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Abstract. In this paper we present a simple algorithm for computing the steady state
of Linear-Quadratic control model with rational expectations. The method uses Sims’
approach for solving rational expectations models first, and then solves the steady state
through an iterative scheme.

1. Introduction

In recent work, Amman, Kendrick and Achath (1995), Amman (1996), we presented a
procedure that introduces RE in a linear-quadratic (LQ) control framework based on the
Blanchard and Kahn method. Due to the limitations of the Blanchard and Kahn approach
and the fact that we had to rely on the diagonalization of the transition matrix, this work
could only deal with a limited set of models. Recently, Sims (1996) proposed a different
method for solving linear models with RE allowing for a broader range of models. This
method is not based on the Jordan canonical form, but uses the more widely available
QZ form that is based on generalized eigenvalues and which is numerically stable. In
this paper we will follow the paper of Sims and incorporate his approach for solving the
steady state of the linear-quadratic optimization model with rational expectations.

2. Problem statement and solution

Following Kendrick (1981), the standard single-agent stochastic linear-quadratic opti-
mization problem is written as:

Find the steady state solution of the control vector X
�

and the corresponding state vector
[
�

that minimizes the welfare loss function
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The vector [
W

� �Q is the state of the economy at time W and the vector X
W

� �P

contains the policy instruments. The initial state of the economy [
�

is known, z[ and zX
are target values and p is some discount factor. : , 5 and ) are penalty matrices of
conformable size.

The above model is straightforward to solve for finite time and there are a number of
packages available for computing its solution. However, a serious drawback for econom-
ics is that equation (2) does not allow for rational expectations and the model involves a
finite horizon. One way of allowing RE to enter the model is to augment equation (2) in
the following fashion
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where the matrix '
M

is a parameter matrix, (
W

[
W� �

is the expected state for time W� M
at time W, N the maximum lead in the expectations formation and s

W

is a white noise vector,
see Amman et al. (1995). In order to compute the admissible set of instruments we have
to eliminate the rational expectations from the model. In a previous paper Amman and
Kendrick (1997), we used Sims’ approach to solve the rational expectations in the model.
Sims (1996) proposes a method based ongeneralized eigenvalues, see Moler and Stewart
(1973) or Coleman and Van Loan (1988). In order to apply Sims’ method we first put
equation (2) in the form�
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�Note that in contrast to Sims (1996) the variable ] contains exogenous variables and not random variables.
Hence, the matrix g in Sims’ paper is set to zero.
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and the augmented state vector
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Taking the generalized eigenvalues of equation (3) allows us to decompose the system
matrices b

�
and b

�
in the following manner
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with =�=  , and 4�4  ,. The matrices e and n are upper triangular matrices and
the generalized eigenvalues are �L �
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can write equation (3) as
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Given the triangular structure of e and n we can partition (4) as followsx
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where the unstable eigenvalues are in lower right corner, i.e. in the matrices e
��

and
n
��

. By forward propagation and taking expectations, it is possible to derive Z
��W

as a
function of future instruments and exogenous variables, Sims (1996, page 5)
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In the steady state, however, equation (7) can be rewritten as
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where X
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is the optimal steady state solution of the control vector, which can be
reduced to
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Reinserting equation (9) into equation (7) and taking expectations gives us
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Knowing that a[
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we can write equation (7) as
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We have to make the assumption here that e
��

is nonsingular. However, the diagonal
elements will generally be nonzero, so it is very likely that the matrix is nonsingular.
With equation (11) we have removed the RE from the control model.

The steady state of the LQ framework can be obtained by solving the algebraic ma-
trix Riccati equation and tracking equation�. The algebraic matrix Riccati equation has
the form for the control model in equations (1)-(2), see Amman, Kendrick and Neudecker
(1996),

;  A: � p A$�; A$b �p A$�; A% � A) ��5� � p A%�; A%�b��p A%�; A$� A) ��(15)

and the tracking equation

S  b �p A$�; A% � A) ��p A%�; A% �5��b��p A%��; A&A] � S�b5zX�(16)

� p A$��; A&A] � S�b A: z[

where ; is the Riccati matrix and S the Riccati vector both for the steady state. A:

and A) are the penalty matrices adjusted to conformable size of the augmented system in
equation (5). In Amman and Neudecker (1997) a simple method is described for solving
the Riccati matrix using a newton or quasi-newton solution method.

Once we have derived the solution for ; and S, it is easy to compute the steady state
of the system. The optimal control is computed by the feedback equation

�Alternatively, one can use a Lagrangian procedure for the case that p  � - see Appendix A.
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with

*  b�p A%�; A% �5��b�� A) � � p A%�; A$�(18)

J  b�p A%�; A% �5��b��p A%��; A&A] � S�b5zX�(19)

In absence of random shocks we can compute the steady state from
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With the help of the above equations, and knowing that q depends on X
�

we can set
up a simple iterative scheme to compute the steady state solution of the control vector.
The algorithm is

Step 0. Set the iteration counter {  � and set the instruments X{
�

, to an initial value.

Step 1. Compute q{ using equation (9).

Step 2. Compute ;, S, *, J, [{ � �

�

and X{ � �

�

as described above.

Step 3. Set {  { � � and goto Step 0 until convergence is reached.

3. An example

In this section we will present a simple example that be checked by hand to illustrate
the algorithm. Consider a simple macro model with output, [

W

, consumption, F
W

, invest-
ment, L

W

, government expenditures, J
W

, and taxes �
W

. The problem can then be stated as:

Find the steady state solution of the control vector X
�

and the corresponding state
vector [

�
that minimizes the welfare loss function
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If we reduce the above model to one equation for output we get
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which leads to the augmented system
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Apply the QZ factorization, Coleman and van Loan (1988), to compute the generalized
eigenvalues of the model gives us the time invariant solution�
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so the eigenvalues are I������ ������� ������ ������J  I������� �����J and the
ordering of the system is such that the unstable root ����� is in the lower right corner, so
no reordering is required. The other components are
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The adjust penalty matrices are in this case
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The Riccati matrix and the tracking vector have the solution
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leading to a steady state of [
�
 ������� and X

�
 �����.

4. Summary

In this paper we have presented a method for solving the steady state solution of
the Linear-Quadratic control model augmented with rational expectations. Our solution
method is based on Sims’s method of generalized eigenvalues. By using an iterative
scheme, the reduced model can be fitted into a standard linear-quadratic framework that
allows us to derive the optimal policy instruments for the model with rational expectations.

�As b� is invertible we could have used a Schur decomposition too in thid example.
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Appendix A
An Alternate Method

This appendix contains an alternative method which relies on Lagrangian method rather
than on the Riccati equation approach, which can be applied when p  �. The outside
loop in the iteration is the same but the optimization inside the loop has been replaced
with the Lagrangian method.

Begin with the system equations
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and solve this for the steady state, i.e.

[e  $[e �%Xe � &](A-2)
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or

[e  +Xe � K(A-4)

where

+  �, b$�b�%(A-5)

K  �, b$�b�&](A-6)

The criterion function (with F = 0 and p  �) for this model in the steady state is
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Thus the maximization of J subject to equation (A-4) in Lagarangian form is
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The first order conditions for the optimization are then
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From equation (A-9) one can obtain

y  b: �[e b z[�(A-11)

and substitution of this into equation (A-10) yields

5�Xe b zX� �+ �: �[e b z[�  �(A-12)

Solving this equation for Xe yields

Xe  zXb5b�+ �: �[e b z[�(A-13)

or

Xe  zXb5b�+ �:[e � 5b�+ �: z[(A-14)

Then substitution of equation (A-4) into equation (A-14) yields

Xe  zXb5b�+ �: �+Xe � K� �5b�+ �: z[(A-15)

or

�, �5b�+ �:+�Xe  zXb5b�+ �:K�5b�+ �: z[(A-16)

or

�, �5b�+ �:+�Xe  zX�5b�+ �: �z[b K�(A-17)

Solving this equation for Xe yields

Xe  �, �5b�+ �:+�b��zX�5b�+ �: �z[b K��(A-18)

Recall that

K  �, b$�b�&](A-19)

and that ] is a function of q{ .

Thus equation (A-18) can be embedded in an iterative loop to solve for the steady
state solution. This algorithm is like the one outlined in Section 2 in the body of the
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paper except that the q{ term effects the K variable in equation (A-18) on each iteration.
Also, Step 2 in the algorithm is changed to compute Xe and [e using equation (A-18).
Matlab code written for this algorithm iterates to the same solution for Xe as does the
Riccati algorithm used in the body of the paper.
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