Hormonálni system Vývoj hmyzu a řízení tvorby kutikuly - klasický modelový objekt pro studium látkové signalizace Caterpillar ligated during last larval instar Ligated early during instar Ligated late during instar Only anterior half pupated Both halves pupated FfGUKK 1.2 An experiment performed by Kop ľ č. When a caterpillar was ligated early during the last larva] instar, only the anterior half Liter pupated. However, when ligated late during the last larval instar, hoth halves p up rite d. Adapted from Cymborowski (1992). Reprinted with permission. Manduca sexta Hyalophora cecropia P ^ _ *AA, Calliphora vicina Hormonální řízení v kontextu všech látkových signalizací Paracrine secretion Neurotransmitter secretion Electrical signal Secreting cell (neuron) Neurohormone secretion Electrical signal Secreting cell (neuron) Nontarget ceil (no receptors) Local target ceil Distant target ceil Secreting cell Local target cell Hormonal secretion Secreting cell (endocrine cell) Blood Distant target cell Nontarget cell 1 (no receptors) Pheromone : Small molecules and ions •Paracrine •Neurotransmitter Hormone »Neurohormone Pheromone FI G LIRE L L Some examples of neurotransmitter release. A. An endocrine cell releasing a hormone into the circulatory system. B. A neuron synapsing with a neurosecretory cell, releasing a neuro transmitter at the synapse. C. A neuron synapsing with an endocrine cell, releasing a neurotransmitter. D. A neurosecretory cell releasing a neurohormone into the circulatory system at a neurohemal organ. E. An inhibitory neuron synapsing with a neurosecretory cell, releasing a neuromodulator at the sympse. F. Receptors on target cells recognize specific neurohonnones in circulation, resulting in a biological effect. The absence of receptors on nontarget cells results in the cell not being able to respond to the circulating chemical messages, and any molecules takeu Lip non-specirically are degraded. a) Podnět \Q-&_ Akční potenciál Motoneuron ------JEfektorU odpoveď b) Podnet \JčidloUJ CNsl Neurohormon ►JEféktorJ-^ Odpověď c) Podnět Nčic Čidlo Akční pot. Hormon u » o p iEfektorL^ Odpověď d) Pôdne! fektort-^ Odpověď Pôdnej lEndokr. e) "*| žláza sj EfektorH9 Odpoveď Obr. 14,3. Kaskády řidicich soustav. Nervový systém obecně (a) nebo neuroendokrinni systém bezobratlých (b) využivaji řidiči smyčku 1. řádu - přimý účinek na cilový orgán (efektor). Smyčky 1. řádu jsou u obratlovců vzácné. Neurosekrece obratlovců zpravidla neovlivňuje přimo cilový orgán, ale sekreci klasické endokrinní žlázy. To je smyčka 2. řádu, jaké jsou běžné u obratlovců i bezobratlých (c). Smyčky 3, řádu nalézáme spise jen u obratlovců (d). Poslední připad je přimé ovlivněni endokrinní žlázy bez účasti neurohormonu (e). Endocrine gland m Hormone Hormone Hormone Receptors on synthesis release degradation target cells FIGURE 1.4 Factors thac affect the activity of hormones. Hormonal activity in the circulatory system is regulated by its race of synthesis by the endocrine glands, the rate of release into the blood, its degradation in the blood, and the development of hormone receptors on target cells. -¥r -X- -X- "X- Jednodušší bezobratlí Morfogenetické procesy: vývoj, růst, regenarce, funkce gonád Pokročilejší bezobratlí Vývoj vajíček, osmoregulace, srdeční výkon, metabolismus, barvozmena Nejprobádanější u korýšů a hmyzu: růst a tvorba kutikuly Neurosekretorické buňky - spojovací článek mezi NS a HS Buňky v mozku a oční stopce - X-orgán Buňky v mozku Buňky v hypotalamu a) Korýš b) Hmyz c) Obojživelník Obr. 14.2. Srovnání úlohy neurosekrece v hormonálním řízení svlékání nebo pigmentace pokožky- Neurohormony z mozku jsou vylévány v neurohemálních orgánech - sinusové žláze korýšů (sž), kardiálnich tělíscích hmyzu (cc)ř adenohypofyze obojživelníků (ah) . Řídí pak aktivitu periferní endokrinní žlázy - Y-orgán korýšů (Y-o), prothorakální žlázu hmyzu (pro), adeno-hypofýzu (ah) a štítnou žlázu (šž) obojživelníků. Cílovou tkání je integument (int). Neurosekretorický systém hmyzu Piothůrax Ocelli Protocerebrum-Deuteroctrcbmm^ Antenna Tritocerebrum Mouth - Ösophagus Prothoracic " gland Thoracic ganglia Ventral nerve chain Ventral glands FIGURE 11-19 Generalized central nervous system and endocrine systems of an insect. The nervous system contains three major groups of neurosecretory cells: the median (mnc)b lateral (lnc), and oesophageal 5 days Body without the head molts to a 5th instar. Brain ■> released its hormone before it was removed. is attached long enough to release a hormone from the brain FIGURJE 13 Wigglesworth's decapitation experiments using PJwdnius tarnst Whea fourth in sta r larvae were blood fed and decapitated within 4 days, they failed to molt. When they were decapitated after 5 days, the body stilJ molted even though the head was not attached at the time. Decapitation Labium Humerus Eye-antenna Wing-thorax 1 st leg 2nd leg 3rd leg Haitere Abdomen Histoblasts Genital apparatus FIGURE 2.22 The imagine discs of a larval Drosvphih (left) and the corresponding structures in die adult (right) to which they give rise. From Nothiger (1972), Reprinted with permission. PTTH neurosecretory cells have ceiJ bodies in the brain,.. Brain ...and axon terminals in the corpora allata. Corpus Liardiacum I The corpora allata also contain nonneural endocrine cells that secrete JH, t Juvenile hormone The prothoracic gland secretes ecdysone. Corpus cardiacum (CC) Corpus allatum (CA) Neurosekretorické buňky mozku orakalní žláza Dospélec Obr. 15.5. Hormonální řízení svlékání hmyzu. Produkce ekdyso-nu z prothorakálních žláz je stimulována protoracikotropním hormonem (PTTH) syntetizovaného v mozku a vylévaného z kardial n ich tělísek (CC). Ekdyson iniciuje svlékací děje. Zda se vytvoří kuti kula kuklová nebo opět larva I ní, rozhodne koncentrace juvenílního hormonu (JH).Ten je produkován v tělískách přilehlých (CA). Prstencovitá žláza u vyšších dipter spojující prothorakální žlázu CC a CA. FIGURE 1.14. The amino acid structure of PTTH. Only one of the two identical chains in the homodimer is shown. From Nagata et al. (2005). Reprinted with permission. http ://www. cals .ncsu. edu/course/ent42 5/tutorial/endocrine .html TABLE 14*6 Major hormones and neurohormones that control insect metamorphosis Hormone Type of molecule Type of signal Site of secretion Major target tissue Action 1 Prothoracico tropic hormone (PTTH) Protein (-5000 molecular weight) Neuroendocrine Brainr with axon terminals extending to corpora a 1 lata Prothoracic glands Initiates molting (ecdysis) by stimulating release of ecdysone from prothoracic glands Ecdysone (molting hormone) Steroid Endocrine Prothoracic glands in larva/nymph; ovary in adult Epidermis in larva/nymph; fat body in adult When activated to 20-hydroxyec-dysone, promotes cellular mechanisms to digest old cuticle and synthesize new one; stimulates production of yolk proteins in adult Juvenile hormone (JH) Ter pen e (fatty-acid derivative) Endocrine Corpora allata Epidermis in farva/ nymph; ovary in adult Opposes formation of adult structures and promotes formation of larval/nymphal structures;functions as a gonadotropin in the adult Eclosion hormone (EH) Peptide Neuroendocrine Brain Inka cells, possibly others Promotes PETH and ETH secretion from Inka cells Pre-ecdysis triggering hormone (PETH) Peptide Endocrine Inka cetls of tracheae Neuronal circuits in brain Coordinates motor programs to prepare for shedding the cuticle Ecdysis triggering hormone (ETH) Peptide Endocrine Inka ceils of tracheae Neuronal circuits in brain Coordinates final motor programs for escaping from old cuticle Bursicon Large protein (-35,000 molecular weight) Neuroendocrine Brain and nerve cord Cuticle and epidermis Tans and hardens new cuticle Sources;After Randall Burggren, and French 2002; and Žitňan er aL 2003. Matched prothoracic glands cultured in vitro Control with no PTTH source I I Potential source of PTTH added to culture medium Relative amounts of ecdysteroid compared in the two cultures FIGURE 1.13. An assay for PTTH developed by Bollenbacher et al. (1979). A pair of matched prothoracic glands are removed from the insect and placed in culture. If PTTH is added to the culture, the glands produce increased amounts of ecdysteroids into the medium. Ecdysteroidy i 20-hydro xyecdysone 26-hydro«y9cdysone 20,26-dihyd raxyecdysone FIGURE 1.17. Som? common rcdysteroide. TABLE 14.6 Major hormones and neurohormones that control insect metamorphosis Hormone Type of molecule Type of signal Site of secretion Major target tissue Action Prothoracico tropic hormone (PTTH) Protein (-5000 molecular weight) Neuroendocrine Brainr with axon terminals extending to corpora a 1 lata Prothoracic glands Initiates molting (ecdysis) by stimulating release of ecdysone from prothoracic glands 1 Ecdysone (molting hormone) Steroid Endocrine Prothoracic glands in larva/nymph; ovary in adult Epidermis in larva/nymph; fat body in adult When activated to 20-hydroxyec-dysone, promotes cellular mechanisms to digest old cuticle and synthesize new one; stimulates production of yolk proteins in adult Juvenile hormone (JH) Ter pen e (fatty-acid derivative) Endocrine Corpora allata Epidermis in farva/ nymph; ovary in adult Opposes formation of adult structures and promotes formation of larval/nymphal structures;functions as a gonadotropin in the adult Edosion hormone (EH) Peptide Neuroendocrine Brain Inka cells, possibly others Promotes PETH and ETH secretion from Inka cells Pre-ecdysis triggering hormone (PETH) Peptide Endocrine Inka cetls of tracheae Neuronal circuits in brain Coordinates motor programs to prepare for shedding the cuticle Ecdysis triggering hormone (ETH) Peptide Endocrine Inka ceils of tracheae Neuronal circuits in brain Coordinates final motor programs for escaping from old cuticle Bursicon Large protein (-35,000 molecular weight) Neuroendocrine Brain and nerve cord Cuticle and epidermis Tans and hardens new cuticle Sources;After Randall Burggren, and French 2002; and Žitňan et aL 2003. Aktivace genů pod vlivem ecdysteroidů. In vivo, polyténní chromozómy slinných žláz ► *. , <: 70E 71B >w: * -• - \ \ v. 71 DE \ -*< i.» _ ^, 73F* ^ v. • 76A --76D f* •r «f «W 78D SI 77E Figure 2 | Heat-shock-induced puffing at major heat shock loci S7A and C. Displayed is a small segment of luted u hrom osom e S before (top) and after í bottom) heal shoĽk. Chromosomes are stained tor DNA ■! Hoesdist dye; I blue) and tor Pol IT (yreen)19. HS, heat shoek. * 4, - í.b c ^ Puffing patterns on chromosome 3L during Drosophila larval development ecdysis ecdysis U-----(an* 4—^ú« ecdysis butticon critical perioda A S 6 7 8 9 10 t time in each stage (days} Fig, 15 JO. Changes m hormone titers regulating molting and metamorphosis in a húlometaboJous insect. At the m o ft from larva to larva, juvenile hormone is present during the critical period; at the molt from larva to pup*, no juvenile hormone is present at the first critical period. The second critical period of sensitivity to juvenile hormone in the fifth stage larva regulates development of the imagiml discs. Eclositm hormone and bursicon are produced for a brief period before and after each ecdysis (based on data for Mandate Lepidoptera). COOCHj COOCH3 COOCH, COOCH3 COOCH3 COOCH, COOH TABLE 14.6 Major hormones and neurohormones that control insect metamorphosis Hormone Type of molecule Type of signal Site of secretion Major target tissue Action Prothoracico tropic hormone (PTTH) Ecdysone (molting hormone) Protein (-5000 molecular weight) Steroid Neuroendocrine Endocrine Brainr with axon terminals extending to corpora a 1 lata Prothoracic glands in larva/nymph; ovary in adult Prothoracic glands Epidermis in larva/nymph; fat body in adult Initiates molting (ecdysis) by stimulating release of ecdysone from prothoracic glands When activated to 20-hydroxyec-dysone, promotes cellular mechanisms to digest old cuticle and synthesize new one; stimulates production of yolk proteins in adult 1 Juvenile hormone (JH) Ter pen e (fatty-acid derivative) Endocrine Corpora allata Epidermis in farva/ nymph; ovary in adult Opposes formation of adult structures and promotes formation of larval/nymphal structures;functions as a gonadotropin in the adult Eclosion hormone (EH) Pre-ecdysis triggering hormone (PETH) Ecdysis triggering hormone (ETH) Bursicon Peptide Peptide Peptide Large protein (-35,000 molecular weight) Neuroendocrine Endocrine Endocrine Neuroendocrine Brain Inka cetls of tracheae Inka ceils of tracheae Brain and nerve cord Inka cells, possibly others Neuronal circuits in brain Neuronal circuits in brain Cuticle and epidermis Promotes PETH and ETH secretion from Inka cells Coordinates motor programs to prepare for shedding the cuticle Coordinates final motor programs for escaping from old cuticle Tans and hardens new cuticle Sources;After Randall Burggren, and French 2002; and Žitňan et aL 2003. JH Ecdysteroid O Epidermal cell O Epidermal cell Molt O O Same cuticle produced Next developmental cuticle produced No JH 45212594999 6741733967�173 3073367 ecdysis ecdysis U-----(an* 4—^ú« ecdysis butticon critical perioda A S 6 7 8 9 10 t time in each stage (days} Fig, 15 JO. Changes m hormone titers regulating molting and metamorphosis in a húlometaboJous insect. At the m o ft from larva to larva, juvenile hormone is present during the critical period; at the molt from larva to pup*, no juvenile hormone is present at the first critical period. The second critical period of sensitivity to juvenile hormone in the fifth stage larva regulates development of the imagiml discs. Eclositm hormone and bursicon are produced for a brief period before and after each ecdysis (based on data for Mandate Lepidoptera). Nastavení času líhnutí. Antherea pernyi Ekloze večer ($' Hyalophora cecropia Ekloze ráno P TABLE 14.6 Major hormones and neurohormones that control insect metamorphosis Hormone Type of molecule Type of signal Site of secretion Major target tissue Action Prothoracico tropic hormone (PTTH) Protein (-5000 molecular weight) Neuroendocrine Brainr with axon terminals extending to corpora a 1 lata Prothoracic glands Initiates molting (ecdysis) by stimulating release of ecdysone from prothoracic glands Ecdysone (molting hormone) Steroid Endocrine Prothoracic glands in larva/nymph; ovary in adult Epidermis in larva/nymph; fat body in adult When activated to 20-hydroxyec-dysone, promotes cellular mechanisms to digest old cuticle and synthesize new one; stimulates production of yolk proteins in adult Juvenile hormone (JH) Ter pen e (fatty-acid derivative) Endocrine Corpora allata Epidermis in farva/ nymph; ovary in adult Opposes formation of adult structures and promotes formation of larval/nymphal structures;functions as a gonadotropin in the adult 1 Eclosion hormone (EH) Peptide Neuroendocrine Brain Inka cells, possibly others Promotes PETH and ETH secretion from Inka ceils Pre-ecdysis triggering hormone (PETH) Peptide Endocrine Inka ceils of tracheae Neuronal circuits in brain Coordinates motor programs to prepare for shedding the cuticle Ecdysis triggering hormone (ETH) Peptide Endocrine Inka ceils of tracheae Neuronal circuits in brain Coordinates final motor programs for escaping from old cuticle Bursicon Large protein (-35,000 molecular weight) Neuroendocrine Brain and nerve cord Cuticle and epidermis Tans and hardens new cuticle Sources;After Randall Burggren, and French 2002; and Žitňan er aL 2003. ecdysis ecdysis U-----(an* 4—^ú« ecdysis butticon critical perioda A S 6 7 8 9 10 t time in each stage (days} Fig, 15 JO. Changes m hormone titers regulating molting and metamorphosis in a húlometaboJous insect. At the m o ft from larva to larva, juvenile hormone is present during the critical period; at the molt from larva to pup*, no juvenile hormone is present at the first critical period. The second critical period of sensitivity to juvenile hormone in the fifth stage larva regulates development of the imagiml discs. Eclositm hormone and bursicon are produced for a brief period before and after each ecdysis (based on data for Mandate Lepidoptera). Epitrachealni žlázy T Juvenile hormone Ecdvsone The prothoracic gland secretes ecdysone. The tracheae are branched tubes that extend from openings called spiracfes in the body wall. Inka cells, located on the tracheae, secrete PETHandEThi ^l TABLE 14.6 Major hormones and neurohormones that control insect metamorphosis Type of Site of Major target Hormone molecule Type of signal secretion tissue Action Prothoracico tropic Protein (-5000 Neuroendocrine Brainr with axon Prothoracic Initiates molting (ecdysis) by hormone (PTTH) molecular terminals extending glands stimulating release of ecdysone weight) to corpora a 1 lata from prothoracic glands Ecdysone (molting Steroid Endocrine Prothoracic glands Epidermis in When activated to 20-hydroxyec- hormone) in larva/nymph; larva/nymph; dysone, promotes cellular ovary in adult fat body in adult mechanisms to digest old cuticle and synthesize new ■ one; stimulates production of yolk proteins in adult Juvenile hormone Ter pen e (fatty- Endocrine Corpora allata Epidermis in farva/ Opposes formation of adult (JH) acid derivative) nymph; ovary in adult structures and promotes formation of larval/nymphal structures;functions as a gonadotropin in the adult Eclosion hormone Peptide Neuroendocrine Brain Inka cells, possibly Promotes PETH and ETH secretion (EH) others from Inka ceils 1 Pre-ecdysis triggering Peptide Endocrine Inka ceils of Neuronal circuits Coordinates motor programs to hormone (PETH) tracheae in brain prepare for shedding the cuticle 1 1 Ecdysis triggering Peptide Endocrine Inka ceils of Neuronal circuits Coordinates final motor programs 1 hormone (ETH) tracheae in brain for escaping from old cuticle Bursicon Large protein Neuroendocrine Brain and Cuticle and Tans and hardens new cuticle (-35,000 mole- nerve cord epidermis cular weight) Sources;After Randall Burggren, and French 2002; and Žitňan et aL 2003. ItYKOZHsJ^ CK, CH COOH HO >^. -