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Preliminary plan for the whole fall term

Lecture 1 

…

Lecture 2 

…

Lecture 3 

…

Lecture 4 

…

Lecture 5 

…

Lecture 6 

…

Something about everything (see next slide)              

The textbook version of BEC in extended systems

thermodynamics, grand canonical ensemble, extended 

gas: ODLRO, nature of the BE phase transition

atomic clouds in the traps – theory. Confined indepen-

dent bosons, what is BEC?, interactions, GP equation

atomic clouds in the traps – experiment. Cooling, 

trapping, monitoring and measuring the clouds

Infinite systems: Bogolyubov-de Gennes theory, BEC 

and symmetry breaking, coherent states

Time dependent GP theory Finite systems: BEC theory 

preserving the particle number

Sep 22

Oct 4

Oct 18

???



Back to Lecture 1.
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A few important points from the last class

� Why extreme low temperature physics: new phenomena connected with 

freezing out the thermal noise and with quantum coherence

� Example of NDR in rhodium: temperature record and nuclear antiferromagne-

tism. Details in two attached documents

� BEC in atomic clouds – a multidisciplinary task: cryogenics&LT physics, 

atomic physics, laser physics& spectroscopy, …

� Crucial point: identical particles are quantum correlated. This changes 

statistics even for non-interacting particles

� BEC in an extended system according to Einstein: below a critical 

temperature a macroscopic occupancy of the lowest one-particle level



Bose-Einstein condensation:         

elementary approach
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L1:  Ideal quantum gases at a finite temperature
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Equation for the chemical potential closes the equilibrium problem:
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L1: A gas with a fixed average number of atoms

Ideal boson gas (macroscopic system)

atoms: mass m, dispersion law 

system as a whole:

volume V, particle number N, density n=N/V, temperature T. 

Equation for the chemical potential closes the equilibrium problem:

2

( )
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p
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ε =

Always µ < 0. At high temperatures, in the thermodynamic limit, 

the continuum approximation can be used:
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L1:  Closer look at BEC

• Thermodynamically, this is a real phase transition, although unsual

• Pure quantum effect

• There are no real forces acting between the bosons, but there IS a real 

correlation in their motion caused by their identity (symmetrical  wave functions)

• BEC has been so difficult to observe, because other (classical G/L or G/S) 

phase transitions set on much earlier

• BEC is a "condensation in the momentum space", unlike the usual liquefaction 

of classical gases, which gives rise to droplets in the coordinate space.

• This is somewhat doubtful, especially now, that the best observed BEC takes 

place in traps, where the atoms are significantly localized

• What is valid on the "momentum condensation": BEC gives rise to quantum 

coherence between very distant places, just like the usual plane wave

• BEC is a macroscopic quantum phenomenon in two respects:

♠ it leads to a correlation between a macroscopic fraction of atoms

♠ the resulting coherence pervades the whole macroscopic sample
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Off-Diagonal Long Range Order

Analysis on the one-particle level
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Coherence in BEC: ODLRO

Without field-theoretical means, the coherence of the condensate may be 

studied using the one-particle density matrix.

Definition of OPDM for non-interacting particles: Take an additive 

observable, like local density, or current density. Its average value for the 

whole assembly of atoms in a given equilibrium state:

=    insert unit operator

 change the summation ord

    double average, q

er

|     

uantum and thermal

define the one-particle density matrix
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Off-Diagonal Long Range Order
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OPDM for homogeneous systems

In coordinate representation

i ( ')

( , ')

1
e
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ρ
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∑
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k

k

k r r

k

k

r r r k k r'

• depends only on the relative position (transl. invariance)

• Fourier transform of the occupation numbers

• isotropic … provided thermodynamic limit is allowed

• in systems without condensate, the momentum distribution is smooth and 

the density matrix has a finite range.

CONDENSATE     lowest orbital with 0k
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OPDM for homogeneous systems: ODLRO

CONDENSATE     lowest orbital with 

1

3
0 ( ) 0O V

−
= ≈k

0

0

i ( ') i ( ')

0

coherent across
 of a smooth function

the sample
has a finite range

BE G

1 1
( ') e e

( ')    ( ')

FT

n n
V V

ρ

ρ ρ

− −

≠

− = +

≡ − + −

∑k r r k r r

k

k k

r r

r r r r

1442443 1442443



23

OPDM for homogeneous systems: ODLRO

CONDENSATE     lowest orbital with 

1

3
0 ( ) 0O V

−
= ≈k

0

0

i ( ') i ( ')

0

coherent across
 of a smooth function

the sample
has a finite range

BE G

1 1
( ') e e

( ')    ( ')

FT

n n
V V

ρ

ρ ρ

− −

≠

− = +

≡ − + −

∑k r r k r r

k

k k

r r

r r r r

1442443 1442443

BE G

BE G

( ) ( )          ( )

                 +n n

ρ ρ ρ= +
=

0 0 0

DIAGONAL ELEMENT   r = r'



24
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From OPDM towards the macroscopic wave function
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MACROSCOPIC WAVE FUNCTION

0i( )
  an arbitrary ph ee s( ) , aBEn

ϕΨ ϕ= ⋅ k r+
r K

• expresses ODLRO in the density matrix

• measures the condensate density

• appears like a pure state in the density matrix, but macroscopic

• expresses the notion that the condensate atoms are in the same state

• is the order parameter for the BEC transition
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? what is it?
? how?

? why bother?
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F.Laloë: Do we really understand Quantum mechanics,

Am.J.Phys.69, 655 (2001)



Thermodynamics of BEC

Capsule on thermodynamics

Grand canonical ensemble

Thermodynamic functions of an ideal gas

BEC in an ideal gas

Comparison with real gases/vdW equation
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Homogeneous one component phase:

boundary conditions (environment) and state variables

  not in useS Pµ

isolated, conservativ     eS V N

isothermal  T V N

  isobaricS P N
open  S V µ

grand  T V µ
  isothermal-isobaricNT P

  not in use   T Pµ

additive variables, have dens / "extensive"ities  /    S V N s S V n N V= =

dual variables, intensities                                               "intensive  "T Pµ
b bb



31

Homogeneous one component phase:

boundary conditions (environment) and state variables

isolated, conservativ     eS V N

isothermal  T V N

grand  T V µ
  isothermal-isobaricNT P

additive variables, have dens / "extensive"ities  /    S V N s S V n N V= =

dual variables, intensities                                               "intensive  "T Pµ
b bb

The important four
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Thermodynamic potentials  and all that

Basic thermodynamic identity (for equilibria)

For an isolated system,

For an isothermic system, the independent variables are T, V, N. 

The change of variables is achieved by means of the Legendre 

transformation. Define Free Energy

d d d dU T S P V Nµ= − +

( )
,

( , , ) ,  etc.
S V N

UT T S V N ∂= = ∂

( )
,

d

, ( , , )

d d d

,  etc.

, ( , ,

T

, )

V N

F S T P V N

F U TS

FS

U U T V N S S T V N

µ= − − +
∂=

= =

∂

− = L
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Thermodynamic potentials  and all that

Basic thermodynamic identity (for equilibria)
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New variables:

perform the substitution 

everywhere; this shows in 

the Maxwell identities 

(partial derivatives)
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Thermodynamic potentials  and all that

Basic thermodynamic identity (for equilibria)

For an isolated system,

For an isothermic system, the independent variables are T, V, N. 

The change of variables is achieved by means of the Legendre 

transformation. Define Free Energy
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Legendre transformation:

subtract the relevant 

product of             

conjugate (dual) variables

New variables:

perform the substitution 

everywhere; this shows in 

the Maxwell identities 

(partial derivatives)
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Thermodynamic potentials  and all that

Basic thermodynamic identity (for equilibria)

For an isolated system,

For an isothermic system, the independent variables are T, S, V. 

The change of variables is achieved by means of the Legendre 

transformation. Define Free Energy

d d d dU T S P V Nµ= − +

( )
,

( , , ) ,  etc.
S V N

UT T S V N ∂= = ∂

( )
,

, ( , , ), ( , , ),

d d d d

,  etc.
T V N

F U TS U U T V N S S T V N

F S T P V N

FS

µ
= − = =
= − − +

∂= ∂

L
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A table

microcanonical ensemble

internal energy

isolated system , ,S V N

U d d d dU T S P V Nµ= − +

canonical ensemble

free energy

isothermic system , ,T V N

F U TS= − d d d dF S T P V Nµ=− − +

isothermic-isobaric ensemble

free enthalpy

isothermic-isobaric system , ,T P N

U TS NPV µΦ = − + ≡ d d d dS T V P NΦ µ=− + +

grand canonical ensemble

grand potential

isothermic open system , ,T V µ
U TS VN PΩ µ= − − ≡ − d d d dS T P V NΩ µ=− − −

How comes                   ?           is additive,      is the only additive independent variable. 

Thus,  

Similar consideration holds for 

PVΩ = − Ω V

,

( , ) , ( , )
T

T V T P
V µ

ΩΩ ω µ ω µ ∂ = × = = − ∂ 

( , )T P NΦ ϕ= ⋅
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Digression: which environment to choose?

THE ENVIRONMENT IN THE THEORY SHOULD CORRESPOND             

TO THE  EXPERIMENTAL CONDITIONS

… a truism difficult to satisfy

� For large systems, this is not so sensitive for two reasons

• System serves as a thermal bath or particle reservoir all by itself

• Relative fluctuations (distinguishing mark) are negligible

� Adiabatic system Real system Isothermal system

SB heat exchange  – the slowest             medium fast               the fastest
process


 Atoms in a trap: ideal model … isolated. In fact: unceasing energy exchange 

(laser cooling). A small number of atoms may be kept (one to, say, 40).  

With 107, they form a bath already. Besides, they are cooled by evaporation 

and they form an open (albeit non-equilibrium) system.

� Sometime, N =const. crucial (persistent currents in non-SC mesoscopic rings)

S       B S       B 
• temperature lag

• interface layer



Grand canonical ensemble

Definition following Gibbs

General treatment for independent particles

Thermodynamic functions of an ideal gas

BEC in an ideal gas

Comparison with real gases/vdW equations
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Grand canonical ensemble - definition

Grand canonical ensemble admits both energy and particle number exchange

between the system and its environment.

The statistical operator (many body density matrix) acts in the Fock space

External variables are             . They are specified by the conditions 

Grand canonical statistical operator has the Gibbs' form

ρ̂
, ,T V µ

ˆ ˆ ˆˆTr  sharp Trˆ ˆH U V N N NΗ≡ = = ≡ =ρ ρ

B Tr ln maxˆˆS k= − ⋅ ρ =ρ

ˆ ˆ1 ( )

ˆ ˆ( ) ( , , )

B

statistical s

e

( , , ) Tr e e   

( , , ) ln ( , , )      

um

grand canonical poten      t ial 

ˆ H N

H N V

Z

Z V

V k T Z V

β µ

β µ βΩ β µβ µ
Ω β µ β µ

− − −

− − −

=

= ≡
= −

ρ
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Grand canonical ensemble – general definition

Grand canonical ensemble admits both energy and particle number exchange

between the system and its environment.

The statistical operator (many body density matrix) acts in the Fock space

External variables are             . They are specified by the conditions 

Grand canonical statistical operator has the Gibbs' form

ρ̂
, ,T V µ

ˆ ˆ ˆˆTr  sharp Trˆ ˆH U V N N NΗ≡ = = ≡ =ρ ρ

B Tr ln maxˆˆS k= − ⋅ ρ =ρ

ˆ ˆ1 ( )

ˆ ˆ( ) ( , , )

B

statistical s

e

( , , ) Tr e e   

( , , ) ln ( , , )      

um

grand canonical poten      t ial 

ˆ H N

H N V

Z

Z V

V k T Z V

β µ

β µ βΩ β µβ µ
Ω β µ β µ

− − −

− − −

=

= ≡
= −

ρ

volume … for an extended homogeneous system

… generic for generalized coordinates of external fields whose change 

is connected with the mechanical work done by the system 
V
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Grand canonical ensemble – finite systems

Grand canonical ensemble admits both energy and particle number exchange

between the system and its environment.

The statistical operator (many body density matrix) acts in the Fock space

External variables are             .    They are specified by the conditions 

In fact, the external variables             are properties of the bath/reservoir.  

They are imposed on the system and have meaning even for small systems  .  

.                one particle has a temperature – that of the bath

ρ̂

{ }ˆ ˆ ˆˆTr  sharp Trˆ ˆH U N N NΗ Ξ≡ = = ≡ =ρ ρ

B Tr ln maxˆˆS k= − ⋅ ρ =ρ

{ }, ,T Ξ µ

,T µ
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Fluctuations I. – global quantities

( )
ˆ ˆ( )

ˆ ˆ( )
B B ˆ ˆ( )

ˆTr e ˆln ln Tr e
Tr e

H N
H N

H N

N
k T Z k T N

β µ
β µ

β µ

Ω
µ µ µ

− −
− −

− −

∂ ∂ ∂= − = − = − = −
∂ ∂ ∂

Fluctuations of the total number of particles around the mean value

First derivative of the grand potential

Second derivative of the grand potential

Final estimate for the relative fluctuation

ˆ ˆ2 ( )

ˆ ˆ2 ( )

ˆ ˆ ˆ ˆ2 ( ) ( ) 2
2

2

ˆ ˆ ˆ ˆ( ) ( ) 2

ˆTr eˆ

Tr e

ˆ ˆTr e (Tr e ) ˆ ˆ

Tr e (Tr e )

H N

H N

H N H N

H N H N

N
N

N N
N N

β µ

β µ

β µ β µ

β µ β µ

Ω
µ µ µ

− −

− −

− − − −

− − − −

∂ ∂ ∂= − = − =
∂ ∂ ∂

= − + = − +

( )
2

2
1

2 2

ˆˆ ˆ
ˆ

ˆ ˆ

NN N
N

N N

µ −

∂
− ∂= =O
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Useful identities

T

Ω∂
∂Calculate       in two ways.

( )

( )

B B B

B B B B

B

B

ln ln ln

1 1
ln ln

1 ˆ ˆ

1 1 ˆ ˆTr ( )
1 ˆ ˆTr ln ( )

ˆ
ˆ

k T Z k Z k T Z
T T T

k Z k T Z k Z k T Z
Z T T Z

H N
T

H N
T T

k Z H N S
k T

Ω

β
β

Ω µ
Ω µ

µ

∂ ∂ ∂= − = − −
∂ ∂ ∂

∂ ∂ ∂= − − = − − ⋅ =
∂ ∂ ∂

 − +
= − − =   + − − − ≡ − 
  

ρ
ρ

,

ˆ ˆ ,
V

H TS N S
T µ

ΩΩ µ ∂ = − − = − ∂ 

ln ρ̂
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Grand canonical statistical sum for independent bosons

{ }

{ }
( )

{ }

( )

ˆ ˆ( ) ( , , )

(

(

)

)
( )

( )

(

( , , ) Tr e e   

= e             

statistical sum

eigenstate 

e e   up to here tr

label  with  

ivial

1
TRICK!! e

1 e

H N V

E

n n

n n

n

n

N

Z V

n n N

α α αα α

α α

αα

α

β µ

β ε µ
β ε µ

α

β ε µ
β

βΩ β µ

β µ
α α

α

α

β µ

−

− − −

−

−

−
−

− −
−

−

= ≡

≡

∑
= =

= =
−

=

∑ ∑∏

∑∏

∑ ∑l l
l

l

lK l

)αε µ
α

−∏

Recall
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{ }

{ }
( )

{ }

( )

ˆ ˆ( ) ( , , )

( )

(

(

)
( )

)

(

( , , ) Tr e e   

= e             

statistical sum

eigenstate 

up to here tr

label  with

1
TRICK!! e

ive ial

 

  

 

e

1 e

H N V

E N

n

n

n

n

n

n

Z V

n n N

α

αα

α

α

α αα α

α

β

β

µ βΩ β µ

β µ
α α

α
β ε µ

ε µ
β

α

β ε µ

α

β µ − − −

− −

−

− −

−

−

− −

= ≡

≡ =

=

∑
=

−

=

=∑∏

∑ ∑

∑ ∑∏

l l
l

l

lK l

)αε µ
α

−∏

Recall

Grand canonical statistical sum for independent bosons
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{ }

{ }
( )

{ }

( )

ˆ ˆ( ) ( , , )

( )

( )
( )

( )

(

( , , ) Tr e e   

= e             

statistical sum

eigenstate 
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label  with
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1
e
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TRIC
1 e

 

K

 

!!

H N V

E N
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n n

n

n

Z V

n n N

α α αα α

α α

αα

α

β µ βΩ β µ

β µ
α α

α
β ε µ

β ε µ

α

β ε µ
β

α

β µ − − −

− −

− −
− −

− −
−

= ≡

≡ =

∑
= =

= =
−

∑ ∑

∑ ∑∏

∑∏

l l
l

l

lK l

)

( )

1 1
( , , )

1 e 1 e
Z V

zα α

α

β ε µ βε

α

α

ε µ

α
β µ − − −

−

= ≡
− −∏

∏

∏

Recall

activity
e    

fugacity
 zβµ ≡

Grand canonical statistical sum for independent bosons
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{ }

{ }
( )

{ }

( )

ˆ ˆ( ) ( , , )

( )

( )
( )

( )
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( , , ) Tr e e   
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statistical sum

eigenstate 
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n
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β µ βΩ β µ
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α α
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β ε µ

β ε µ

α

β ε µ
β

α
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− −
− −

− −
−

= ≡

≡ =

∑
= =

= =
−

∑ ∑

∑ ∑∏

∑∏

l l
l

l

lK l

)

( )

1 1
( , , )

1 e 1 ez
Z V

α

α α

ε µ
α

β ε ε
α

µ β
α

β µ

−

− − −= ≡
− −

∏

∏ ∏

Recall

activity
e    

fugacity
 zβµ ≡

Grand canonical statistical sum for independent bosons
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{ }

{ }
( )

{ }

( )

ˆ ˆ( ) ( , , )

( )

( )
( )

( )
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( , , ) Tr e e   
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statistical sum

eigenstate 

up to here tr
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e e   

1
e

ivial

TRIC
1 e

 

K

 

!!

H N V

E N

n n

n n

n

n

Z V

n n N

α α αα α

α α

αα
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β µ βΩ β µ

β µ
α α

α
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α

β ε µ
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α
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− −
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= ≡

≡ =

∑
= =
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∑ ∑

∑ ∑∏

∑∏

l l
l

l

lK l

)

( )

1 1
( , , )

1 e 1 ez
Z V

α

α α

ε µ
α

β ε ε
α

µ β
α

β µ

−

− − −= ≡
− −

∏

∏ ∏

Recall

activity
e    

fugacity
 zβµ ≡

( )
( )

B

( )
B

B

grand canonical potenti( , , ) ln ( , , )             

= + ln 1 e

+ ln 1

al

e

V k T Z V

k

k T z

T α

α

µβ ε

α
βε

α

Ω β µ β µ
− −

−

= −

−

= −

∑

∑

Grand canonical statistical sum for independent bosons
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{ }

{ }
( )

{ }
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ˆ ˆ( ) ( , , )

( )
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∑ ∑∏
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α

α α

ε µ
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β ε ε
α

µ β
α

β µ

−

− − −= ≡
− −

∏
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Recall

activity
e    

fugacity
 zβµ ≡

( )
( )

B

( )
B

B

grand canonical potenti( , , ) ln ( , , )             

= + ln 1 e

+ ln 1

al

e

V k T Z V

k

k T z

T α

α

µβ ε

α
βε

α

Ω β µ β µ
− −

−

= −

−

= −

∑

∑

valid for 

- extended "ïnfinite" gas

- parabolic traps

just the same

Grand canonical statistical sum for independent bosons
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Thermodynamic functions for an extended Bose gas

For Born-Karman periodic boundary conditions, the lowest level is

Its contribution has to be singled out, like before:

( ) 0ε = =k 0

1

0

1
( , , ) d ( )

1 e 1

z
N T V V

z z βεµ ε ε
∞

−= +
− −∫ D

3

2

2

2
( )

3D D S

2

O

m

h
ε π ε = ⋅ 

 
D

0

( , , ) ln(1 ) d ln(1 e ) ( )V z V zT βεβΩ µ ε ε
∞

−= − + −∫ D

1

0

( , , ) d ( )
e 1

U T V V
z εβ

εµ ε ε
∞

−= +
−∫ D

activity
e    

fugacity
 zβµ ≡

�

�

�

HOW TO PROCEED

Start from �. This we did already. Below TC,

Thus, the singular term in � is negligible for                 , there is none in �

( ) ( )BE BE1 0, ln 1 ln O ln
1

z
N z z N V

z
= ⇒ ≈ − − ≈ =

−
V → ∞
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Thermodynamic functions for an extended Bose gas

The following equation of state results

Integrating by parts, Eqs. � and � are found as nearly identical

This is an extension of the result known for classical gases

Series expansion

( )
13

2 22
B

0

( , , ) 2 2 d ln(1 e )P T V mh k T z βεµ π ε ε
∞

− −= − − ⋅∫�*

2
3

PV U=�*

( )
1 13

2 2 22
B

0 0

1

2

0

1
2 2 d ln(1 e ) d ( e )

d (e )

n

n
n

P mh k T z z
n

z

n

βε βε

βε

π ε ε ε ε

ε ε

∞ ∞
− − −

∞
−

= − − ⋅ = ⋅

=

∑∫ ∫

∑ ∫

L

L

�**

1

3 2
5 / 2 B 5 / 2 5 / 2

B 1

( ) (2 ) ( )
pP z

g z h mk T g z
k T p

λ λ π
∞−−= = =∑
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Thermodynamic functions for an extended Bose gas

1

3 2
3 / 2 B 3 / 2 3 / 2

1

( ) (2 ) ( )
1

pN z z
g z h mk T g z

V z p
λ λ π

∞−−= + = =
− ∑

Similar expansions:

1

3 2
B 5 / 2 B 5 / 2 5 / 2

1

3
( ) (2 ) ( )

2

pU z
k T g z h mk T g z

V p
λ λ π

∞−−= ⋅ = =∑

Suitable for numerical studies above the critical temperature

Results simplify in the condensation region:

and all temperature dependences are explicit.

( )3 / 23
B1,z k Tλ Λ−= = ⋅

( )

( )

( )

3 / 2BE
3/ 2 B

5 / 2

5 / 2 B

5 / 2

5 / 2 B

(1)

3
(1)

2

(1)

NN
g k T

V V

U
g k T

V

P g k T

Λ

Λ

Λ

= + ⋅

= ⋅

= ⋅
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Specific heat

( )
,

/
V

V N

U N
C

T

∂
=

∂

A weak singularity …

what decides is the coexistence of two phases
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Isotherms in the P-V plane

              cv v →

P

↑

( )

( )

3 / 2BE
3/ 2 B

5 / 2

5 / 2 B

(1)

(1)

NN
g k T

V V

P g k T

Λ

Λ

= + ⋅

= ⋅

For a fixed temperature, the specific 

volume              can be arbitrarily small.   

By contrast, the pressure is volume 

independent  …typical for condensation

/V N

( ) 2 / 33 / 2

5

3

2

5 / 3 5 /

/

     /c c

c c

v AT T v A

P B

P BA

T

v −

−−

= ⋅

= =

=

ISO
THERM
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Compare with condensation of a real gas

CO2 Basic similarity:

increasing pressure with compression

critical line

beyond is a plateau

Differences:

at high pressures

at high compressions
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Fig. 151  Experimental isotherms of

carbon dioxide (CO2}.

Compare with condensation of a real gas

CO2 Basic similarity:

increasing pressure with compression

critical line

beyond is a plateau

Differences:

no critical point

⇒ at high pressures

⇒at high compressions

Conclusion:

BEC in a gas is a phase transition

of the first order
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What will be the analogue for BEC?



The end



Problems



60

Some problems are expanding on the presented subject matter and are voluntary… (*)

The other ones are directly related to the theme of the class and are to be worked out within a 

week. The solutions will be presented on the next seminar and posted on the web.

(1.1*) Problems with metastable states and quasi-equilibria in defining the temperature and 

applying the 3rd law of thermodynamics

(1.2*) Relict radiation and the Boomerang Nebula

(1.3)  Work out in detail the integral defining

(1.4)  Extend the resulting series expansion to the full balance equation (BE integral)

(1.5)  Modify for a 2D gas and show that the BE condensation takes never place

(1.6)  Obtain an explicit procedure for calculating the one-particle density matrix for an ideal 

boson gas [difficult]  

�

cT

Problems to Lecture 1.
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Some problems are expanding on the presented subject matter and are voluntary… (*)

The other ones are directly related to the theme of the class and are to be worked out within a 

week. The solutions will be presented on the next seminar and posted on the web.

(2.1*) How was measured the record temperature of the order of 100 pK? 

(2.2*) The BE distribution can be obtained from a combinatorial analysis of microstates of the 

system with the subsequent use of the Stirling formula. Which is the least number of the 

particles, for which the limit makes sense? (see the example for Boltzmann in Blatt).

(2.3)  Extend the integrals from problem (1,4) to all thermodynamic quantities

(2.4)  Obtain the entropy for BE gas. Below the transition, it should display the two phases

(1.5)  Fluctuations of  

(1.6)  Phase diagram in p – V coordinates for BEC [difficult]  

�

Problems to Lecture 2.

nα


