Global analysis. Exercises 3 1) Find the Lie brackets of the following vector fields: * X = sin u v + cos v u , Y = u u + v v ; * X = z2 x + xy y , Y = xyz x + y2 y + x z . 2) Let M be a 1-dimensional manifold, X, Y vector fields on M, Xx = 0 for all x M and [X, Y ] = 0. Prove that Y = cX, where c R is a constant. 3) Find the vector fields defined by the following flows: * FlX t (x, y) = (5t + x, 4t + y); * FlX (x, y) = (x cos - y sin , x sin + y cos ). 4) Find the integral curves of the vector fields: * X = x x + y y ; * X = (x + y) x + y y ; * X = x2 x + y2 y . 1