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Ancient duplication of cereal 
genomes

The discovery of multiple ancient polyploidization events
in Arabidopsis (Vision et al. 2000; Simillion et al., 2002;
Bowers et al., 2003) foreshadowed the finding that Oryza
(rice), too, had undergone extensive ancient duplication of
its chromatin. Although the possibility of duplication in
the rice genome had been suggested long ago, early studies
of the sequence raised questions about whether rice was an
‘ancient aneuploid’ (Vandepoele et al., 2003) or paleo-polyploid
across its entire genome (Paterson et al., 2003). In this issue,
Wang et al. (pp. 937–946), contribute to a resolution of this
question by using an independent assembly of a divergent
rice subspecies, generally supporting the occurrence of a
whole-genome duplication – although some questions still
remain unanswered. Using independent dating approaches,
Wang et al. also support prior estimates (Paterson et al., 2004)
that this event occurred about 70 million yr ago, suggesting
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that it has affected the genome organization of virtually all
of the world’s cereal crops.

‘Many more, if not all, higher plant species, considered

as diploids because of their genetic and cytogenetic

behaviour, are actually ancient polyploids’

Polyploidy and the angiosperms

Polyploidy, the merger of multiple chromosome sets in a
common nucleus, ranks among the most important of
evolutionary mechanisms affecting angiosperm genomes. It
has long been suspected that many angiosperms were ancient
polyploids (Stebbins, 1966). By contrast, the relative scarcity
of polyploidy in dioecious organisms (such as most animals,
but few plants) is thought to be related to a need for balanced
gene dosage between autosomal loci and the nondegenerated
members of heteromorphic sex chromosome sets (Orr, 1990).
The discovery that one polyploidization event predates
the monocot–eudicot divergence arguably suggests that all
angiosperms may be ancient polyploids (Bowers et al.,
2003). The discovery of several additional events in the same
lineage (Bowers et al., 2003) raises the as yet unanswered
question of whether polyploidy might truly be cyclical, with
distinct advantages that are gradually eroded by ‘diploidization’
and divergence of suites of duplicated genes.

The controversy about rice, and why it is 
important

As the first representative of the Poaceae (cereals), a plant
family that provides the majority of calories consumed
by humans together with a growing share of our fuel and
also many other ‘ecosystem services’ such as erosion control,
duplication analysis of the Oryza (rice) sequence was of special
importance. It had long been known that rice chromosomes
occasionally paired with seemingly incorrect partners
(Lawrence, 1931), and had been shown by restriction fragment
length polymorphism (RFLP) mapping that rice chromosomes
1–5 (Kishimoto et al., 1994) and 11–12 (Nagamura et al.,
1995) each contained duplicated gene pairs in what appeared
to be collinear orders. Initial analysis of genomic shotgun
sequence suggested a widespread propensity for gene duplica-
tion that was consistent with a large-scale event perhaps 40–
50 million yr ago (Goff et al., 2002).

In view of this background, it was no surprise that two
early investigations of partial assemblies for Oryza sativa (L.)

ssp. japonica each suggested ancient duplication of rice chromo-
somes. However, the findings of the two groups differed in
key ways, with one reporting duplication over only about
15% of the genome (‘ancient aneuploidy’; Vandepoele et al.,
2003), and the other suggesting a probable whole-genome
event based on duplication over about 62% of the genome
(Paterson et al., 2003). The importance of resolving this
difference was highlighted by the finding that this event
predated the divergence of the major cereals from one another
(Paterson et al., 2004), and thus it is a common factor affect-
ing the genome structure of many of the world’s leading crops.

Perspective from a second subspecies

In this issue, Wang et al. describe analysis of an independent
and advanced sequence assembly from O. sativa ssp. indica,
a close relative of ssp. japonica that has been the target of a
whole-genome shotgun effort (Yu et al., 2002). Across 370 Mb
assembled into 12 chromosomes, Wang et al. find 10 duplicated
blocks that contain 47% of the predicted transcriptome.
While the largest of these, between chromosomes 2 and 4,
was found in both earlier studies (Paterson et al., 2003;
Vandepoele et al., 2003), smaller ones such as between
chromosomes 1 and 5 escaped detection by Vandepoele et al.
(2003). Wang et al. corroborated the estimate of 70 million
yr ago for the antiquity of the rice event (Vandepoele et al.,
2003; Paterson et al., 2004) based on analysis of rice/maize
homologs, and suggested that the extent of gene loss has
been somewhat less (32–65%) than found in the earlier
studies (∼80%). Finally, Wang et al. tentatively assigned a date
of about 5 million yr ago to a duplication of chromosomes
11 and 12, chromosomes that had not yet been adequately
sequenced for Vandepoele et al. (2003) to address, and which
Paterson et al. (2003, 2004) identified as more recently
duplicated than the remainder of the genome but did not
estimate a date.

Admirably, while Wang et al. was in review, concerns
about the diversity of findings had motivated reanalysis
of more advanced rice assemblies ( v1.0) using less
stringent thresholds for inferring significance. These analyses
made it clear that the fraction of the rice genome found in
duplicated blocks is indeed appreciably larger than the 15%
reported in Vandepoele et al. (2003) and agrees more closely
with Wang et al. and Paterson et al. (2004). Yet another
independent analysis of the japonica sequence arrived at a
similar conclusion (Guyot & Keller, 2004). These re-analyses
also support the finding that, apart from a continuous mode
of (tandem) duplication, both a recent small-scale (i.e. chro-
mosome 11–12) and an older large-scale duplication event
shaped the rice genome. The observation that approximately
7% of the rice genome is located in overlapping block duplica-
tions suggests that older, perhaps cryptic cycles of polyploidy
(such as the γ event thought to be shared by all angiosperms
(Bowers et al., 2003) may also have shaped the genome.
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Looking back at ancient duplications from the 
future

While the evidence for a large-scale, if not genome-wide,
duplication event in a common ancestor of the cereals is
growing stronger, many questions remain. Although the
large-scale duplication event (i.e. duplicated blocks with
0.95 > Ks > 0.78) accounts for the majority of all duplicated
blocks (∼62% of all anchor points) in the rice genome, these
blocks cover less than half of the physical rice genome.
Consequently, it appears that these blocks may not actually
be ‘uniformly over 10 of all 12 chromosomes’ as suggested
(Wang et al. ). It will be of much interest to shed light on
whether there exists differential preservation of ancient
gene orders in different regions of the genome, and what
factors might contribute to it.

Furthermore, diploidization processes appear to vary
widely in different taxa. By many measures, rice and
Arabidopsis are thought to have experienced genome dupli-
cations at similar times (although even this remains con-
troversial, with different authors supporting estimates of
from 30 to 100 million yr). However, age distributions of
duplicated genes are considerably different in the two taxa
(fig. 5 in Vandepoele et al., 2003). In fact, one recent
study of age distributions fails to detect evidence of dupli-
cation in rice (Blanc & Wolfe, 2004). One possible explana-
tion may be that the rate of gene loss is much higher in
rice than in Arabidopsis (but the rates of gene loss and the
fraction of genes in tandem duplications in Arabidopsis
and rice do not seem to be significantly different at first
sight; Simillion et al., 2004; Wang et al.). Finally, Wang et al.
are among the first to try to mitigate the effect of the
negative correlation of Ks with guanine+cytosine (GC)
content, an issue that is of special importance in high-GC
lineages such as the rice. In any case, these additional
incongruities need to be resolved before we can conclude
with certainty that rice underwent a truly whole-genome
duplication event.

The archaeology of plant genome duplication is only just
emerging from infancy. While there naturally remains room
for improvement of methodology associated with detecting
paleopolyploidy, a more seminal need is better understand-
ing of the fates of individual genes and interacting sets of
genes following polyploidy. While many new data from
microbes such as yeast are shedding valuable light on the roles
and consequences of gene duplication, population genetic
theory predicts that these consequences should be very
different in organisms with larger body size and associated
smaller effective population sizes (Lynch & Conery, 2003).
The propensity of the angiosperms for polyploidy, together
with rapidly growing genomic data and tools, makes them an
especially attractive system in which to explore consequences
of polyploidy that may be more likely to extend to most
crown eukaryotes.
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A pioneer perspective on 
adaptation

Functional genomics of environmental adaptation 
in Populus: the 12th New Phytologist 
Symposium, Gatlinburg, TN, USA, October 2004

In its natural habitat, the black cottonwood tree (Populus
trichocarpa Hooker) is a pioneer species that thrives in the
dynamic, resource-rich environments created by massive flooding
(Fig. 1; Braatne et al., 1996). With the recent public release
of the complete genome sequence of P. trichocarpa (http://
genome.jgi-psf.org/Poptr1/Poptr1.home.html), an analogous
flood of data is creating unprecedented opportunities in basic
and applied research on this model tree (Strauss & Martin, 2004;
Tuskan et al., 2004). This is a landmark event for ecological
research in particular, because unlike herbaceous model plants
like Arabidopsis, corn, and rice, Populus is a wild, perennial plant
that constitutes a dominant component of many ecosystems
throughout the northern hemisphere (Braatne et al., 1996).
The genome sequence provides a cryptic blueprint of the
molecular underpinnings of adaptation in natural populations,
raising the possibility of linking molecular polymorphisms
to adaptively significant phenotypic variation, a feat that has
been accomplished only rarely in plant research until recently
(Remington et al., 2001; Jackson et al., 2002). Breakthroughs
in the understanding of ecologically significant molecular
variation will require continued technological advancement
and investment in genomic resources for additional ecologically

important species, as well as cross-disciplinary collaboration
in ecology, population genetics and molecular biology (Feder
& Mitchell-Olds, 2003). To facilitate this collaboration, the
12th New Phytologist symposium brought together a diverse
group of ecologists, geneticists and molecular biologists to
explore the prospects for determining molecular determinants
of adaptive variation in Populus and other species. Rapid
progress is likely in the understanding of molecular under-
pinnings of adaptation in Populus due to a rapidly expanding
molecular toolbox, an energized and growing research com-
munity, and ecological assets that are unparalleled among
sequenced model plants.

Adaptation research in forest trees

Adaptation research in forest trees has a long history, driven
in part by the commercial importance of producing well-
adapted and improved seed stocks for reforestation, and in part
by the ecological importance of forest trees (Howe et al., 2003).
Initially, studies focused exclusively on adaptive traits, and
usually involved planting diverse provenances in a common
garden and performing a battery of measurements over a long
time span. Such studies continue to be important because they
provide the most direct means for determining the distribution
of adaptive variation on the landscape, the degree of genetic
and environmental control of a wide range of complex traits,
and the extent of genotype by environment interactions (Zobel
& Talbert, 1984). However, such studies provide little insight
into the underlying genetic architecture of complex traits (i.e.
the number and strength of genes involved, and the degrees
of additivity and dominance of individual genetic loci).
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