HW 2	Inorganic Materials	Name:	
	Chemistry		
Points:	C7780	Date:	
Max. 100 points	Fall 2008	Α	

1. Assume that CaO reacts with CeO_2 and forms $CaCeO_3$. What could be the structure type of this compound?

Write balanced chemical equations for the reactions taking place at the interfaces (assume counter diffusion of both cations) and calculate the Kirkendall ratio for this process.

I	I	I
CaO	CaCeO ₃	CeO ₂

2. X-ray radiation of a Cu anode ($\lambda = 1.54$ Å) was diffracted under an angle of 14.22° at silicon crystal. Calculate the interplanar distance *d* in Si for the first order diffraction (n = 1).

3. Derive Miller indices for planes that intersects the cell axes at a/2, 2b/3, 2c.

4. Specific surface area of α -Fe₂O₃ was measured by nitrogen adsorption at 77 K and its value is 120 m² g⁻¹. Density of this oxide is 5.277 g cm⁻³. Calculate the particle size assuming a spherical particle shape.

5. Maghemite γ -Fe₂O₃ crystallizes in a defect inverse spinel structure (as Fe₃O₄), but some positions of Fe³⁺ in octahedral holes must be vacant, in order to maintain stoichiometry. What part of these holes must be empty in comparison with Fe₃O₄. \Box = empty hole, (X) = tetrahedral position, [Y] = octahedral position

(Fe)	[Fe_	, 🗆] O ₄
------	------	-----	------------------