAPI 632iPhaseoluscoccineusL.NoLeguminosaej E22 2P1,7151.83.57.0457bm OBd Fe 633bPhaseolusfiliformisBenth.--m LeguminosaeE22 2P6910.71.42.8390OPetuniae FC:DAPI 634bPhaseolusglabellusPiper--m LeguminosaeE22 2P1,0241.02.14.2390OPetuniae FC:DAPI 635PhaseolusgrayanusWood.&Standl--m LeguminosaeE22 2--q 9311.01.93.8390OPetuniae FC:DAPI 636bPhaseolushintoniiDelgado--m LeguminosaeE22 2P7150.71.52.9390OPetuniae FC:DAPI 637Phaseolusleptostachysvar.leptostachysBenth.--m LeguminosaeE22 2--q 6130.61.32.5390OPetuniae FC:DAPI 638dPhaseoluslunatusL.var.lunatuscv. EarlyThorogreenh --m LeguminosaeE22 2P6910.71.42.8390OPetuniae FC:DAPI 638ePhaseoluslunatusL.var.silvesterBaudet--m LeguminosaeE22 2P6960.71.42.8390OPetuniae FC:DAPI 638fPhaseoluslunatusL.var.lunatuscv. HendersonBushh --m LeguminosaeE22 2P7010.71.42.9390OPetuniae FC:DAPI 639bPhaseolusmarechalliDelgado--m LeguminosaeE22 2P7840.81.63.2390OPetuniae FC:DAPI 640PhaseolusmicranthusHook.&Arn.--m LeguminosaeE22 2--q 5880.61.22.4390OPetuniae FC:DAPI 641PhaseolusmicrocarpusMart.--m LeguminosaeE22 2--q 5050.51.02.1390OPetuniae FC:DAPI 642bPhaseolusneglectusHerm.--m LeguminosaeE22 2--q 9411.01.93.8390OPetuniae FC:DAPI 643PhaseolusparviflorusG.Freytag--m LeguminosaeE22 2--q 6370.71.32.6390OPetuniae FC:DAPI 644bPhaseoluspluriflorusMarechal--m LeguminosaeE22 2--q 1,0681.12.24.4390OPetuniae FC:DAPI 645bPhaseoluspolyanthusGreenm.--m LeguminosaeE22 2P7990.81.63.3390OPetuniae FC:DAPI 646gPhaseolusvulgarisL.cv.KentuckyWonderh --m LeguminosaeE22 2A6860.71.42.8390OPetuniae FC:DAPI 646hPhaseolusvulgarisL.var.aborigineus (Burk.)Baudet --m LeguminosaeE22 2A7200.71.52.9390OPetuniae FC:DAPI 646iPhaseolusvulgarisL.var.mexicanus--m LeguminosaeE22 2A7350.81.53.0390OPetuniae FC:DAPI 646jPhaseolusvulgarisL.cv.Sanilac--m LeguminosaeE22 2A7500.81.53.1390OPetuniae FC:DAPI 646kPhaseolusvulgarisL.NoLeguminosaej E22 2A1,666.bn 1.7bn 3.4bn 6.8bn 457bm OBd Fe 647bPhaseolusxanthotrichusPiper var.xanthotrichus --m LeguminosaeE22 2P6620.71.42.7390OPetuniae FC:DAPI 647cPhaseolusxanthotrichusPiper--m LeguminosaeE22 2P8480.91.73.5390OPetuniae FC:DAPI 648PhilodendronerubescensC.Koch&BouscheNoAraceaeM42--p P5,1745.310.621.1411OBc Fe 649PhilodendronselloumC.KochNoAraceaeM36--p P4,8955.010.020.0411OBc Fe 650PhilodendronsquamiferumPoepp.&Endl.NoAraceaeM30--p P4,5574.79.318.6411OBc Fe 651Phormiumtenaxl NoHemerocallidaceaeM322P7400.81.53.0379OJFe 652PinguiculaprimulifloraC.E.Wood&GodfreyNoLentibulariaceaeE222P6690.71.42.7378OJFe 653PiptocalyxmooreiOliverNoTrimeniaceaeBA16 2P4,0014.18.216.3381OGFC:PI 654bPistiastratiotesL.NoAraceaek M282P2500.30.51.0400OGFe 655cPisumabyssinicumA.Braunh NoLeguminosaeE142A4,3714.58.917.8458bp Cbp Gc FC:EB 655dPisumabyssinicumA.Braunh NoLeguminosaeE142A4,7514.89.719.4458bp Cbp Gc FC:EB 84 Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms 656cPisumelatiusStevenexM.Bieb.h NoLeguminosaeE142A4,2314.38.617.3458bp Cbp Gc FC:EB 656dPisumelatiusStevenexM.Bieb.h NoLeguminosaeE142A4,9785.110.220.3458bp Cbp Gc FC:EB 657bPisumfulvumSibth.&SmithNoLeguminosaeE142A4,7164.89.619.3458bp Cbp Gc FC:EB 658cPisumhumileBoiss&Noe¨h NoLeguminosaeE142A4,2584.38.717.4458bp Cbp Gc FC:EB 658dPisumhumileBoiss&Noe¨h NoLeguminosaeE142A4,8094.99.819.6458bp Cbp Gc FC:EB 659PittosporumtenuifoliumGaertn.NoPittosporaceaeE242P4530.50.91.9379OGFe 660Planchonellaeerwah(F.M.Bailey)vanRoyenNoSapotaceaeEc.242P5270.51.12.2380OJFe 661PlantagoafraL.NoPlantaginaceaeE122A1,1291.22.34.6388OBc Fe 662PlantagoarenariaW.&K.NoPlantaginaceaeE122A1,1151.12.34.6388OBc Fe 663PlantagocoronopusL.NoPlantaginaceaeE102AP8450.91.73.5388OBc Fe 664PlantagoindicaL.NoPlantaginaceaeE122--q 1,0881.12.24.4388OBc Fe 665bPlantagolagopusL.NoPlantaginaceaeE122--q 1,0461.12.14.3388OBc Fe 666cPlantagolanceolataL.NoPlantaginaceaeE122P1,2991.32.75.3388OBc Fe 667cPlantagomajorL.NoPlantaginaceaeE122P8670.91.83.5388OBc Fe 668PlantagopsylliumL.NoPlantaginaceaeE122--q 1,1421.22.34.7388OBc Fe 669PlantagoserrariaL.NoPlantaginaceaeE102--q 8820.91.83.6388OBc Fe 670PlantagostepposaK.NoPlantaginaceaeE244--q 1,5931.63.36.5388OBc Fe 671PlatanusorientalisL.NoPlatanaceaeE422P1,2741.32.65.2379OJFe 672PoapratensisL.NoGramineaeM58-62--p P4,1554.28.517.0417OGallusf FC:PI 673Poncirustrifoliata(L.)Raf.NoRutaceaeE18 2P3770.40.81.5426OGallusf FC:PI 674Prosopiscineraria(L.)DruceNoLeguminosaeE52 --p P1,2521.32.65.1454OBc Fe 675Protiumserratum(Wall.exColebr.)NoBurseraceaeE--n --p P9240.91.93.8454OBc Fe 676PterospermumlanceifoliumRoxb.NoMalvaceaeE38 --p P7860.81.63.2454OBc Fe 677PterostyraxpsilophyllaDielsexPerkinsNoStyracaceaeE242P8670.91.83.5380OJFe 678PunicagranatumL.NoSonneratiaceaeE16 2P7060.71.42.9454OBc Fe 679ResedaluteolaL.NoResedaceaeE262B5000.51.02.0378OJFe 680RhapidophoramontanaSchottNoAraceaeM30--p P9,82910.020.140.1411OBc Fe 681RhapidophorapeeplaSchottNoAraceaeM18--p P8,9849.218.336.7411OBc Fe 682RhipogonumpapuanumC.T.WhiteNoRhipogonaceaeM302P10,92211.122.344.6380OGFe 683Rhodocomagigantea(Kunth)H.P.LinderNoRestionaceaeM--n --p P7280.71.53.0380OJFC:PI 684Rhodohypoxismilloides(Baker)Hilliard& B.L.Burtt NoHypoxidaceaeM24+1-2B4P1,3941.42.85.7379OJFe 685cRhoeodiscolorHanceNoCommelinaceaeM12 2P7,9878.216.332.6457bm OBd Fe 686RhoiacarposcapensisA.DC.NoSantalaceaeE--n --p P3040.30.61.2379OJFe 687RhynchosiacyanospermaBenth.ExBakerNoLeguminosaeE222B2,7272.85.611.1443bc OBc Fe 688Rhynchosiaminima(L.)DC.NoLeguminosaeE222P1,2271.32.55.0443bc OBc Fe 689Ribesglutinosuml NoGrossulariaceaeE162P5340.51.12.2379OJFe 690RoridulagorgoniasPlanch.NoRoridulaceaeE122P1860.20.40.8379OGFe 691cRutagraveolensL.NoRutaceaeE--n --p P7350.81.53.0457bm OBd Fe 692SalixalbaL.h --m SalicaceaeE76ad 4ad P8090.81.73.3385ac OLycopers.c FC:PI 693SalixatrocinereaBrot.h --m SalicaceaeE76ad 4ad P8040.81.63.3385ac OLycopers.c FC:PI 694bSalixcapreaL.h --m SalicaceaeE38ad 2ad P4700.51.01.9385ac OLycopers.c FC:PI 695SalixcinereaL.h --m SalicaceaeE76ad 4ad P8280.81.73.4385ac OLycopers.c FC:PI 696SalixelaeagnosScop.h --m SalicaceaeE38ad 2ad P4170.40.91.7385ac OLycopers.c FC:PI 697SalixfragilisL.h --m SalicaceaeE76ad 4ad P8430.91.73.4385ac OLycopers.c FC:PI 698SalixpurpureaL.h --m SalicaceaeE38ad 2ad P4610.50.91.9385ac OLycopers.c FC:PI 699SalixpyrenaicaGouanh --m SalicaceaeE38ad 2ad P4700.51.01.9385ac OLycopers.c FC:PI 700SalixtriandraL.h --m SalicaceaeE38ad 2ad P3870.40.81.6385ac OLycopers.c FC:PI 701SalixviminalisL.h --m SalicaceaeE38ad 2ad P4020.40.81.6385ac OLycopers.c FC:PI 702SalixviminalisL.h --m SalicaceaeE76ad 4ad P7940.81.63.2385ac OLycopers.c FC:PI 703aSambucusnigraL.NoAdoxaceaek E36 2P14,945.bo 15.3bo 30.5bo 61.0bo 457bm OBd Fe 704SantalumalbumL.NoSantalaceaeE20 --p P2820.30.61.2454OBc Fe 705bSaxifragagranulataL.ssp.granulataNoSaxifragaceaeE22--p P6620.71.42.7453OGc FC:EB 706SaxifragagranulataL.NoSaxifragaceaeE--bj --p P1,1221.12.34.6453OGc FC:EB Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms 85 APPENDIX.(continued,thesuperscriptlettersrefertonotesprecedingthistable) Ploidy level (x) Life cycle typex DNAamount Entry numberg SpeciesVoucherFamily Higher group# 2nz 1C (Mbps ) 1C (pg) 2C (pg) 4C (pg) Original ref.a Present amounty Standard species*b1 Methodyy 707aSaxifragagranulataL.NoSaxifragaceaeE52--p P2,3322.44.89.5453OGc FC:EB 707bSaxifragagranulataL.ssp.fernandesii Redondo&Horjalesi NoSaxifragaceaeE44-56--p P1,7351.83.57.1453bi OGc FC:EB 708Schisandrarubrifloral NoSchisandraceaeBA--n --p P8,9389.118.236.5381OGFC:PI 709Schleicheraoleosa(Lour.)OkenNoSapindaceaeE32 --p P1,1421.22.34.7454OBc Fe 710bScillaindica(Roxb.)Baker(cytotypeII)NoAsparagaceaeM30--p P3,5043.67.214.3422ar OBc Fe 710cScillaindica(Roxb.)Baker(cytotypeI)h NoAsparagaceaeM30--p P5,7015.811.623.3422ar OBc Fe 711Scillanervosa(Burch.)J.P.JessopNoAsparagaceaeM38--p P3,9644.08.116.2422OBc Fe 712fScillasibericaHaw.inAndr.NoAsparagaceaeM122P30,13530.861.5123.0422OBc Fe 713ScillatalosiiD.Tzanoudakis&KypriotakisNoAsparagaceaeMc.150--p P45,84046.893.6187.1465OBFe 714cScillavindobonensisSpetaNoAsparagaceaeM183P--t --t 17.935.7422OBc Fe 715ScindapsuspictusHasskNoAraceaeM60--p P11,51711.823.547.0411OBc Fe 716SedumacreL.NoCrassulaceaeE--n --p P1,2251.32.55.0457bm OBd Fe 717SedumalbumL.--m CrassulaceaeE342P1420.10.30.6398O--w --r 718SedumforsterianumSm.--m CrassulaceaeE242P4510.50.91.8398O--w --r 719SedummontanumSong.&Perrier--m CrassulaceaeE342P5150.51.12.1398O--w --r 720aSedumobtusifoliumC.A.Meyer--m CrassulaceaeE122P2060.20.40.8398O--w --r 720bSedumobtusifoliumC.A.Meyer--m CrassulaceaeE122P2060.20.40.8399OB-723bFe 721SedumobtusifoliumC.A.Meyer--m CrassulaceaeE305P--t --t 1.73.4399OB-723bFe 722SedumochroleucumChaix--m CrassulaceaeE342P4460.50.91.8398O--w --r 723aSedumrupestreL.ssp.erectum--m CrassulaceaeE644P1,0141.02.14.1398O--w --r 723bSedumrupestreL.ssp.rupestre--m CrassulaceaeE--n --p P2,2442.34.69.2399OBFe 724Sedumsediforme(Jacq.)Pau--m CrassulaceaeE322P5680.61.22.3398O--w --r 725SedumspuriumBieb.--m CrassulaceaeE284P1,7351.83.57.1399OB-723bFe 726SedumspuriumBieb.--m CrassulaceaeE426P2,7642.85.611.3399OB-723bFe 727aSedumstellatumL.--m CrassulaceaeE102P2890.30.61.2399OB-723bFe 727bSedumstellatumL.--m CrassulaceaeE102P2890.30.61.2398O--w --r 728aSedumstoloniferumS.G.Gmelin--m CrassulaceaeE142P3090.30.61.3399OB-723bFe 728bSedumstoloniferumS.G.Gmelin--m CrassulaceaeE142P3090.30.61.3398O--w --r 729SenecioviscosusL.NoCompositaej E--n --p A1,5191.63.16.2457bm OBd Fe 730SesamumalatumThonn.NoPedaliaceaeE262A1,6511.73.46.7446OGFe 731SesamumcapenseBurm.NoPedaliaceaeE262A1,1881.22.44.9446OGFe 732SesamumindicumL.NoPedaliaceaeE262A9511.01.93.9446OGFe 733SesamumlaciniatumKlein.NoPedaliaceaeE324A1,1541.22.44.7446OGFe 734SesamumlatifoliumGillett.NoPedaliaceaeE324A9331.01.93.8446OGFe 735SesamummulayanumNair.NoPedaliaceaeE262A8700.91.83.6446OGFe 736SesamumoccidentaleRegel.NoPedaliaceaeE648A1,5511.63.26.3446OGFe 737SesamumradiatumSchumach.NoPedaliaceaeE648A1,3061.32.75.3446OGFe 738SesamumschinzianumAschers.NoPedaliaceaeE648A1,3431.42.75.5446OGFe 739SesamumtriphyllumWelw.exAschers.NoPedaliaceaeEc.262A5240.51.12.1378OJFe 740bSesleriaalbicansKit.exSchult.h NoGramineaej M28 4P4,7484.89.719.4428OHomof FC:PI 740cSesleriaalbicansKit.exSchult.h NoGramineaej M28 4P4,8274.99.919.7428OHomof FC:PI 741Severiniabuxifolia(Poir.)Ten.NoRutaceaeE18 2P3280.30.71.3426OGallusf FC:PI 742SilenechalcedonicaL.NoCaryophyllaceaeE242P3,2293.36.613.2437OLycopers.c FC:PI 743cSilenelatifoliaPoiret(female)NoCaryophyllaceaeE242AP2,8082.95.711.5437az OLycopers.c FC:PI 743dSilenelatifoliaPoiret(male)NoCaryophyllaceaeE242AP2,8672.95.911.7437az OLycopers.c FC:PI 86 Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms 744SilenependulaL.NoCaryophyllaceaeE242A1,1521.22.44.7437OHc FC:PI 745Silenevulgaris(Moench)GarckeNoCaryophyllaceaeE242P1,1031.12.34.5437OHc FC:PI 746aSimmondsiachinensis(Link)C.K.Schneid.NoSimmondsiaceaeE48-50--p P7230.71.53.0465OJFe 747Spirodelapolyrrhiza(L.)Schleid.NoAraceaek M804P2920.30.61.2400OGFe 748Spirodelapunctata(G.F.W.Meyer)ThompsonNoAraceaeM462P3630.40.71.5400OGFe 749StemonatuberosaLour.NoStemonaceaeM--n --p P7150.71.52.9379OJFe 750Stenotaphrumsecundatum(Walt.)Kuntze.NoGramineaeM182P5290.51.12.2417OGallusf FC:PI 751StrelitzianicolaiRegel&C.KochNoStrelitziaceaeM14,22 2P5660.61.22.3379OJFe 752StreptocarpuscyaneusS.MooreNoGesneriaceaeEc.302or4P6620.71.42.7378OJFe 753StylidiumadnatumR.Br.NoStylidiaceaeE302P1,4951.53.16.1378OJFe 754StylobasiumspathulatumDesf.NoSurianaceaeE302P1,2841.32.65.2378OJFe 755Syngoniumalbo-lineatumBullNoAraceaeM22--p AP4,6284.79.418.9411OBc Fe 756SyngoniumpodophyllumSchottNoAraceaeM24--p AP4,7554.99.719.4411OBc Fe 757Tabebuiaargentea(Bureau&K.Schum.) Britton NoBignoniaceaeE--n --p P7820.81.63.2454OBc Fe 758TamarindusindicaL.NoLeguminosaeE26 --p P8210.81.73.4454OBc Fe 759Tecomastans(L.)Juss.exKunthNoBignoniaceaeE36 --p P5930.61.22.4454OBc Fe 760Thespesialampas(Cavanilles)Dalzellex Dalzell&Gibson --m MalvaceaeE26 2--q 1,5681.63.26.4444bd OGb2 FC:PI 761aThespesiapopulnea(L.)SolanderexCorrea--m MalvaceaeE262P4,0184.18.216.4444bd OGb2 FC:PI 761bThespesiapopulnea(L.)SolanderexCorreaNoMalvaceaeE26 2P3,0113.16.113.3454OBc Fe 762Thespesiathespesioides(R.BrownexBentham) Fryxell --m MalvaceaeE262--q 1,5681.63.26.4444bd OGb2 FC:PI 763TriteleialaxaBenth.NoAsparagaceaeM28 4P10,43510.621.342.6380OBFC:PI 764TrochodendronaralioidesSiebold&Zucc.NoTrochodendraceaeE382P1,8721.93.87.6380OLycopers.c FC:PI 765TyphoniumcuspidatumDecne.NoAraceaeM16--p A5,0645.210.320.7411OBc Fe 766TyphoniumtrilobatumSchottNoAraceaeM40--p A6,4536.613.226.3411OBc Fe 767ViciacanescensLab.NoLeguminosaeE102P3,0583.16.212.5409OBc Fe 768aViciacraccaL.ssp.tenuifoliaNoLeguminosaeE142P5,7975.911.823.7409OBc Fe 768bViciacraccaL.ssp.craccaNoLeguminosaeE142P6,409.al 6.5al 13.1al 26.2al 409OBc Fe 769aViciaepetiolarisBurk.h NoLeguminosaej E142A4,0674.28.316.6415OBFe 769bViciaepetiolarisBurk.h NoLeguminosaej E142A4,5334.69.318.5415OBFe 770bViciaeristalioidesMaxtedNoLeguminosaeE142A9,4529.619.338.6406OVicianarb.e Fe 771rViciafabaL.NoLeguminosaej E12 2A12,74013.026.052.0457bm OBd Fe 771sViciafabaL.var.equinaNoLeguminosaeE122A14,37714.729.358.7408OCd Fe 771tViciafabaL.`FuturaRZ'--m LeguminosaeE--n --p A12,98513.326.553.0384aa OHomof FC:PI 772aViciagalilaeaPlitm.&Zoh.NoLeguminosaeE142A6,3926.513.026.1408OCd Fe 772bViciagalilaeaPlitm.&Zoh.NoLeguminosaeE142A7,9048.116.132.3409OBc Fe 773dViciagramineaSm.i NoLeguminosaej E142AB4,9695.110.120.3415OBFe 774bViciahyaeniscyamusMout.NoLeguminosaeE142A7,6547.815.631.2408OCd Fe 775eViciahybridaL.NoLeguminosaeE122A8,3068.517.033.9409OBc Fe 776eViciahyrcanicaFisch.&Mey.NoLeguminosaeE122A7,6347.815.631.2409OBc Fe 777cViciajohannisTamamsch.NoLeguminosaeE142A6,1456.312.525.1408OCd Fe 778bViciakalakhensisKhattab,Maxted&BisbyNoLeguminosaeE142A10,34410.621.142.2406OVicianarb.e Fe 779ViciamacrogramineaBurk.NoLeguminosaej E142BP5,8215.911.923.8415OBFe 780dViciamelanopsSibth.&Sm.NoLeguminosaeE102A6,764.ak 6.9ak 13.8ak 27.6ak 408OCd Fe 781ViciananaVog.NoLeguminosaej E142A4,3764.58.917.9415OBFe 782aViciapampicolaBurk.h NoLeguminosaej E142A4,6404.79.518.9415OBFe 782bViciapampicolaBurk.h NoLeguminosaej E142A5,2235.310.721.3415OBFe 783dViciaperegrinaL.NoLeguminosaeE142A9,5409.719.538.9409OBc Fe 784dViciapisiformisL.h NoLeguminosaeE122P6,2236.412.725.4407OCd Fe 784eViciapisiformisL.h NoLeguminosaeE122P8,0388.216.432.8407OCd Fe 785vViciasativaL.line20.1i NoLeguminosaeE122A1,8821.93.87.7409OBc Fe 785wViciasativaL.line31i NoLeguminosaeE122A2,4452.55.010.0409OBc Fe Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms 87 APPENDIX.(continued,thesuperscriptlettersrefertonotesprecedingthistable) Ploidy level (x) Life cycle typex DNAamount Entry numberg SpeciesVoucherFamily Higher group# 2nz 1C (Mbps ) 1C (pg) 2C (pg) 4C (pg) Original ref.a Present amounty Standard species*b1 Methodyy 785xViciasativaL.ssp.amphicarpaNoLeguminosaeE122A2,1022.14.38.6409OBc Fe 785yViciasativaL.ssp.nigravar.nigraNoLeguminosaeE122A2,3372.44.89.5409OBc Fe 786eViciasepiumL.NoLeguminosaeE142P4,7194.89.619.3409OBc Fe 787cViciaserratifoliaJacq.NoLeguminosaeE142A9,7009.919.839.6405OCc Fe 788dViscumalbumL.NoLoranthaceaek E20 2P52,43053.5107.0214.0457bm OBd Fe 789VitexnegundoL.NoLamiaceaeE34 --p P1,5901.63.26.5454OBc Fe 790VitexpinnataL.NoLamiaceaeE--n --p P1,4111.42.95.8454OBc Fe 791Voacangagrandifolia(Miq.)RolfeNoApocynaceaeE--n --p P3580.40.71.5454OBc Fe 792Wolffiaarrhiza(L.)HorkelexWimmerNoAraceaeM422P1,6001.63.36.5400OGFe 793Wolffiellaoblonga(Phil.)Hegelm.NoAraceaeM422P7420.81.53.0400OGFe 794XanthorrhoeapreisiiEndl.NoXanthorrhoeaceaeM222P1,0141.02.14.1380OJFe 795Xanthosomasagittifolium(L.)SchottNoAraceaeM38--p P8,6098.817.635.1411OBc Fe 796XeronemacallistemonW.R.B.Oliv.NoXeronemataceaeM342or4P3,2103.36.613.1380OGFC:PI 797XerophytahumilisTh.Dur.&Schinz.NoVelloziaceaeM48 4or8P5320.51.12.2378OJFe 798XimeniaamericanaLinn.NoOlacaceaeE262P1,5951.63.36.5379OJFe 799XiphidiumcaeruleumAubl.var.caeruleumNoHaemodoraceaeM38 2P7670.81.63.1378OJFe 800Xyrisgracilisssp.gracilisl NoXyridaceaeM26 2P6,8677.014.028.0380OBFC:PI 801bxZeamaysssp.maysL.lineopaque2h NoGramineaej M204A3,2623.36.713.3392OBFe 801byZeamaysssp.maysL.raceAltiplanoh NoGramineaej M204A2,4542.55.010.0392ag OB-801bxFe 801bzZeamaysssp.maysL.raceBlancoyocho rayash NoGramineaej M204A3,3113.46.813.5392ag OB-801bxFe 801caZeamaysL.NoGramineaej M20 4A3,2833.46.713.4457bm OBd Fe 802ZizyphusglabrataHeyneNoRhamnaceaeE24 --p P1,5171.53.16.2454OBc Fe 803Zosteramarinal NoZosteraceaeM12 2P3090.30.61.3380OJFe 804ZoysiajaponicaSteud.NoGramineaeM404P4210.40.91.7417OGallusf FC:PI 88 Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms Original references for DNA values Named references in the `Notes to the Appendix' are given in `Literature cited'. Only numbered references of original sources of species DNA values in the Appendix (column 13) are given in the Key below. 378. Hanson L, McMahon KA, Johnson MAT, Bennett MD. 2001. First nuclear DNA C-values for 25 angiosperm families. Annals of Botany 87: 251­258. 379. Hanson L, McMahon KA, Johnson MAT, Bennett MD. 2001. First nuclear DNA C-values for another 25 angiosperm families. Annals of Botany 88: 851­858. 380. Hanson L, Brown RL, Boyd A, Johnson MAT, Bennett MD. 2003. First nuclear DNA C-values for 28 angiosperm genera. Annals of Botany 91: 1­8. 381. Leitch IJ, Hanson L. 2002. DNA C-values in seven families fill phylogenetic gaps in the basal angiosperms. Botanical Journal of the Linnean Society 140: 175­179. 382. Obermayer R, Leitch IJ, Hanson L, Bennett MD. 2002. Nuclear DNA C-values in 30 species double the familial representation in pteridophytes. Annals of Botany 90: 209­217. 383. Zonneveld BJM. 2001. Nuclear DNA contents of all species of Helleborus (Ranunculaceae) discriminate between species and sectional divisions. Plant Systematics and Evolution 229: 125­130. 384. Zonneveld BJM, Van Iren F. 2001. Genome size and pollen viability as taxonomic criteria: Application to the genus Hosta. Plant Biology 3: 176­185. 385. Thibault J. 1998. Nuclear DNA amount in pure species and hybrid willows (Salix): a flow cytometric investigation. Canadian Journal of Botany 76: 157­165. 386. Torrell M, Valles J. 2001. Genome size in 21 Artemisia L. species (Asteraceae, Anthemideae): Systematic, evolutionary, and ecological implications. Genome 44: 231­238. 387. Mishiba KI, Ando T, Mii M, Watanabe H, Kokubun H, Hashimoto G, Marchesi E. 2000. Nuclear DNA content as an index character discriminating taxa in the genus Petunia sensu Jussieu (Solanaceae). Annals of Botany 85: 665­673. 388. Sen S, Sharma AK. 1990. Chromosome complements, nuclear DNAandgeneticdistanceasmeasuresofinterrelationshipinPlantago. The Nucleus 33: 4­10. 389. Ohmido N, Kijima K, Akiyama Y, de Jong JH, Fukui K. 2000. QuantificationoftotalgenomicDNAandselectedrepetitivesequences reveals concurrent changes in different DNA families in indica and japonica rice. Molecular and General Genetics 263: 388­394. 390. NaglW, Treviranus A. 1995. A flow cytometricanalysis of the nuclear 2C DNA content in 17 Phaseolus species (53 genotypes). Botanica Acta 108: 403­406. 391. Joachimiak A, Kula A, Sliwinska E, Sobieszczanska A. 2001. C-banding and nuclear DNA amount in six Bromus species. Acta Biologica Cracoviensia Series Botanica 43: 105­115. 392. Rosato M, Chiavarino AM, Naranjo CA, Hernandez JC, Poggio L. 1998. Genome size and numerical polymorphism for the B chromo- some in races of maize (Zea mays ssp. mays, Poaceae). American Journal of Botany 85: 168­174. 393. Greilhuber J, Obermayer R. 1999. Cryptopolyploidy in Bunias (Brassicaceae) revisited ­ a flow-cytometric and densitometric study. Plant Systematics and Evolution 218: 1­4. 394. Dimitrova D, Greilhuber J. 2000. Karyotype and DNA-content evolution in ten species of Crepis (Asteraceae) distributed in Bulgaria. Botanical Journal of the Linnean Society 132: 281­297. 395. Temsch EM, Greilhuber J. 2000. Genome size variation in Arachis hypogaea and A. monticola re-evaluated. Genome 43: 449­451. 396. Temsch EM, Greilhuber J. 2001. Genome size in Arachis duranensis: a critical study. Genome 44: 826­830. 397. Cerbah M, Mortreau E, Brown S, Siljak-Yakovlev S, Bertrand H, Lambert C. 2001. Genome size variation and species relation- ships in the genus Hydrangea. Theoretical and Applied Genetics 103: 45­51. 398. Hart H. 1991. Evolution and classification of the European Sedum species (Crassulaceae). Flora Mediterranea 1: 31­61. 399. Hart HT, Tomlik A, Alpinar K. 1993. Biosystematic studies in Sedum (Crassulaceae) fromTurkey. 4. The cytology of Sedum subsect. Spathulata Boriss. Acta Botanica Neerlandica 43: 289­298. 400. Geber G. 1989. Zur Karyosystematik der Lemnaceae. Ph.D. Thesis, University of Vienna, Vienna. 401. Noirot M, Barre P, Louarn J, Duperray C, Hamon S. 2002. Consequences of stoichiometric error on nuclear DNA content evaluation in Coffea liberica var. dewevrei using DAPI and propidium iodide. Annals of Botany 89: 385­389. 402. Lysák MA, Dolezzelova M, Horry JP, Swennen R, Dolezzel J. 1999. FlowcytometricanalysisofnuclearDNAcontentin Musa.Theoretical and Applied Genetics 98: 1344­1350. 403. Price HJ, Hodnett G, Johnston JS. 2000. Sunflower (Helianthus annuus) leaves contain compounds that reduce nuclear propidium iodide fluorescence. Annals of Botany 86: 929­934. 404. Ellul P, Boscaiu M, Vicente O, Moreno V, Rossello JA. 2002. Intra- and interspecific variation in DNA content in Cistus (Cistaceae). Annals of Botany 90: 345­351. 405.CremoniniR,CastiglioneMR,VenoraG,BlangifortiS,LosavioFP, Pignone D. 1998. Cytology of Vicia species. VI. Nuclear chromatin organization, karyomorphological analysis and DNA amount in Vicia serratifolia Jacq. Caryologia 51: 195­205. 406. Cremonini R, Miotto D, Ngu MA, Tota D, Pignone D, Blangiforti S, Venora G. 1998. Cytology of Vicia species. 5. Nuclear chromatin structure, karyomorphological analysis and DNA content in newly discovered relatives of Vicia faba L.: Vicia kalakhensis Khattab, Maxted et Bisby and Vicia eristalioides Maxted. Cytologia 63: 371­379. 407. Venora G, Blangiforti S, Castiglione MR, Black-Samuelsson S, Cremonini R. 1999. Cytology of Vicia species. VIII. Nuclear DNA contents, chromatin organization and karyotype evolution in Vicia pisiformis L. populations. Caryologia 52: 105­115. 408. Cremonini R, Funari S, Mazzuca S. 1992. Cytology of Vicia species: nuclear structure, karyological analysis and DNA content. Chromatin 1: 135­146. 409. Akpinar N, Bilaloglu R. 1997. Cytological investigations of certain species of Vicia L. Turkish Journal of Botany 21: 197­207. 410. Kamaté K, Brown S, Durand P, Bureau JM, De Nay D, Trinh TH. 2001. Nuclear DNA content and base composition in 28 taxa of Musa. Genome 44: 622­627. 411. Ghosh P, Mukherjee S, Sharma AK. 2001. Cytophotometric estimation of in situ DNA content in several species of Araceae. Cytobios 105: 177­183. 412. Unal F, Callow RS. 1995. Estimation of genome size by Feulgen photometry. Turkish Journal of Botany 19: 523­529. 413.GreilhuberJ,EbertI,LorenzA,VyskotB.2000.Originoffacultative heterochromatin in the endosperm of Gagea lutea (Liliaceae). Protoplasma 212: 217­226. 414. Sakamoto K, Akiyama Y, Fukui K, Kamada H, Satoh S. 1998. Characterization: genome sizes and morphology of sex chromosomes in Hemp (Cannabis sativa L.). Cytologia 63: 459­464. 415. Naranjo CA, Ferrari MR, Palermo AM, Poggio L. 1998. Karyotype, DNA content and meiotic behaviour in five South American species of Vicia (Fabaceae). Annals of Botany 82: 757­764. 416. GammarZG, Puech S, ZouaghiM. 1999.Flow cytometry DNA assay of Mediterranean lupins. Candollea 54: 45­56. 417. Arumuganathan K, Tallury SP, Fraser ML, Bruneau AH, Qu R. 1999. Nuclear DNA content of thirteen turfgrass species by flow cytometry. Crop Science 39: 1518­1521. 418. Ali HBM, Meister A, Schubert I. 2000. DNA content, rDNA loci, and DAPI bands reflect the phylogenetic distance between Lathyrus species. Genome 43: 1027­1032. 419. Brandizzi F, Grilli Caiola M. 1996. Quantitative DNA analysis in different Crocus species (Iridaceae) by means of flow cytometry. Giornale Botanico Italiano 130: 643­645. 420. Mukherjee S, Sharma AK. 1993. Cytophotometric DNA estimation in Luzula species. Current Science 65: 987­989. 421. Asif MJ, Mak C, Othman RY. 2001. Characterization of indigenous Musa species based on flow cytometric analysis of ploidy and nuclear DNA content. Caryologia 54: 161­168. 422. Chaudhuri D, Sen S. 2001. Genotypic diversity in species of Scilla. Cytobios 104: 75­81. Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms 89 423. Chung J, Lee JH, Arumuganathan K, Graef GL, Specht JE. 1998. Relationships between nuclear DNA content and seed and leaf size in soybean. Theoretical and Applied Genetics 96: 1064­1068. 424. Cros J, Combes MC, Chabrillange N, Duperray C, Desangles AM, Hamon S. 1995. Nuclear DNA content in the subgenus Coffea (Rubiaceae): inter- and intra-specific variation in African species. Canadian Journal of Botany 73: 14­20. 425. Hartman TPV, Jones J, Blackhall NW, Power JB, Cocking EC, Davey MR. 2000. Cytogenetics, molecular cytogenetics and genome size in Leucaena (Leguminosae, Mimosideae). In: Guttenberger H, Borzan Z, Schlarbaum SE, Hartman TPV, eds. Cytogenetic studies of forest trees and shrubs ­ review, present status, and outlook on the future. Zvolen, Slovakia: Arbora Publishers, 57­70. 426. Kayim M, Koc¸ NK, Rokka VM. 1998. Variation of the nuclear DNA content of species of subtribe Citrinae (Rutaceae). Hortscience 33: 1247­1250. 427. Boscaiu M, Vicente O, Ehrendorfer F. 1999. Chromosome numbers, karyotypesandnuclearDNAcontentsfromperennialpolyploidgroups of Cerastium (Caryophyllaceae). Plant Systematics and Evolution 218: 13­21. 428. Lysák MA, Rostková AR, Dixon JM, Rossi G, Dolezzel J. 2000. Limited genome size variation in Sesleria albicans. Annals of Botany 86: 399­403. 429. Obermayer R, Greilhuber J. 2000. Genome size in Hedera helix L.--a clarification. Caryologia 53: 1­4. 430. Caceres ME, De Pace C, Mugnozza GTS, Kotsonis P, Ceccarelli M, Cionini PG. 1998. Genome size variations within Dasypyrum villosum: correlations with chromosomal traits, environmental factors and plant phenotypic characteristics and behaviour in reproduction. Theoretical and Applied Genetics 96: 559­567. 431. Blanco A, Simeone R, Resta P, DePace C, Delre V, Caccia R, Mugnozza GTS, Frediani M, Cremonini R, Cionini PG. 1996. Genomic relationships between Dasypyrum villosum (L) Candargy and D. hordeaceum (Cosson et Durieu) Candargy. Genome 39: 83­92. 432. Rayburn AL, Biradar DP, Bullock DG, Nelson RL, Gourmet C, Wetzel JB. 1997. Nuclear DNA content diversity in Chinese soybean introductions. Annals of Botany 80: 321­325. 433. Gallois A, Burrus M, Brown S. 1999. Evaluation of the nuclear DNA contentandGCpercentinfourvarietiesofFagussylvaticaL.Annalsof Forest Science 56: 615­618. 434.Belletti P, Marzachi C,Lanteri S. 1998.Flowcytometricmeasurement of nuclear DNA content in Capsicum (Solanaceae). Plant Systematics and Evolution 209: 85­91. 435. Ohri D. 1999. Cytology of Cicer songaricum Steph ex DC, a wild relative of chickpea. Genetic Resources and Crop Evolution 46: 111­113. 436. Buitendijk JH, Peters A, Quené RJ, Ramanna MS. 1998. Genome size variation and C-band polymorphism in Alstroemeria aurea, A. ligtu and A. magnifica (Alstroemeriaceae). Plant Systematics and Evolution 212: 87­106. 437. Širokyy J, Lysák MA, Dolezzel J, Kejnovsky E, Vyskot B. 2001. Heterogeneity of rDNA distribution and genome size in Silene spp. Chromosome Research 9: 387­393. 438. Taliaferro CM, Hopkins AA, Henthorn JC, Murphy CD, Edwards RM. 1997. Use of flow cytometry to estimate ploidy level in Cynodon species. International Turfgrass Society Research Journal 8: 385­392. 439. Price HJ. 2002. (pers. comm. 2002). 440. Zonneveld BJM. 2002. Genome size analysis of selected species of Aloe (Aloaceae) reveals the most primitive species and results in some new combinations. Bradleya 20: 5­12. 441. Blakesley D, Allen A, Pellny TK, Roberts AV. 2002. Natural and induced polyploidy in Acacia dealbata Link. and Acacia mangium Willd. Annals of Botany 90: 391­398. 442. Nehra NS, Kartha KK, Stushnoff C. 1991. Nuclear DNA content and isozyme variation in relation to morphogenic potential of Strawberry (Fragaria ananassa) callus cultures. Canadian Journal of Botany 69: 239­244. 443. Ohri D, Singh PS. 2002. Karyotypic and genome size variation in Cajanus cajan (L.) Millsp. (pigeonpea) and some wild relatives. Genetic Resources and Crop Evolution 49: 1­10. 444. Wendel JF, Cronn RC, Johnston JS, Price HJ. 2002. Feast and famine in plant genomes. Genetica 115: 37­47. 445. Hiremath SC, Nagasampige MH. (pers. comm. 2001). 446. Hiremath SC, Patil CG, Ksheerasagar AL. (pers. comm. 2001). 447. Lin S, Lee H-C, Chen W-H, Chen C-C, Kao Y-Y, Fu Y-M, Chen Y-H, Lin T-Y. 2001. Nuclear DNA contents of Phalaenopsis sp. and Doritis pulcherrima. Journal of the American Society of Horticultural Science 126: 195­199. 448. Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796­815. 449. Ohri D. 2002. Genome size variation in some tropical hardwoods. Biologia Plantarum 45: 455­457. 450. Yu J, Hu SN, Wang J, Wong GKS, Li SG et al. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296: 79­92. 451. Goff SA, Ricke D, Lan TH, Presting G, Wang RL et al. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296: 92­100. 452. Schwencke J, Bureau JM, Crosnier MT, Brown S. 1998. Cytometric determination of genome size and base composition of tree species of three genera of Casuarinaceae. Plant Cell Reports 18: 346­349. 453. Redondo N, Horjales M, Brown S, Villaverde C. 1996. Biometric and cytometric study of nuclear DNA within Saxifraga granulata L. Boletin da Sociedade Broteriana, Séries 2 67: 287­301. 454. Ohri D. (pers. comm. 2002). 455. Ohri D. (pers. comm. 2002). 456. Emshwiller E. 2002. Ploidy levels among species in the `Oxalis tuberosa Alliance' as inferred by flow cytometry. Annals of Botany 89: 741­753. 457. Nagl W, Jeanjour M, Kling H, Kuhner S, Michels I, Muller T, Stein B. 1983. Genome and chromatin organization in higher plants. Biologisches Zentralblatt 102: 129­148. 458. Baranyi M, Greilhuber J, Swiecicki WK. 1996. Genome size in wild Pisum species. Theoretical and Applied Genetics 93: 717­721. 459. Punina EO, Alexandrova TV. 1992. The chromosome volume and relative DNA content in Caucasian representatives of the genus Paeonia. Botanichesky Zhurnal 77: 16­23. 460. Shi Y, Draper D, Stace C. 1993. Ribosomal DNA variation and its phylogenetic implication in the genus Brachypodium (Poaceae). Plant Systematics and Evolution 188: 125­138. 461. Bennett MD, Leitch IJ, Price HJ, Johnston JS. 2003. Comparisons with Caenorhabditis ($100 Mb) and Drosophila ($175 Mb) using flow cytometry show genome size in Arabidopsis to be $157 Mb and thus 25 % larger than the Arabidopsis genome initiative estimate of $125 Mb. Annals of Botany 91: 547­557. 462. Bitonti MB, Cozza R, Chiappetta A, Contento A, Minelli S et al. 1999. Amount and organization of the heterochromatin in Olea europaea and related species. Heredity 83: 188­195. 463. Galbraith DW, Harkins KR, Knapp S. 1991. Systemic endopolyploidy in Arabidopsis thaliana. Plant Physiology 96: 985­989. 464. Francis DM, Hulbert SH, Michelmore RW. 1990. Genome size and complexity of the obligate fungal pathogen, Bremia lactucae. Experimental Mycology 14: 299­309. 465. Hanson L, Leitch IJ, Bennett MD. 2002. Unpublished values from the Jodrell Laboratory, Royal Botanic Gardens, Kew. 90 Bennett and Leitch -- Nuclear DNA Amounts in Angiosperms