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Abstract. The validity of Tammann’s rule is related to the fact that
the unavoidable thermal generation of point defects leads to defect-
defect interactions and finally to a breakdown of the structure. It
is shown that the onset of this defect avalanche, which can be esti-
mated by a cube root law, roughly corresponds to the Tammann

temperature. The investigation of simple compounds corroborates

Introduction

In the early days of solid state chemistry the so�called
Tammann�rule [1] was formulated stating that at tempera-
tures higher than about two thirds of the melting point Tm

solid state materials become reactive [2] (some authors also
propose 1/2 Tm, depending on the properties examined, see
e. g. [3]). In the light of a modern mechanistic understand-
ing which is based on the pioneering work of Wagner and
Schottky [4], it became clear that the occurrence of solid
state reactions in ionic systems being very frequently trans-
port controlled, presupposes the presence of point defects,
i.e. the presence of ionic charge carriers. For mass transport
to proceed, conductivities of at least two carriers (two ionic
species or one ionic and one electronic species) are neces-
sary. So evidently the product of mobility and concen-
tration is decisive. While a correlation between mobility and
melting point is difficult to achieve, in this contribution evi-
dence for a correlation between defect concentration and
melting point will be given, which is based on a simple
model that takes account of Coulombic interaction of point
defects [5]. In Ref. [6] empirical arguments have been re-
ported for a critical defect concentration at the melting
point. Notwithstanding the fact that such a relation is not
directly connected with Tammann’s rule its validity is inves-
tigated, too. In view of the fact that the mobilities are not
so different in the high temperature zone of interest, we can
formulate the Tammann�rule as: At about 2/3 of the melt-
ing point, the charge carrier concentration in solids be-
comes substantial.
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this picture and also the observation of a critical defect concen-
tration. Examples are given that Tammann’s rule can be used to
systematically search for new solid electrolytes.
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Thermal destiny of ionic crystals

At zero Kelvin the equilibrium charge carrier concentration
is zero. (In reality a nonzero frozen�in concentration will
be realized, not to mention defects induced by effectively
charged impurities which we will neglect in the following).
Thermal equilibrium necessarily requires the formation of
point defects. In primarily Frenkel disordered materials
such as AgX (X � Cl, Br, I) this is primarily a finite concen-
tration of interstitial silver ions and silver vacancies; in
primarily Schottky disordered materials such as alkaline
halides, both cation and anion vacancies prevail [7]. As long
as the temperature is low, the concentration is small and
the defects will be randomly distributed. Then ideal mass
action laws hold with the consequence that the defect con-
centration (x±) follows a van’t Hoff law (as long as the
defect formation parameters ΔH°, ΔS° can be considered
as temperature independent)

x±,ideal � exp��
ΔS0

2R �exp��
ΔH0

2RT� (1)

Hence x± increases steeply with temperature according to
Eq. (1) until the defect concentration is so high that the
defects perceive each other. The interaction of the two op-
positely charged defects is primarily an attractive Coulomb
interaction. This attractive interaction reduces the effective
formation enthalpy ΔH° (we ignore effects on ΔS°) to
ΔH0 � �ΔH�(x±)� [5, 8]. It hence becomes increasingly easier
for the next defects to be formed. As a consequence more
defects are formed than expected according to the ideal
mass action law (i.e. according to the van’t Hoff relation).
In a ln(x±) vs 1/T plot an upward bending of the graph
occurs. Such deviations are also observed in the tempera-
ture graph of the ionic conductivity (see e. g. [9, 10] and
references cited in [5]) and in an anomalous increase in
specific heat (see e. g. [11]). As there is a positive feedback
(more defects lead to even more defects), an avalanche of
charge carriers occurs which eventually leads to a phase
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transformation which can be of first or higher order. This
process describes the transition to a superionic state within
the same structure. In the case of a first order transform-
ation realistically a transition into another solid structure
or into the totally molten state occurs. In particular in the
case of Schottky disorder, the molten state represents the
naturally expected superionic phase. In such cases the tran-
sition will occur even at lower temperatures (by ΔT) as the
free enthalpy (G) of the real superionic phase is smaller
than the free enthalpy of the virtual superionic phase (no
structural modification). If this G�difference is large and
hence ΔT substantial, it can be that the premelting regime
is completely suppressed. The just described process consti-
tutes a universal behavior for simple compounds and pre-
dicts at least an upper limit of the disorder temperature
whenever the phase does not undergo a structural change
before it melts [13]. Of course, in the case of complex crystal
structures, these considerations may not be sufficient to
completely describe their thermal evolution.

Cube root model as a simple means for the
description of the thermal destiny

It was shown in previous papers [5, 12, 13] that a cube root
law in x± well describes the defect interaction and leads to
a satisfactory description of the disorder in simple crystals
including the premelting zone; in the case of a higher order
transition it may also describe the disorder in the superionic
state, while in the case of first order transition only an up-
per limit for the transition into the superionic state is ob-
tained. The validity of this model was demonstrated for
β�AgI which undergoes a transition to the α�AgI phase,
for AgCl and AgBr which undergo a transition to the
molten state, as well as for PbF2 which undergoes a higher
order transition within the fluorite structure [5, 12�15]. In
the latter case the conductivity behavior could even be pre-
dicted for the superionic state.

The basis of the cube root law is the assumption that the
interaction between defects that are more or less randomly
distributed can be approximately mimicked by the interac-
tion that a system of the same carrier concentrations per-
ceives in which they all have the same distances. Then it is
just necessary to calculate the Madelung energy of a period-
ically ordered defect structure, the lattice of which is super-
imposed to the perfect (host material) lattice. In order to
avoid misunderstandings we simply refer to this as the “de-
fect lattice” (spanned by the defects) in the following. This
directly leads to the implicit formula, Eq. (2), the solution
of which yields the x±(T) relation for the whole temperature
range (including the superionic state provided the structure
is maintained):

�
ΔH0 �TΔS0 �Jx1/3

±

kT
� ln� x2

±

gigv(�i �x±)(�v �x±)� (2)

(gi, gv, αi, αv, denote degeneracy and number of available
crystallographic sites). The defect interaction parameter
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Figure 1 Molar fractions of Frenkel defects calculated according
to eq. (2). Dotted straight lines indicate ideal defect concentrations
in the absence of defect interactions.

J can be traced back to those parameters that determine
the electrostatic interaction energy of the defect lattice [12]:
UM (Madelung energy of a perfect lattice with same cation/
anion stoichiometry as the defect lattice), dielectric con-
stant εr and fd/f (ratio of the Madelung constants of a crys-
talline phase and the value for the corresponding melt,
fd/f � 0.9 [16])

J �
4UMfd

3εrf
(3)

Figure 1 displays the defect concentrations x±(T) calculated
from Eqs. (2), (3) for the silver halides (for first- or higher
order phase transitions, a vertical step at Tc has to replace
the unphysical S-shaped solution of Eq. (2); this new line
corresponds to the solution of Eq. (2) with lowest Gibbs
energy). If the transition at Tc is of first order as is the
case when the modification is altered or the phase melts,
the calculated transition temperature is, as already men-
tioned, to be taken as the upper limit. The fact that in
AgCl, AgBr and AgI, Tc is close to the experimental value
means that the difference G (virtual high temperature
phase) � G (real high temperature phase) is small. In Ref.
[5] also a quantitative criterion has been derived based on
Eq. (2) which decides upon whether the transition is of first
or higher order.

The correlation betwen defect concentration evolution
and melting point forms the basis of our interpretation of
Tammann’s rule. Figure 2 shows the increase in x± relative
to xideal (calculated without defect interactions according to
Eq. (1)). Owing to the steep self�amplified augmentation
it does not matter whether we chose x± / xideal � 1.1 or
x±/xideal � 1.01 as the beginning of the anomalous increase.
Moreover, since in this temperature zone all the materials
exhibit similar xideal values, we may even chose an absolute
value (e.g. x± � 10�4) as a criterion for the onset tempera-
ture (it is already qualitatively clear that the onset of the
interaction avalanche requires a similar defect concen-
tration, i. e. a similar mean distance, given the small varia-
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Figure 2 Ratio of defect molar fraction x± / xideal with and with-
out defect interactions. The dotted line marks the chosen criterion
x± / xideal � 1.1 for determination of the onset temperature.

tions in εr and in fd/f). Table 1 gives Tc as well as Tonset

together with Tm, and Figure 3 demonstrates graphically
the correlation of the latter quantities. Indeed it is seen that
Tonset is proportional to Tm with the proportionality con-
stant between 0.5 and 2/3 as proposed by the modified Tam-
mann relation. A better agreement is not to be expected
because of the qualitative character of Tammann’s rule.
Interestingly, the calculated defect concentrations at the
predicted critial temperatures Tc shown in Table 1 are simi-
lar and fall in the range of 2·10�3 � 7·10�2. Here the “ther-
mal destiny” outlined above explains the observation of a
“critical” defect concentration.

The finding that the correlation between Tm and x± di-
rectly translates into a correlation between Tm and ionic
conductivity is due to the fact that the mobilitites of simple
compounds are not so different close to the critical tem-
perature. This was shown for fluorites in Ref. [17] with mo-

Table 1 Melting temperature Tm(* or superionic phase transition
for AgI, PbF2), onset temperature Tonset (x±/xideal � 1.1), critical
temperature Tc, defect molar fraction x± at T � Tc, and references
for defect formation parameters of selected halides. ** Tc for the
fluorite materials exhibiting only a diffuse phase transformation is
estimated graphically from plots of x± versus 1/T.
Please note: for the fluorite materials, the defect lattice (anion va-
cancies and interstitials) has 1:1 stoichiometry and is thus approxi-
mated by a NaCl structure with appropriate lattice constant

Tm/K T(x±�10�4) T(x±�10�6) T(x±/xid�1.1) Tc /K x± (Tc) Ref.

NaF 1265 1030 791 699 [24]
NaCl 1074 971 751 710 1347 0.063 [24]
NaBr 1020 764 587 525 942 0.0025 [24]
NaI 933 756 580 550 1083 0.075 [24]

AgCl 728 576 448 422 727 0.0062 [5]
AgBr 703 475 362 343 687 0.056 [5]
AgI 419* 300 240 230 419 0.071 [5]

CaF2 1665 1268 937 951 2000** [25]
SrF2 1673 1196 869 879 2000** [25]
BaF2 1593 940 686 661 1550** [25]
PbF2 700* 471 358 339 680** [5]
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Figure 3 Plot of onset temperature of defect interaction versus
experimental melting temperature (for AgI and PbF2: versus expe-
rimental transformation temperature to superionic phase). Solid
symbols: relative criterion x± / xideal � 1.1; open symbols: absolute
criterion x± � 10�4. The dotted lines correspond to 2/3 Tm and 1/
2 Tm, respectively.

bilities of � 3·10�3 cm2V�1s�1; it holds also for the silver
halides [18] and the alkali halides [19, 20] exhibiting com-
parable mobilities close to Tc. This fact is accepted as an
empirical finding in this paper but of course also relies on
energetic and entropic reasons. As we face a relation be-
tween thermodynamic and kinetic quantities this is more
difficult to explain.

The most important quantities for high defect concen-
trations are of course the defect formation parameters ΔH0

and ΔS0. UM and fd/f of the defect superlattice will not vary
much because for Schottky as well as for Frenkel disorder
(to mention the most frequent defect types) cationic and
anionic defects are formed in a 1:1 stoichiometric ratio. The
influence of εr essentially becomes effective through ΔH0.
For a given structure a larger εr usually implies a lower
defect formation enthalpy ΔH0 (because the host structure
becomes dielectrically softer), which outweighs the decrease
in J. A weaker influence of εr appears via J, there the effect
is opposite as a high εr weakens the defect interactions.

Turning around Tammann’s rule: Search strategy for
good ion conductors

If we assume that the molten state is the superionic state of
interest (i.e. no superionic solid phase exists, as in the case
of Schottky disordered solids) we can state that high defect
concentrations imply low melting points. The reversal is not
as strict because of the discrepancy between virtual high
temperature structure and real structure. Nonetheless,
searching for low melting ionic compounds is a powerful
search strategy for materials that easily form defects and
hence offer the possibility to be good ion conductors. This
qualitative tendency is obvious e. g. when we consider the
alkali halides AX (variation of the cation in the series LiCl,
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NaCl, KCl, RbCl, CsCl or of the anion LiCl, LiBr, LiI). It
is also striking that soft, low melting solids such as silver
halides, stoichiometric lithium halide-alcohol adducts [21]
or alkali triflates [22] exhibit high ionic conductivities. A
spectacular example are ionic liquids. Ionic materials such
as quartenary amines or imidazolium salts possess a melt-
ing point around room temperature and some of them have
been recognized to exhibit high conductivities in the solid
state at moderate temperatures, see e. g. [23].

Conclusions

Owing to interactions between defects an overexponential
increase of defect formation starts typically at a tempera-
ture that can be identified with Tammann’s temperature.
This defect avalanche unavoidably leads to a molten state
(if a superionic phase or a phase with different structure is
not thermodynamically available), thus connecting melting
point and defect concentrations. This behavior forms an ex-
planation of Tammann’s rule. As the latter refers to reactiv-
ities, i. e. in the diffusion controlled case to conductivities,
the validity of the approach presupposes comparable mo-
bilities in the premelting zone, which is indeed the case for
many simple materials. If a solid phase undergoes a modifi-
cation change before it melts, we have to refer to the solid
high temperature phase and the picture may change. Fi-
nally, we gave examples that, in the case of simple struc-
tures, Tammann’s rule can be used as a guideline to search
for new solid electrolytes.
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