SIGNÁLY A SOUSTAVY V MATEMATICKÉ BIOLOGII prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz VI. SYSTÉMY základní pojmy SYSTÉM - definice systém (řec.) ß složené, seskupené (v celek) þ uzavřený, jednotně uspořádaný celek; þ soustava věcí, myšlenek, apod. uspořádaná podle určitého hlediska, určitou formou a metodou; þ záměrný, promyšlený, určitým způsobem uspořádaný postup, organizace, děj nebo vývoj; SYSTÉM - definice [Systém se skládá] z dynamicky uspořádaných prvků a vzájemně se ovlivňujících procesů. […] Základním úkolem biologie je odhalení zákonitostí biologických systémů. SYSTÉM - definice þ Systém je komplex vzájemně na sebe působících elementů. (L.von Bertalanffy) þ Systém je soubor prvků a vazeb mezi nimi. (R.L.Ackoff) þ Systém je uspořádání určitých komponent, vzájemně propojených v celek (G.J.Klir) Základní atributy systému struktura – je dána množinou všech prvků a vazeb (vztahů, relací) mezi prvky, resp. dalšími různými podsystémy daného systému; Základní atributy systému chování – je projevem dynamiky systému Dynamika je schopnost vyvolat změnu v systému, zejména jeho stavu. Dynamika je vlastností prvků systému, vazby jsou jejími iniciátory (vstupy), resp. nositeli důsledků (výstupy). Základní atributy systému stavem sytému rozumíme souhrn hodnot jeho vlastností, které lze rozpoznat v daném časovém okamžiku za přesně definovaných podmínek. Stavu systému lze v libovolném časovém okamžiku t (z nějakého daného či zvoleného časového intervalu) přiřadit vektor hodnot s(t)Î S, který nazýváme stavovým vektorem, složky x[i] vektoru s nazýváme stavovými veličinami (proměnnými) a prostor S všech možných hodnot stavových veličin nazýváme stavovým prostorem. Podle vývoje hodnot stavu systému lze systémy dělit na statické (nevykazují pohyb) a dynamické. Základní atributy systému stabilita je schopnost systému udržovat si při změně vstupů a stavů svých prvků nezměněnou vnější formu (chování) i navzdory procesům probíhajícím uvnitř systému. Stabilitu chápeme jako vlastnost zaručující, že i po určité malé změně počátečních podmínek nastane v systému při nezměněných vstupech pohyb jen málo odlišný od původního. Pojem stability se neomezuje pouze na návrat do původního stavu po poruše, která způsobí vychýlení. Často je návrat do původního stavu nemožný, protože se změnily podmínky, v nichž systém existuje – pak si systém může najít stav odchylný od výchozího stavu, který je rovněž stabilní – tzv. ultrastabilní systém. Základní atributy systému okolí systému je tvořeno množinou prvků, které nejsou součástí daného systému, ale jsou s ním významně svázány. Systém a jeho okolí jsou jednak objektivní skutečností, ale jsou dány i subjektivně, v závislosti na osobě zkoumající systém a na účelu zkoumání. Základní atributy systému Veličiny (vazby), které zprostředkovávají vliv okolí na systém jsou vstupy systému a vnější projevy (vazby) systému, které reprezentují jeho vliv na okolí, jsou výstupy systému. Prvek systému, který má vazbu s okolím (vstupní nebo výstupní nebo vstupní i výstupní) nazýváme hraničním prvkem systému a množinu všech hraničních prvků nazýváme hranice systému. Základní atributy systému otevřený systém je takový, u něhož dochází k energetické a informační výměně s jeho okolím. uzavřený (konzervativní) systém je naopak od svého okolí zcela izolován, nemá se svým okolím žádné vazby. podmínka separability systému – systém je separabilní, jestliže jeho výstupy zpětně vlivem prostředí podstatně neovlivňují vstupy. Základní atributy systému Základní atributy systému REÁLNÝ & ABSTRAKTNÍ SYSTÉM reálný objekt - zkoumaná část reálného světa; může být – è přirozený - květina, včelí roj, nervová soustava, ….; è umělý - počítač, městská doprava, … ; è existující - …; è plánovaný - … ; Definice systému na reálném objektu - určení toho co nás zajímá a co ne a v tom, co nás zajímá - určení základních podstatných složek (prvků, vazeb) a vlastností REÁLNÝ & ABSTRAKTNÍ SYSTÉM model (abstraktní systém) – zjednodušená verze reálného objektu, zpravidla jeho abstraktní popis (soubor vztahů, resp. instrukcí pro generování dat popisujících chování reálného objektu) NEFORMÁLNÍ ABSTRAKTNÍ POPIS SYSTÉMU þ prvky – části, ze kterých se systém skládá þ proměnné – slouží k popisu stavu prvků a jejich vývoje v čase; þ vazby – pravidla, dle kterých se prvky navzájem ovlivňují (případně mění své parametry) a tak určují vývoj chování v čase; þ parametry – zpravidla neproměnné (konstantní) charakteristiky prvků a vazeb systému; þ základní předpoklady (počáteční podmínky) – vyplývají ze specifikace; NEFORMÁLNÍ ABSTRAKTNÍ POPIS SYSTÉMU NEFORMÁLNÍ ABSTRAKTNÍ POPIS SYSTÉMU NEFORMÁLNÍ ABSTRAKTNÍ POPIS SYSTÉMU NEFORMÁLNÍ ABSTRAKTNÍ POPIS SYSTÉMU FORMÁLNÍ (MATEMATICKÝ) POPIS SYSTÉMU používá pro vyjádření vztahů mezi prvky systému a hodnotami jejich proměnných matematický zápis (diferenciální či diferenční rovnice, logická pravidla, formalismy teorie automatů, …) FORMÁLNÍ (MATEMATICKÝ) POPIS SYSTÉMU používá pro vyjádření vztahů mezi prvky systému a hodnotami jejich proměnných matematický zápis (diferenciální či diferenční rovnice, logická pravidla, formalismy teorie automatů, …) FORMÁLNÍ (MATEMATICKÝ) POPIS SYSTÉMU FORMÁLNÍ (MATEMATICKÝ) POPIS SYSTÉMU Matematické prostředky se různí podle: þ typu časové základny (spojité, diskrétní, nezávislé na časovém měřítku); þ charakteru proměnných (spojité, diskrétní, logické); þ determinovanosti proměnných a parametrů (deterministické, nedeterministické - pravděpodobnostní, fuzzy,…); þ vztahu k okolí (autonomní, neautonomní); þ proměnnosti parametrů (lineární, nelineární, časově proměnné); þ vztahu k minulosti (bez paměti, s pamětí);