Vylučovaní a vodní hospodářství (a) Osmotic regulation (idealized) (b) Osmotic conformity (idealized) Udržování vnitřního prostředí: •Koncentrace odpadních a toxických látek •Koncentrace rozpuštěných látek - osmolalita •Navzdory nerovnováze s okolím O 1000 \- o Oh o ■ti o o Isosmotic ^/ line / / Regulator J____L / / Con f or tri er ^ / r./ ľ' i t i i i 0 íooo o Ambient osmotic pressure (mOsrn) I0ÜÜ (c) Ac t Lial relations of three marine invertebrates 1500 O g m 1000 ß u ř-l & .y o G g 500 TJ O O S 1000 mOsm is the approximate osmotic pressure of full-strength seawater. _L _L 500 1000 1500 Ambient osmotie pressure {mösm) NH3 Ammonia Molekuly tří nejběžnějších dusíkatých ex-krečních produktů - amoniaku, močoviny a kyseliny močové. Nízký poměr H:N pro kyselinu močovou znamená, že na její syntézu bylo spotřebováno méně vody než u močoviny nebo amoniaku (vodíkový atom pochází z vody). H.. O II ■^ c I H Uric acid \ H -N H H C=0 / Allantoin o O C—OH O H2N—C—N—C—N—C—NH2 I I I H H H Allantoic acid FIGURE 8.2. Excretory molecules that incorporate nitrogen. Močovina [CQ(NH2y fr Arginin [NH2-C-NH-R] ^O Aminokyseliny Ornitin [N H-R] NH NH, Citrulin [NH-C-NH-R] 2 II O nh;+co2 HCO- v krvi 2NH; + C02 + 4ATP -^ CO(NH2)2 + 2hľ + H20 + 4ADP Stavba exkrečních orgánů: •Epiteliální povrchy těla •Tubulární orgány {a) Position of the antennal gland (green gland) (b) Antennal gland unfolded with urine properties plotted below corresponding anatomical locations End sac Labyrinth Nephridial canal Bladder Ncphropore \ / •Protonephridia' or *flame cell' Annelid Rotifer Coelom (a) Platyhelminth Modification—* secondary urine [7771 Coelom, pseudocoel, Ľ-J blastocoel, interstitium 'Metanephridia* or 'coelomoducť Mammal Mollusc Blood vessel Bowman's capsule Nephron Blood—►Coelom (b) 'Antennal gland' Haemolymph sinus QQ Podocytes | Blood vessel ■ I Coelom Duct Modification —* secondary urine Flame cell Protonephridial network Nephridiopores Urine Bladder Antenna Nucleus Cilia Labyrinth— site of H20 reabsorption Nephridial canal-ion reabsorption Fenestration Figure 12-5 # (a) General schematic for the organization of the protonephridia in atriclad flatworm Dendrocoeium and the detailed structure of a single Antennal protonephridium and its flame cell. gland (b) the head region of a crustacean and the location and arrangement of the antennal gland (green gland). (Sources: (a) From R C. Withers, 1992, Comparative Animal Physiology, Fort Worth, TX: as modified from Fi. D. Barnes, 1987, imw-tebrate Zoology, Philadelphia: Saunders, and G. Kümmel, 1962, Zwei neue formen von cyrtocyten vergleich der bisher bekannten cyrtocyten und erúrterjro. des begriff es "zeiltyp, " Zeitschrift Zefi-forshung 57:172-201. (b) From I. Kay, 1998, Introduction to Animaf Physiology New York: Springer, Figure 10.4, p. 166). Reprinted by permission.) Fluid flow and filtration as fluid flows across the end-sac -site ot Podocyty Glomerular capillary lumen Glomerular basement membrane / k U V u Podocyte toot processes I ! M W Glomerular capillary loop Zi- ta) \J i 1 i) V w ^ Bowman's w Filtration capsule slit lumen X r^^~ ^r^: ^ U ( V/ L) ^ W "?- \.J (b) Gill circulation Branchial heart ^■Branchial heart Yj appendage Pericardial cavity Kenopericardial canal - Opening of renal sac to mantle cavity Systemic heart Pericardial cavity Reno pericardial canal -Glandular portion of kidney Bladder Tvorba a úprava primárního filtrátu. Proximal tubule, may be Collecting Blood c o I OJ U resorption/secretion of some solutes Distal tubule, overall non-isosmotic resorption or secretion Final duct External medium j Major changes in osmotic concentration \of urine No further change i Minor changes in osmotic concentration 1 (+ Major Ionic changes) Range of urine concentration Distance Fig. 5.8 A schematic basic design of osmoregulatory/excretory systems, and the patterns of change of concentration cornmonly found in each region. Malpigické trubice -jiná varianta tubulárního vylučování. Spolu s rektem mimořádně výkonný systém šetřící vodu. >* Excretion Anus Midgut Rectum FIGURE 8.7. The overall mechanism of insect excretion. Fluid is taken up by the Malpighian tubules and moves to the hindgut, where the rectum resorbs some of the water, salts, and amino acids while the remainder is excreted. Koloběh vody a látek - spolupráce trávicích a vylučovacích pochodů. Absorbční cyklus Exkreční cyklus Soluty Koloběh vody a látek - spolupráce trávicích a vylučovacích pochodů. Foregut Midgut Hindgut Major water movements Mouth Salivary gland i r Caeca i r Malpighian tubule Major salt movements Rectum Anus Absorptive cycle Excretory cycle 0th Active f*- Passive Transport vody a látek přes membránu Malpigicke trubice Mitochondrie Hemolymfa Soluty H20 Hemolymph Transcellular route Uric acid Alkaloids Salts Water Principal cell Paracellular route Sugars Amino acids Chloride cr Leukokinin Lumen FIGURE 8.12. The transport of substances through the Malpighian tubule cells. The major ion movements result from the action of the V-ATPase that moves protons and energizes the cell membrane. Na/K ATPase s actively transport ions from the hemolymph into the lumen, with ion channels allowing some passive transport. Some components move into the lumen by a transcellular route through the cells, while others move by a paracellular route between cells. Chloride ions move through stellate cells when the cells are stimulated by leucokinin. Adapted from Wang et al. (2004). Reprinted with permission. Suchozemský hmyz Ileum -H hn transport peptide rectum *--; cnlcride transport stimulating hormone uric alkaloids acid proline K+ --------------4?---------------^--------------1-----------*—f t t Ť t 1H other Na+ toxins Cľ other water amino acids Ma I pig h [an tubule diuretic hormone active transport passive diffusion excreted F15. L&.7+ Urine prtxl taction and modification m n Ecrrvsin-Jtl inswci iSMsfanfr^u). Active transport of potassium into rh« VMpitíhian tu hul* leads to th< i&motic muv«nicnr ot wucr jnd most other solutes tojluw p^ctv Mmy of thü ujIuil-* 4rc rccr^rcd ojí the urtner mora through rhehind-ur, hut ammonia i* aertvdy »ckkU inco it. The hormonei rttyuhrin-jthe pnjtcíiíiťsarťshownmiríiliuřiípirtly Kasťdon Phillips 1 Audrey. IW). Lumen Pump ions from cell to Spaces; OP rises, so water follows from;: lumen HP rises in central area, ♦ \ fast flow GV-A •? J/J ESQ : J \ \\ \ High SA intracellular spaces Numerous mitochondria Low SA exit duct +- Water - Ions Blood Fluid forced out under back pressure, ions resorbed in channel; small SA and low permeability prevent water following, net flow thus hyposmotic and ions recycled Fig. 5.14 A model for water transport' across a cell within a resorptive epithelial where solute recycling within the cell occ and a fluid hyposmotic to the lumen i$ discharged into the blood, representing r water resorption. HPr hydrostatic pressur ISO, isosmotic fluid; OP, osmotic pressur tor osmotic concentration); SA, surfaces Obr. 14.11. Kryptonefridíální komplex je tvořen konci malpigic-kých tubulů přiloženými ke střevu. Opačné proudy ve střevě a v tubulu si vyměňují vodu. Ta je z rekta nasávána do perírek-tálního prostoru hyperosmotickým prostředím, odtud pokračuje tubulem do hemolymfy. Soli jsou čerpány zpět do tubulu -jejich cirkulace je uzavřená. Voda je však následovat nemůže - epitel komplexu je pro ni nepropustný. Obr. 14,10. Rektální papila much. Systémem dutin v papile cirkulují ionty v uzavřeném cyklu - tenké šipky. Vysoká osmolalita prostředí vysává vodu z rekta - bílé šipky. Voda však neprojde, na rozdíl od solí, zpět epítelem odvodného kanálku a proudí do hemolymfy. Zpětnému toku vody brání systém záklopek (není zakreslen). a) freshwater rectum —- water (Irian* by drinking) hypotonic urine Maipighian tubule Na- c- A" water -^ !as,mct*c uptake througn cuticle anaJ papilla - exchange with environment K" -f—t—íh water b) saltwater (NaCI} wit and wator (intake by drinking) Malpighian tubule anterior rectum pOülöriQr rectum " organic compounds hypa/tonic urine organic compounds Ť Ť Ť water floss by osmosis through ■ÍUllClEl anal papilla - exchange with environment ^^ active transport —■*■ passive d iítusion -■*■ mechanism not known II-----' SO;j Mg-+ Ci" water Fij. la.S. Lpne production *nd modiůcitian in aquatic insects (mosquJio [irvae;. Nltm^ennus excretory prndutfi not shown. Ca) A freshwater insect, auch 45, ^rfcr a^jm. The ian-a pjins water by drinkLn ŕ and rhniu¥h che permeable í urk It - h" [he ihil papillae; rví-^i ^itw Le remůvtd M uhne. fh) ,\ j4(*v«cr inaert. audi u . U±, , i^orNi. TIil- Ljiipn offner EÍc lassíhrouph the cuticle. Further water is losr in iht arme. NoLe lhát jichňi^h water m mi^u-ü irrco [he řOsTeriarrccctun, (he fluid produced thtrei&hvperwmciu che hctnolvmpJi and (he medium (panlv fciscd on Úradku b Phillips. L977b). wing pad porous plat« ■ J.5 fJ.Vjk^ cuticle ^olds of plasma memůrano nucleus mitochondria basal "lammg Fi^, 18.2- Chloride cells in a mavflv brvaŕjŕ'ierJCcťnniclí, L 977). (aj Dor jjj view or larva. Dots show positions o^rhe chloride ceSEa Thrir siit is jrtatly exaggerated, (b) Dij^nmnuiLu secrion through, a chloride ľcL[. Insüme chloride Mils, rhe basal plasma membrane, rather than che apicaí membrane, is infolded. «) distilled watsj b) O-CCCS Mad c* nrain the chloride vpiihL-llum. Their *izc is reduced in larvae rcartd in water ^mrjininur h i jher Kalt concentrations (aft4ľr Wlj jlesworth, l*H» J}_ Structure Principle SapOCUmOsm Oesophagus Anterior midgut Filter chamber Hindgut- Fig, 5.24 The structure of a 'gut bypass' system in a sap-feeding insect, whereby much of the fluid taken in is tittered directly tothe hindgut bypassing the midgut r&sorptive areas. OC, osmotic concentration, (Adapted from Cheung fit Marshall 1973.) Rectum Posterior midgut Malpighian tubule Water Amino acids and sugars Posterior midgut Water Na\ K+, Ca24, Fe2+, ^ Mg2\ Mn24 Urine OC T3mOsm