Global analysis. Exercises 1 Find the Jacoby matrices and the Jacobians (when exist) of the following maps and say which of these maps are immersions, submersions and diffeomorphisms on their images. 1) x = 3 cos t, y = 4 sin t, (, t) (0, 1) × (0, 2). 2) x = cos u cos v, y = sin u cos v, z = sin v, (u, v) (0, 2) × (- 2 , 2 ). 3) x = cos , y = sin , z = , (, ) (0, +) × (0, 2). 4) x = 2u 1+u2+v2 , y = 2v 1+u2+v2 , (u, v) R × R. 1