X-rays

•X-ray Radiography absorption is a function of Z and density

- •X-ray crystallography
- •X-ray spectrometry

Wilhelm K. Roentgen (1845-1923) NP in Physics 1901

 $Cu K_{\alpha} \qquad E = 8.05 \text{ keV} \qquad \lambda = 1.541 \text{ Å}$

Interaction of Electrons with Matter

Emission of electromagnetic radiation:

- •Characteristic radiation, discrete energies
- •Bremsstrahlung, continuous energy distribution
- •Luminiscence (UV or visible region)

Electron emission:

- •Backscattered electrons (BSE)
- •Auger electrons
- •Secondary electron emission (SE)

Effects in the Target:

- •Electron Absorption (ABS)
- •Heat

X-ray Tubes

X-ray Tubes

Tungsten wire at 1200-1800 °C (about 35 mA heating current)

High Voltage 20-60 kV High

max. power 2.2-3 kW

Typical operating values

Cu: 40 kV, 35 mA

Mo: 45 kV, 35 mA

Spectrum of the X-ray tube

superimposed on the white radiation spectrum. Notice the ratio of the relative intensities of the K_{α} and K_{β} lines.

Characteristic X-ray radiation

Selection Rules

•n = 1, 2, 3.... (principal quantum number), corresponds to K, L, M... shells

 $\bullet l = 0, 1, ..., n-1$ (orbital quantum number)

•j = $|1\pm s|$; s = 1/2 (spin-orbit coupling)

• $m_j = j, j-1, j-2, ..., -j$

•Transition only, when $\Delta n \ge 1$, $\Delta l = 1$, $\Delta j = 0$ or 1

Selection Rules

					M = 2J + 1
X-ray notation			Maximum		
	n	l	j	mj	population
к	1	0	1/2	±12	2
L_1	2	0	12	$\pm \frac{1}{2}$	2
LII	2	1	ī	±	2
L111	2	1	3	$\pm \frac{3}{2}, \pm \frac{1}{2}$	4
MI	3	0	1	± ½	2
MI	3	1	12	$\pm \frac{1}{2}$	2
MIII	3	1	32	$\pm \frac{3}{2}, \pm \frac{1}{2}$	4
MIN	3	2	- 12	$\pm \frac{3}{2}, \pm \frac{1}{2}$	4
Mv	3	2	52	$\pm \frac{5}{2}, \pm \frac{3}{2}, \pm \frac{1}{2}$	6
N	4	0	ł	±ł	2
NII	4	1	1	±	2
Nut	4	1	32	±3, ±1	4
NIV	4	2	3	±3, ±1	4
Nv	4	2	52	$\pm \frac{5}{2}, \pm \frac{3}{2}, \pm \frac{1}{2}$	6
NVI	4	3	52	$\pm \frac{5}{2}, \pm \frac{3}{2}, \pm \frac{1}{2}$	6
NVII	4	3	72	$\pm \frac{7}{2}, \pm \frac{5}{2}, \pm \frac{3}{2}, \pm \frac{1}{2}$	8

Allowed Transitions

Mosley's Law (for multiple electron atoms)

 $1/\lambda = c \cdot (Z - \sigma)^2 \cdot (1/n_1^2 - 1/n_2^2)$

$$\sqrt{\upsilon}(\mathbf{K}_{\alpha}) = \sqrt{\frac{3}{4}R} \ (\mathbf{Z} - 1)$$

Z = atomic number
σ = shielding constant
n = quantum number

Decreasing wavelength λ with increasing Z

Characteristic Wavelengths

Element	$K_{\alpha 2}$	$K_{\alpha 1}$	K_{β}	K abs. edge
Cu	1.54433	1.54051	1.39217 1.38102	1.380
Мо	0.713543	0.70926	0.62099	0.61977
Ag	0.563775	0.559363	$0.49701 \\ 0.48701$	0.4858
W	0.213813	0.208992	0.17950	0.17837

X-ray Absorption

At the absorption edge, the incident X-ray quantum is energetic enough to knock an electron out of the orbital

Monochromatisation of X-rays

•Filters (Ni filter for Cu K_{α})

•Crystal Monochromators

Capillary

Sample Holders

Transmission

Reflection

Detection of X-rays

Detectors

- •convert energies of individual photons to electric current
- •convert current into voltage pulses that are counted
- •Film (in the linear range, Guinier, Debye-Scherrer, precession cameras)
- •Gas Proportional Counter
- •Si(Li) solid state detector (powder diffractometers)
- •Scintillation counter (photocathode, dynodes, 4-circle diffractometer, Stoe powder diffractometer)
- •Position Sensitive Detectors (1D or 2D, Stoe powder diffractometer)
- •Image Plate Detectors (2D detection, Stoe IPDS)
- •CCD Detectors (Bruker SMART system)

Image plate detectors

Metal plate, 18 cm diameter, coated with Eu²⁺doped BaFBr
X-rays ionize Eu²⁺ to Eu³⁺ and the electrons are trapped in color centers

•Read out process with red laser leads to emission of blue light, when electrons return to ground state

•The blue light is amplified by a photomultiplier and recorded as a pixel image

Detector properties

•quantum-counting efficiency

linearity

energy proportionality

resolution

Resolution

X-ray Powder Diffraction

Laue method → Single crystals Debye-Scherrer, diffractometers → polycrystalline

Different Geometries of Powder Diffractometers

- Debye-Scherrer
- Bragg-Brentano
- Guinier

Debyegram práškového stříbra ($\lambda = 1,54.10^{-10}$ m)

Debye-Scherrer

Bragg-Brentano

F

S₁

Information Extracted from Diffraction Experiments

- Determination of known phases
- Crystallinity
- Determination of lattice constants
- Structure solution

Crystalline and Amorphous Phases

X-ray powder diffraction pattern of Fe

👹 P	DF # 060696,1.54056									
06-06 CAS Mole Volur	696 Quality: * Number: 7439-89-6 cular Weight: 55.85 ne[CD]: 23.55	Fe Iron Ref: Swanson et al.,	Natl. Bi	ur. Stand. (L	J.S.), Circ.	539, 4,	3 (1955)			
Dx: 3 S.G.: Cell F a 2.8 α SS/F I/Icon Rad: Lamb Filter: d-sp: Miner Iron,	7.875 Dm: Im3m (229) Parameters: 366 b c β γ 10M: F 6=225(.0044, 6) r: CuKa1 oda: 1.5405 Ni ral Name: syn	dÅ int h 2.0268 100 1 1.4332 20 2	k I 1 O 0 O	dÅ 1.1702 1.0134	int h 30 2 10 2	k 1 1 2 0	dÅ .90640 .82750	int 12 6	h k 31 22	1 D - 2
		(2800)					em			-
	(200)			<u>.</u>		(21	1)	A	
(50.000	× : 2th FE-PRASEK	eta y : 304: MAGNET FIEL	14. D	Linea: ss: 0	r . 0200	tm:	3	. 00	105 Co Ka	.000> .1+2

Anode	V	Beta		
	Κα1 [100]	K α ₂ [50]	$K\beta_1$	filter
Cr	0.228970	0.229361	0.208487	V
Fe	0.193604	0.193998	0.175661	Mn
Со	0.178897	0.179285	0.162079	Fe
Cu	0.154056	0.154439	0.139222	Ni
Mo	0.070930	0.071359	0.063229	Zr

Selecting radiation

Bcc crystal, Cu radiation $a = 1.5 \text{ nm} --> 2\Theta = 11.8$ $a = 1.2 \text{ nm} --> 2\Theta = 14.8$ $a = 0.9 \text{ nm} --> 2\Theta = 19.7$ $a = 0.6 \text{ nm} --> 2\Theta = 29.8$ $a = 0.3 \text{ nm} --> 2\Theta = 61.8$

 $\mathbf{d} = \lambda / 2 \sin \Theta \dots \text{ longer } \lambda \dots \text{ better multiplet separation} \\ \dots \text{ shorter } \lambda \dots \text{ more lines}$

Comparison of Debye-Scherrer versus diffractometer Polycrystalline sample

Comparison of Debye-Scherrer versus diffractometer Single crystal

Phase analysis

$ZrO_2 + Y_2O_3$

Databases

- ICSD (Karlsruhe, inorganics, single crystal data)
- CSD (Cambridge, organics, organometallics, sc data)
- NRCC CRYSTMET (metals)
- •PDB (proteins, Brookhaven)
- •NIST (NBS)
- •JCPDS = ICDD (PDF files, 60000 patterns)

Which of these is *not* involved in the diffraction of X-rays through a crystal?

- a Electron transitions
- b Crystallographic planes
- c Nuclear interactions
- d Constructive interference

What is the *largest* wavelength of radiation that will be diffracted by a lattice plane of the interplanar spacing *d*?

а	0.5 <i>d</i>
b	d
С	2 <i>d</i>
d	No limit