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Preliminary plan for the whole fall term

Lecture 1

Lecture 2

Lecture 3

Lecture 4

Lecture 5

Lecture 6

Something about everything (see next slide)
The textbook version of BEC in extended systems

thermodynamics, grand canonical ensemble, extended
gas: ODLRO, nature of the BE phase transition

atomic clouds in the traps — theory. Confined indepen-
dent bosons, what is BEC?, interactions, GP equation

atomic clouds in the traps — experiment. Cooling,
trapping, monitoring and measuring the clouds

Infinite systems: Bogolyubov-de Gennes theory, BEC
and symmetry breaking, coherent states

Time dependent GP theory Finite systems: BEC theory
preserving the particle number

Sep 22

Oct 4

Oct 18
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Back to Lecture 1.




A few important points from the last class

#& Why extreme low temperature physics: new phenomena connected with
freezing out the thermal noise and with quantum coherence

& Example of NDR in rhodium: temperature record and nuclear antiferromagne-
tism. Details in two attached documents

& BEC in atomic clouds — a multidisciplinary task: cryogenics&LT physics,
atomic physics, laser physics& spectroscopy, ...

& Crucial point: identical particles are quantum correlated. This changes
statistics even for non-interacting particles

& BEC in an extended system according to Einstein: below a critical
temperature a macroscopic occupancy of the lowest one-particle level




Bose-Einstein condensation:
elementary approach




L1: Ideal guantum gases at a finite temperature

<n> = e P M Boltzmann distribution

high temperatures, dilute gases
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L1: Ideal quantum gases at a finite temperature
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L1: Ideal guantum gases at a finite temperature
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L1: A gas with a fixed average number of atoms
|deal boson gas (macroscopic system) ,
atoms: mass m, dispersion law &(p) = 2p_m
system as a whole:
volume V, particle number N, density n=N/V, temperature T.

Equation for the chemical potential closes the equilibrium problem:

N =N (T, 1))=Y n(E)) =3 eﬁ“f}”)—l

J

Always 1/ < 0. At high temperatures, in the thermodynamic limit,
the continuum approximation can be used:

00 N 2 E
N=V|de L o) = (T, ) T>T. = / [E N j
0

e -1 4rimk, | 2,612V

The balance equation for I' <1, is

1

D(E
eﬁ(go_/'[)_l ( )

N=N(T 1) = +V]de NG
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L1: Condensate concentration
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L1: Closer look at BEC

* Thermodynamically, this is a real phase transition, although unsual
* Pure quantum effect

» There are no real forces acting between the bosons, but there IS a real
correlation in their motion caused by their identity (symmetrical wave functions)

« BEC has been so difficult to observe, because other (classical G/L or G/S)
phase transitions set on much earlier

« BEC is a "condensation in the momentum space”, unlike the usual liquefaction
of classical gases, which gives rise to droplets in the coordinate space.

 This is somewhat doubtful, especially now, that the best observed BEC takes
place in traps, where the atoms are significantly localized

* What is valid on the "momentum condensation": BEC gives rise to quantum
coherence between very distant places, just like the usual plane wave

 BEC is a macroscopic quantum phenomenon in two respects:
& it leads to a correlation between a macroscopic fraction of atoms

& the resulting coherence pervades the whole macroscopic sample
12
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Off-Diagonal Long Range Order

Analysis on the one-particle level




Coherence in BEC: ODLRO
Off-Diagonal Long Range Order

Without field-theoretical means, the coherence of the condensate may be
studied using the one-particle density matrix.

Definition of OPDM for non-interacting particles: Take an additive
observable, like local density, or current density. Its average value for the
whole assembly of atoms in a given equilibrium state:

<X > = Z(a’ ‘X ‘ a'> <na> double average, quantum and thermal

a
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OPDM for homogeneous systems

In coordinate representation

ptr.)= 3 r ) ) )
— %;eik(r—r’) <nk>

» depends only on the relative position (transl. invariance)
* Fourier transform of the occupation numbers
e isotropic ... provided thermodynamic limit is allowed

* in systems without condensate, the momentum distribution is smooth and
the density matrix has a finite range.

CONDENSATE lowest orbital with k,

B
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OPDM for homogeneous systems: ODLRO
1

CONDENSATE lowest orbital with k, = O(V_E) =(

,0(1’ — r!) — %eiko(r—r') <n0> + eik(r—r') <nk>

v U J
coherent across
the sample

FT of a smooth function
has a finite range

= Ppe(r—r) +p,(r—r)
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OPDM for homogeneous systems: ODLRO
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OPDM for homogeneous systems: ODLRO
1
CONDENSATE lowest orbital with k, =O(V *)=0
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= Ngg THg
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DISTANT OFF-DIAGONAL ELEMENT |r-r"| >0
Pee(r—r") 000D n,
o.(r—r") 000D

: ODLRO
o(r-r) OO0 n,

Off-Diagonal Long Range Order
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From OPDM towards the macroscopic wave function
1

CONDENSATE lowest orbital with k, = O(V_g) =(

p(r _ r') — %eiko(r—r') <n0> + eik(r—r') <nk>

.

' L J

coherent across FT of a smooth function
the sample )
has a finite range

1 e
=@y =" ()
) ST &=
dyadic
MACROSCOPIC WAVE FUNCTION

W(r)=n, @ @ . anarbitrary phase

» expresses ODLRO in the density matrix

* measures the condensate density

 appears like a pure state in the density matrix, but macroscopic

« expresses the notion that the condensate atoms are in the same state

* is the order parameter for the BEC transition oe
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F.Laloe: Do we really understand Quantum mechanics,
Am.J.Phys.69, 655 (2001)

In passing, and as a side remark, it is amusing to notice
that the recent observation of the phenomenon of Bose—
Einstein condensation in dilute gases (Ref. 23 can be saen,
in a sense, a5 a sort of realization of the initial hope of

Schrodinger: This condensation provides a case where the
many-particle matter wave does propagate in ordinary space.

Before condensation takes place, we have the usual situation:
The atoms belong to a degenerate quantum gas, which has to
be described by wave functions definad in a huge configura-
tion space. But, when they are completely condensad, they

are restrictad to a much simpler many-particle state that can
be describad by the same wave function, exactly as a single

particle. In other words, the matter wave bacomes similar to

a classical field with two components (the real part and the
imaginary part of the wave function, resembling an ordinary
sound wave for instance. This illustrates why, somewhat
paradoxically, the “*exciting new states of matter™ provided
by Bose—Einstein condensates are not an example of an ex-
treme quantun situation: they are actually more classical

than the gases from which they originate (in terms of quan-
tum description, interparticle correlations, etc.i. Conceptu-

ally, of course, this remains a very special case and does not
solve the general problem associated with a naive view of
the Schrodinger waves as real waves,
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Thermodynamics of BEC

Capsule on thermodynamics

Grand canonical ensemble
Thermodynamic functions of an ideal gas
BEC in an ideal gas

Comparison with real gases/vdW equation




Homogeneous one component phase:
boundary conditions (environment) and state variables

S V' N additive variables, have densities s=S/V n=N/V "extensive"

OR0N

I' P i1 dual variables, intensities "Intensive"

S V' N 1solated, conservative

open SV 1 Q@
S PN 1sobaric

1sothermal 7V N

grand 7V u Q

notinuse 7 Pu 30




Homogeneous one component phase:
boundary conditions (environment) and state variables

S V' N additive variables, have densities s=S/V n=N/V "extensive"

I17
I' P i1 dual variables, intensities "Intensive"
- ~ S V' N 1solated, conservative

The important four

1sothermal 7V N

grand 7V u Q

() T PN 1sothermal-isobaric
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Thermodynamic potentials and all that

Basic thermodynamic identity (for equilibria)
dU =TdS-PdV +udN

For an isolated system,

T=T(S.V,N)= (%—(S])V et

For an isothermic system, the independent variables are T, V, N.

The change of variables is achieved by means of the Legendre
transformation. Define Free Energy

F=U-TS, U=U(T,V,N), S=S(T,V,N),--

32




Thermodynamic potentials and all that

Basic thermodynamic identity (for equilibria)
dU =TdS-PdV +udN

For an isolated system,

0S

For an isothermic system, the independent variables are T, V, N.

T:T(S,V,N):(a—U) . etc.
VN

The change of variables is achieved by means of the Legendre
transformation. Define Free Energy

F=U-TS, U=U(T,V,N), S=S(T,V,N),--

New variables:
perform the substitution
everywhere; this shows in
the Maxwell identities
(partial derivatives)
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Thermodynamic potentials and all that

Basic thermodynamic identity (for equilibria)
dU =TdS-PdV +udN

For an isolated system,

0S

For an isothermic system, the independent variables are T, V, N.

T:T(S,V,N):(O—U) . etc.
V,N

The change of variables is achieved by means of the Legendre
transformation. Define Free Energy

F=U-TS, U=U(T,V,N), S=S(T,V,N),--

New variables:
perform the substitution
everywhere; this shows in
the Maxwell identities
(partial derivatives)

Legendre transformation:
subtract the relevant
product of
conjugate (dual) variables
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Thermodynamic potentials and all that

Basic thermodynamic identity (for equilibria)
dU =TdS-PdV +udN

For an isolated system,

T=T(S.V,N)= (%(S])VN etc.

For an isothermic system, the independent variables are 7, S, V.

The change of variables is achieved by means of the Legendre
transformation. Define Free Energy

F=U-TS, U=U(T,V,N), S=S(T,V,N),--

dF =-SdT -PdV + udN

oF
S = (aT)VN etc.
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A table

isolated system microcanonical ensemble S,V,N
internal energy U dU=rds -pPdr + udN
isothermic system canonical ensemble T, V,N

free energy F=U-TS dF=-SdI' - PdV + udN
isothermic-isobaric system isothermic-isobaric ensemble T,P,N

free enthalpy @=U-TS+PV=uN|d@=—S5dT +V d P+ udN
iIsothermic open system grand canonical ensemble T.,V,u
grand potential Q=U-TS—uN =-PV |dQ=-SdTl' - PdV — Ndu

How comes 2 =—-PV 2 2 s additive, V' is the only additive independent variable.

Thus,
0Q

Q:C((T,,U)XV, a(T’IU):(Wj =-P
I,u

Similar consideration holds for @ =@(T, P) LN
36




Digression: which environment to choose®¢

THE ENVIRONMENT IN THE THEORY SHOULD CORRESPOND
TO THE EXPERIMENTAL CONDITIONS

. a truism difficult to satisfy

O For large systems, this is not so sensitive for two reasons
« System serves as a thermal bath or particle reservoir all by itself
 Relative fluctuations (distinguishing mark) are negligible

(2 Adiabatic system Real system |Isothermal system
SB heat exchange — the slowest medium fast the fastest
process

 temperature lag

* interface layer

© Atoms in a trap: ideal model ... isolated. In fact: unceasing energy exchange
(laser cooling). A small number of atoms may be kept (one to, say, 40).
With 107, they form a bath already. Besides, they are cooled by evaporation
and they form an open (albeit non-equilibrium) system.

® Sometime, N =const. crucial (persistent currents in non-SC mesoscopic rings)
37




Grand canonical ensemble

Definition following Giblbs

General freatment for independent particles
Thermodynamic functions of an ideal gas
BEC in an ideal gas

Comparison with real gases/vdW equations




Grand canonical ensemble - definition

Grand canonical ensemble admits both energy and particle number exchange
between the system and its environment.

The statistical operator (many body density matrix) f) acts in the Fock space

External variables are 1, V', l{. They are specified by the conditions

<ﬁ>ETrﬁﬁ=U V' = sharp <N>5Trf)NZN

S =—k,[TrPIn P = max

Grand canonical statistical operator has the Gibbs' form

N=2" o BUH—pN)

Z(B, 1, V)=Tre " (H=HN) = o=B2(BLT)  siatistical sum
QB UV)==kyTInZ(5, 1,V) grand canonical potential
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Grand canonical ensemble — general definition

Grand canonical ensemble admits both energy and particle number exchange
between the system and its environment.

The statistical operator (many body density matrix) f) acts in the Fock space

External variables are 1, V', l{. They are specified by the conditions

<ﬁ>ETrﬁﬁ=U V' = sharp <N>5Trf)NZN

S =—k,[TrPIn P = max

Grand canonical statistical operator has the Gibbs' form

N=2" o BUH—pN)

Z(B, 1, V)=Tre” (H=HN) = o=B2(BLT)  siatistical sum
QB UYV) ==k TInZ(SB,1,V) grand canonical potential

volume ... for an extended homogeneous system

)/ ... generic for generalized coordinates of external fields whose change
Is connected with the mechanical work done by the system




Grand canonical ensemble - finite systems

Grand canonical ensemble admits both energy and particle number exchange
between the system and its environment.

The statistical operator (many body density matrix) f) acts in the Fock space

External variables areT,{ _—_} .4 They are specified by the conditions

<F[>ETrf)/:/ =U {:_} = sharp <N>5Trf)NZN

S =—k,[TrPIn P = max
In fact, the external variables T, {4 are properties of the bath/reservoir.
They are imposed on the system and have meaning even for small systems .

one particle has a temperature — that of the bath

41




Fluctuations I. — global quantities

Fluctuations of the total number of particles around the mean value

First derivative of the grand potential

02 _ 0 d

N 7 A~ B(H-uN)
(=kpTInZ)=—kyT —InTre #H7#Y) = _IrNe "~
ou ou ou Tre BH-#N)

Second derivative of the grand potential

2 . V o~ BUH-uN)
0.(3__1<N> _aTrN? _
a,U a,U 6,u Tre B(H-UN)

~ TI‘N2 e—ﬁ(H—,UN) .\ (TI‘NG_’B(H_’UN))z _ _< n 2>+ <N>2
~B(H-uN) ~B(H-puN)\2
Tre (Tre )

Final estimate for the relative fluctuation

--(4)
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Useful identities

00 .
Calculatea—T in two ways.

0Q _ 0
0T

1 0

0B 1 _0
— _kB InZ _kBT?a—TZ — _kB InZ _kBT [ /

\

+ky Trf){—an -

0

= -k TInZ)==k.InZ -k ,T—InZ
aT( B ) B B aT

oT Z 0

(2= () u(¥))

1
ko T

(H - m\?)} =-S

A

InP
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Grand canonical statistical sum for independent bosons

Recall
1Z(B, 1, V) =Tr e PUH=HN) ‘ = ¢ P2BHY)  gtatistical sum

=" e FE KN (... eigenstate label ¢={n,} with ) n, =N,
/ a
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Grand canonical statistical sum for independent bosons

Recall
1Z(B, 1, V) =Tr e PUH=HN) ‘ = ¢ PRBHY) gtatistical sum

=" g FETHN) (... eigenstate label ¢={n,} with ) n, =N,
/ a

= Z e @ = Z |_| (e_ﬁ(ga_”))na up to here trivial

{na} {ne} @
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Grand canonical statistical sum for independent bosons

Recall
|Z (B, u,V)=Tr e PUH=HN) ‘ = ¢ PPBHT) statistical sum

=" e AE M) (... eigenstate label ¢={n,} with ) n, =N,
/ a

=B (e4-)ng _

g .o
Z |_| (e_ﬁ (a=H )) up to here trivial
a

=S¢

— _:B(ga_:u) "a —_ 1 M
TRICK!!| = |_| Z(e ) = |_| [ o Blea—iD) B activity
a c C =z

fugacity
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Grand canonical statistical sum for independent bosons

Recall
|Z (B, u,V)=Tr e PUH=HN) ‘ = ¢ PPBHT) statistical sum

=" e AE M) (... eigenstate label ¢={n,} with ) n, =N,
/ a

=B (e4-)ng _

g .o
Z |_| (e_ﬁ (a=H )) up to here trivial
a

=S¢

— _:B(ga_:u) "a — 1 M
TRICK!!| = |_| Z(e ) = |_| [ o Blea—iD) B _ activity
a n, a C C =z :
| | fugacity
Z(B, V)= my e -
|:|1_e /8(‘90' ,u) I:ll_Ze ,880,
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Grand canonical statistical sum for independent bosons

Recall
|Z(,B wyV)y=Tre ~B(H-uN )‘ e PRBAY) statistical sum

—Ze_ﬁ(Eﬁ ~HN) ¢... eigenstate label ZE{na} with Zna =N

14
a
_IBZ(‘Sa —H)ng |.

= Z e @ = Z |_| (e_ﬁ(‘ga—”))na up to here trivial
{na} {na} a

— ~Bea=m " = -
TRICK!!| = |_| Z(e fa™H ) = |_| _ﬂ(s myn B activity
a ng a e =z .
0 . fugacity
Z(B, V)= my e -
|:|1_e /8(‘90' ,U) |:|1_Ze ,880,
QB V) ==k TInZ(S, 1,V) grand canonical potential

= +hyT'Y In(1-e 7 )
a

= +kp Ty In(1-ze ™) 48
a




Grand canonical statistical sum for independent bosons

Recall
|Z (B, u,V)=Tr e PUH=HN) ‘ = ¢ PPBHT) statistical sum

=" e AE M) (... eigenstate label ¢={n,} with ) n, =N,
/ a

~ =B (e4-)ng _

=>e > |_| (e_ﬁ (a=H) )na up to here trivial
{na} {no} a

_Bie -\ 1
"l = B(eg—1) )7 — .o

TRICK!! |:| ;(e ) U o B = activity

i i i fugacity
Z(ﬁ, /j, V) - |:| 1 — e_ﬁ(ga_,u) = I:l 1 — Ze_ﬁga

QB V) ==k TInZ(S, 1,V) grand canonical potential‘
— +k, Y In (1 _ o B ‘W) valid for
a - extended "infinite" gas

just the same 49

— +kBTZln(l — o Pe ) - parabolic traps
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Thermodynamic functions for an extended Bose gas

For Born-Karman periodic boundary conditions, the lowest level is _
Ek=0)=0
Its contribution has to be singled out, like before: ePH =, G
o fugacity
® BT, 1V)=In(1-z)+V j deln(l-ze P)D(¢) 3D DOS
0 3
P 1 Im )2
@ NIAYV)= —Z deg z e -1 DE) D(e) :2/7(?) E/E
0
@ U(T,WV)=+V j de————(¢)
7 z e -

HOW TO PROCEED
Start from @. This we did already. Below TC,

= =Np=z=1-0,In(1-z)=In Ny, =O(In¥)

-z
Thus, the singular term in @ is negligible for J/ . oo , there is none in ®
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Thermodynamic functions for an extended Bose gas
The following equation of state results _

3w 1
@* P(T,1.V)==271(2mh” )2 kT [ dgn(1 - ze %) &2
0

Integrating by parts, Egs. ® and ® are found as nearly identical
®* PV = %U
This is an extension of the result known for classical gases

Series expansion

P‘-27T(2mh'2)2k Tjdgln(l ze'ﬁf)mzz— jdez —(ze 7Y’ 32

-pe )n 55

1 0 4
) -— z
D =17, (2)| A =hQmmkyT) 2 g5/2<z>=2p5/2
1
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Thermodynamic functions for an extended Bose gas

Similar expansions:

N _ z + 173 1= _% -y 2
12, 83/2(2) = W(27TmkygT) 8312(2) _lep3/2
U _3 - v 2"
;_Ek yav e gs/z(z) A=hQmmkgT) > g5,,(2) =leps/z

Suitable for numerical studies above the critical temperature

Results simplify in the condensation region: z=1, A7 =/ [ﬂkBT

)3/2

and all temperature dependences are explicit.

N N

=R gy (1) (kgT)"
U 3

=585 (O {ksT)

P= Ag5/2(1) Eﬂk T)5/2
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Specific heat

- _9(U/N)
oor |
Bi7x

3kg/2 JET —

A weak singularity ...

what decides is the coexistence of two phases
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Isotherms in the P-V plane

For a fixed temperature, the specific
volume V' /N can be arbitrarily small.
By contrast, the pressure is volume
independent ...typical for condensation

N4 _ 2/3
~. v, =AT 2 T=(v,/A)

P=BT""
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Compare with condensation of a real gas

Basic similarity:
- Increasing pressure with compression
100
critical line
80} beyond is a plateau
- Differences:
oo S at high pressures
) \’””}o at high compressions
o an
I =0
0,002 0,01 012 0,03

Obr. 151. Pokusndé ziskandé isothermy
kyslicniku uhlicitého (CO,).
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Compare with condensation of a real gas

J
100
80}
i
00t
N \
| \\w 2
60
Jf30‘3g
0,002 [/,0/ (7 iy 0,03

Obr. 151. Pokusndé ziskandé isothermy

kyslicniku uhlicitého (CO,).

Basic similarity:

iIncreasing pressure with compression
critical line

beyond is a plateau

Differences:

no critical point

= at high pressures

—at high compressions

Conclusion:

BEC in a gas is a phase transition

of the first order
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What will be the analogue for BEC<

R. Gross and A, Marx, © Walther-Meikner-Institute (2006)

Cryogenic Liquids

pu

Substance Ty, [K] T, [K] T [K] P;, [bar] T_.[K] P, [bar]
A ~ A
@ 1 bar
H,O 373.15 273.15 273.16 0.06 047.3 220
Xe 165.1 161.3 161.4 0.82 289.8 58.9
Kr 1199 1158 114.9 0.73 2094 549
0, 80.2 544 54.36 0.016 154.3 504
Ar 873 83.8 83.81 0.67 1509  48.7
N, 77.4 53.3 63.15 0.12 1260 339
Ne 27.1 24.5 24.56 0.43 44.5 272
D, 23.7 18.7 18.72 0.17 38.3 16.6
H, 20.3 14.0 13.80 0.07 33.3 13.0
1He 4.21 ~— - - 5.20 2.28
3He 3.19 == = i 3.32 1.16

Intro.29
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The end




Problems




Problems to Lecture 1.

Some problems are expanding on the presented subject matter and are voluntary... (*)

The other ones are directly related to the theme of the class and are to be worked out within a

week. The solutions will be presented on the next seminar and posted on the web.

(1.1*) Problems with metastable states and qtfasi-equilibria in defining the temperature and

applying the 3rd law of thermodynamics ¢
(1.2%) Relict radiation and the Boomerang Nebula
(1.3) Work out in detail the integral defining
Extend the resulting series expansion to the full balance equation (BE integral)

Modify for a 2D gas and show that the BE condensation takes never place

N N’ N’ N

(1.4
(1.5
(1.6
boson gas [difficult]

R

Obtain an explicit procedure for calculating the one-particle density matrix for an ideal
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Problems to Lecture 2.

Some problems are expanding on the presented subject matter and are voluntary... (*)

The other ones are directly related to the theme of the class and are to be worked out within a

week. The solutions will be presented on the next seminar and posted on the web.

(2.1*) How was measured the record temperature of the order of 100 pK?

(2.2*) The BE distribution can be obtained from a combinatorial analysis of microstates of the
system with the subsequent use of the Stirling formula. Which is the least number of the

particles, for which the limit makes sense? (see the example for Boltzmann in Blatt).
Extend the integrals from problem (1,4) to all thermodynamic quantities

(2.3)
(2.4) Obtain the entropy for BE gas. Below the transition, it should display the two phases
(1.5) Fluctuations of< a>

(1.6)

Phase diagram in p — V coordinates for BEC [difficulf]

oD
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