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Interacting bosons in the trap
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Are the interactions important?

In the dilute gaseous atomic clouds in the traps, the interactions are 

incomparably weaker than in liquid helium.

That permits to develop a perturbative treatment and to study in a 

controlled manner many particle phenomena difficult to attack in HeII.

Several roles of the interactions

• the atomic collisions take care of thermalization

• the mean field component of the interactions determines most of the 

deviations from the non-interacting case

• beyond the mean field, the interactions change the quasi-particles and 

result into superfluidity even in these dilute systems
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Fortunate properties of the interactions

1. Strange thing: the cloud lives for seconds, or even minutes at 

temperatures, at which the atoms should form a crystalline 

cluster. Why?

For binding of two atoms, a third one is necessary to carry 

away the released binding energy and momentum. Such 

ternary collisions are very unlikely in the rare cloud, however.

2. The interactions are elastic and spin independent: they do not 

spoil the separation of the hyperfine atomic species and 

preserve thus the identity of the atoms.

3. At the very low energies in question, the effective interaction 

is typically weak and repulsive … which enhances the 

formation and stabilization of the condensate.
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Interatomic interactions
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For neutral atoms, the pairwise interaction 

has two parts

• van der Waals force

• strong repulsion at shorter distances due 

to the Pauli principle for electrons

Popular model is the 6-12 potential:

Example: 

ε corresponds to ~12 K!!

Many bound states, too.
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-22Ar =1.6 10  J =0.34 nmε σ×
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Interatomic interactions

The repulsive part of the potential – not well known

The attractive part of the potential can be measured with precision

Even this permits to define a characteristic length
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Scattering length, pseudopotential

Beyond the potential radius, say       ,  the scattered wave 

propagates in free space

For small energies, the scattering is purely isotropic , the s-wave 

scattering. The outside wave is

For very small energies the radial part becomes just

This may be extrapolated also into the interaction sphere

(we are not interested in the short range details)

Equivalent potential ("pseudopotential")
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0sin( )kr
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δψ +
∝
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Experimental data
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Many-body Hamiltonian
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m ≠

= + + −∑ ∑ ∑r r r

We start from the mean field approximation.

This is an educated way, similar to (almost identical with) the 

Hartree approximation for many electron systems.

Most of the interactions is indeed absorbed into the mean field 

and what remains are explicit quantum correlation corrections

( )

2
GP

2

1ˆ ( ) ( )
2

( ) d ( ) ( ) ( )

( )

a a H a

a

H a b a b b a

H p V V
m

V U n g n

n nα α
α

ϕ

= + +

= − = ⋅

=

∑

∫

∑

r r

r r r r r r

r r

( ) ( )21
( ) ( )

2
Hp V V E

m
α α αϕ ϕ + + = 

 
r r r r

self-consistent

system

→→→→ ADDITIONAL NOTES
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Gross-Pitaevskii equation at zero temperature

Consider a condensate. Then all occupied orbitals are the same and

Putting 

we obtain a closed equation for the order parameter: 

This is the celebrated Gross-Pitaevskii equation.

It is a simple non-linear Schrödinger equation, suitable for numerical 

solution.
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Gross-Pitaevskii equation – variational interpretation

For a static condensate, the order parameter has ZERO PHASE.    

Then

The Gross-Pitaevskii equation

becomes

0
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Gross-Pitaevskii equation – variational interpretation

For a static condensate, the order parameter has ZERO PHASE.    
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Gross-Pitaevskii equation – variational interpretation

This equation results from a variational treatment of the       

Energy Functional

It is required that

with the auxilliary condition

that is

which is the GP equation written for the particle density. From there,

2
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Interacting atoms in a parabolic trap
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Importance of the interaction

Without interaction, the 

condensate would occupy the 

ground state of the oscillator

(dashed - - - - -)

In fact, there is a significant 

broadening of the condensate in 

the experiment, perfectly 

reproduced by the solution of the 

GP equation
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Importance of the interaction

Qualitative

for g>0, repulsion,  both inner "quantum pressure" and 

the interaction broaden  the condensate.

for g<0, attraction, "quantum pressure" and the 

interaction compete, the condensate shrinks and 

becomes metastable.  Onset of instability with respect 

to three particle recombination processes

Quantitative

The decisive parameter for the "importance" of  

interactions is
2 3

INT 0

2
KIN 0 0

s sE N a a NagNn

E N Na aω

−

− =� �
h
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Importance of the interaction

Variational estimate of the total energy of the 

condensate as a function of the parameter
( )

0

1

2

sN a

a
η

π
−

=
⋅

0g > 0g <

σ%

self-interaction

Variational parameter is the orbital width        in units of a0

The minimum of the           curve 

gives the condensate size for a 

given     . With increasing    , the 

condensate stretches with an 

asymptotic power law  

( )E σ% %

η η
1/ 5

minσ η∝%

For                        , the condensate 

is metastable, below                   , it 

becomes unstable and shrinks to a 

'zero' volume.

0.27 0η− < <
0.27cη = −

→→→→ ADDITIONAL NOTES



The end
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On the way to the mean-field Hamiltonian

ADDITIONAL NOTES
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On the way to the mean-field Hamiltonian

ADDITIONAL NOTES

� First, the following exact transformations are performed

( ) ( ) ( )

( ) ( ) ( ) ( )
TRICK!!

2

3 3

3 3

3 3
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2 2
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∑ ∑∫ r r

r r r

r r r r r r r

r r r r r r r r r r

r r r r r r r r

r

ˆ( )n r' eliminates SI 

(self-interaction)

particle

density operator
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2
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On the way to the mean-field Hamiltonian

ADDITIONAL NOTES

� Second, a specific many-body state is chosen, which defines 

the mean field:

Then, the operator of the (quantum) density fluctuation is defined:

The Hamiltonian, still exactly, becomes
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On the way to the mean-field Hamiltonian

ADDITIONAL NOTES

� In the last step, the third line containing exchange, correlation 

and the self-interaction correction is neglected. The mean-field 

Hamiltonian of the main lecture results:
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∆ δ∆
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∫ ∫

∫

∫

r r r' r r r'

r r r r

r

r r' r

r r'

r r r r r r

REMARKS

• Second line … an additive constant compensation for double-

counting of the Hartree interaction energy

• In the original (variational) Hartree approximation, the self-interaction 

is not left out, leading to non-orthogonal Hartree orbitals

substitute back

and integrate

(ˆ( )) a

a

n δ= −∑ r rr( )HV r
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ADDITIONAL NOTES

Variational approach                                            
to the condensate ground state
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Variational estimate of the condensate properties

ADDITIONAL NOTES

���� VARIATIONAL PRINCIPLE OF QUANTUM MECHANICS

The ground state and energy are uniquely defined by

In words,         is a normalized symmetrical wave function of N particles. The 

minimum condition in the variational form is

���� HARTREE VARIATIONAL ANSATZ FOR THE CONDENSATE WAVE F.

For  our many-particle Hamiltonian,

the true ground state is approximated by the condensate for non-interacting 

particles (Hartree Ansatz, here identical with the symmetrized Hartree-Fock)

Sfor allˆ ˆ' '     ' , ' ' 1NE H H= Ψ Ψ ≤ Ψ Ψ Ψ ∈ Ψ Ψ =HHHH

'Ψ

equivalent with the SR ˆ ˆ0      H H Eδ Ψ Ψ = Ψ = Ψ

21 1ˆ ( ) ( ), ( ) ( )
2 2

a a a b

a a b

H p V U U g
m

δ
≠

= + + − = ⋅∑ ∑ ∑r r r r r

( ) ( ) ( ) ( ) ( )1 2 0 1 0 2 0 0, , , , ,p N p NΨ ϕ ϕ ϕ ϕ=r r r r r r r rK K L L
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{ } ( ) ( )
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Variational estimate of the condensate properties

ADDITIONAL NOTES

Here,      is a normalized real spinless orbital. It is a functional variable to be 

found from the variational condition 

Explicit calculation yields

Variation of energy with the use of a Lagrange multiplier:

This results into the GP equation derived here in the variational way:

0 0 0 0 0 0 0with ˆ] ] ] 0   ] ] 1 1 Hδ ϕ δ ϕ ϕ ϕ ϕ ϕ ϕ[ = Ψ[ Ψ[ = Ψ[ Ψ[ = ⇔ =EEEE

0ϕ
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2

2 2 43 3 3
0 0 0 0

1
] d d 1 d

2 2
N N V N N g

m
ϕ ∇ϕ ϕ ϕ[ = + + −∫ ∫ ∫r r r r r r r

h
EEEE

( ) ( ) ( ) ( )22
0 0 0

1
( )

2
p V N g

m
ϕ ϕ µϕ + + = 

 
r r r r-1

eliminates self-interaction
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Variational estimate of the condensate properties

ADDITIONAL NOTES

���� ANNEX  Interpretation of the Lagrange multiplier µ
The idea is to identify it with the chemical potential. First, we modify the notation 

to express the particle number dependence

The first result is that µ is not the average energy per particle:

( )

( )

2 3 4
0 0 0 0 0 0

2 3 4
0 0 0 0 0from

1 1
/ ]/ 1 d

2 2

1
          the GPE 1 d

2

N N N N N N N N

N N N N N N

E N N p V N g
m

p V N g
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ϕ ϕ ϕ ϕ ϕ ϕ

µ ϕ ϕ ϕ ϕ ϕ
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∫

∫
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r

EEEE

( )

( ) ( ) ( ) ( )

2 3 4
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0 0 0 0

1 1
] 1 d

2 2

1
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2

N

N N N N N N

N p V N g
m

E p V N g
m

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ µ ϕ

 [ = + + − 
 

 = [ + + = 
 

∫

-1

r

r r r r

EEEE
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Variational estimate of the condensate properties

ADDITIONAL NOTES

Compare now systems with N and N -1 particles:

0 1 0 1 0 1, 1] ] ]N N N N N N N NNN NE Eϕ µ µϕ ϕ µ − −− −≥[ = [ + = += [ +E EE EE EE E EEEE

µN … energy to remove a particle 
without relaxation of the condensate

use of the variational 
principle for GPE

In the "thermodynamic"asymptotics of large N, the inequality tends to equality. 

This only makes  sense, and can be proved, for g > 0.

Reminescent of the                       theorem in the HF theory of atoms. 

Derivation:

( )
( ) ( ) ( )( )

( ) ( )( )( )

1 12 3 4

2 2

1 12 3 4
1 2 2

1 12 3 4
1 2 2

0

]                  1 d

] 1 1 1 2 d

1 1 2 d

  o  f r
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N m
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N N

N p N V N N g

N p N V N N g

p V N N N N g

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

µ ϕ ϕ

−

−

[ = + + −

[ = − + − + − −

− = + + − − − −

∫

∫

∫

r

r

r
144444444444424444444444443

a

EEEE

EEEE
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Variational estimate of the condensate properties

ADDITIONAL NOTES

���� SCALING ANSATZ FOR A SPHERICAL PARABOLIC TRAP

The potential energy has the form

Without interactions, the GPE reduces to the SE for isotropic oscillator

The solution (for the ground state orbital) is

We (have used and) will need two integrals: 

( ) ( )2 2 2 2 2 2
0 0

1 1
2 2

V m r m x y zω ω= ⋅ = + +r

( ) ( )2 2 2
0 0 0 0

31
2 2

1

2
p m r

m
ω ϕ ω ϕ + ⋅ = 

 
r rh
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2

2
0

2 1/ 4
3 2

00 0 0 0 0 02
0 0

1

2
e , ,

r

a
A a A a

m ma
ϕ ω π

ω
−− ⋅

= = = =r
h h

h

( ) ( )
2 2

2 2 2 3
1 2

1
2

d e , d e

u u

I u I u uσ σσ σ π σ σ π
+∞ +∞− −

−∞ −∞

= = = =∫ ∫
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The condensate orbital will be taken in the form

It is just like the ground state orbital  for the isotropic oscillator, but with a 

rescaled size. This is reminescent of the well-known scaling for the ground 

state of the helium atom.

Next, the total energy is calculated for this orbital

The solution (for) is

( ) ( )
2

2 1/ 4
3 2

0

1

2
e ,

r

b
A A bϕ π

−− ⋅
= =r

Variational estimate of the condensate properties

ADDITIONAL NOTES

SCALING ANSATZ
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For an explicit evaluation, we (have used and) will use the identities: 

The integrals, by the Fubini theorem, are a product of three:

Finally,

This expression is plotted in the figures in the main lecture.
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