Svaly a pohybový systém subbuněčný buněčný orgánový organismální - lokomoce Lokomoce - brvy a bičíky améboidní svalová Kostra těla Hladká a žíhaná svalovina Univerzální mechanismus stahu L-glutamová - excitace GÁBA - inhibice v Motor neuron Motor endplate luscles). Because the the outer sarcolem-extracellular .space. : t-tubules conduct he muscle fiber. The th the second mem-mtractian coupling, bules contained en-fibril is enveloped in ase active-transport low concentration of mcentration of Ca2f ne also has calcium 0 allow Ca2+ ions to ,. The Ca2"5" ions bind changes that permit mi channels open in nteriorly along the t- 1 an SR compartment sleeve of branching iure 17.1b). Enlarged isterna) lie next to the ly confined to the ter-n potential conducted im channels to open, ce to the adjacent my-ate the processes that, ract with actin. When to contract, sufficient erv TN-TM complex tion, bule membrane pro->nib rane system of the uiscle, the two menial membrane proteins ťtheSRandtheť%-ßoth of these proteins vere both named for cated in the SR mem-lets Ca2' diffiise out of The action potential in a motor neuron triggers exocytosis of ACh, Action potential ^ Li g and-gated channels "openr and the net inward movement of Na4"initiates an action potential.______^^ « The action " potential propagates over the cell membrane and depolarizes the tubules. Thin filament Troponin Tropomyosin ■4 Depolarization of the voltage-sensitive DHPR causes a conformational change that opens the RyR calcium channels of the SR. Ca2' ions bind to troponin, and tropomyosin moves to expose myosin-binding sites on actin. Cross-bridges go through several cycles as long as Ca2+ remains bound to troponin. the smooth endoplasmic Sval hmyzu Mitochondrie Svaly hmyzu Sarkozómv Disperzní Trubicovité Fibrilární (asynchronní) Exoskelet hmyzu Flexory a extenzory Schéma eioakeletu hmyzu a - tergum, b = intersegmentals membrána, c = sternum, d Setinový článek, e a hlavová -schránka = koci- Endoůk*letní dtvary hi^yzu A «■ endoakoletní líota, B - apodema; a = kutikula, b = epidermis Tonofibrily cuticla tonofionllae musela nucleus m '»;'.: täutí-tääš epidermis !- cuticle £ »-epidermis threadlike apodem« muscle muscle (O ] mm\\i\ 'fiiiiiij íííiýi« Ftg;3.2 Muscle attachments to body wall: (a) ttmoffbriltae traversing the epidermis from the muscle to the cuticle; (b) a muscle attachment in an adult beetle or Chrysobothrus femonta (Coleoptera: Buprcstiddtrj (c) a multicellular apodeme with a musde attached to one of its thread-like, cuticular 'tendons' / Arter bnodgrass. 1935.) 51 Inervace -3 typy neuronů bezobratlých L-glutamová - excitace GÁBA - inhibice (&) Vertebrate tonic muscle fibers Motor neuron (b) Arthropod muscle fibers Excitatory neurons Inhibitory neuron Overí ripping motor unity Multiterminal innervation Polyneuronal, multiterminal innervation „Větší" síla malého svalu Pomalé a rychlé svaly • ♦•• • •- -• • • • • • • • > • • • i • • • • • • • 6:1 actin:myosin 3:1 actin:myosin FIGURE 10.8 Cross sections of slow (left) and fast (right) muscle fibers. From Aidley (1985). Reprinted with permission. entral Pattern Generation Gaits in insect walking tripod gait ^LYlH|£ R3 R2 Rl ■. "■ . -W ^Vi'lTiK stince direction of walking L3 L2 fl« «H LI * Tripod 1 Tripod 2 HH 2ÜÜITL& ifflM-----------1 ^£■ w cockroach {Periphuieta americana) 0.44-1 m/s alternating tripod gait 1-1,5 m/s quadruped gait or bipedal Walking: cycle of movements ance phase: -tarsi in contact with the ground backward movement of legs sctensor motoneurons and muscles active dv moves forward ving phase rsi not in contact with ground irward movement of legs :xor motoneurons and muscles ršírr 77777777 1777* -77777? ?Sr/// *f/?// *777?7 O ti) ní lime Swiiift Stance Movements of a middle leg Flexor tibiae muscle Extensor tibiae muscle í" Flexor burst ! ■: -*i Exicnsor burst Flexor burst ■ Extensor ■ burst : Delay Delay. ' Phaise of this point relative to step cycle „_______i I___i___í___i___i J___L ■ ■ I LJ Stop cyclo 1,0 Pattern generators in walking alternative hypotheses: one central pattern generator for all legs? one central pattern generator for each leg? Generátory pohybu (a) Oscillating and generating impulses m jm jm (b) Oscillating,, without impulses (c) The half-center madel of an oscillatory network (ä) The closed-loop modql of an oscillatory network To flexors To extensors To flexors Two neurons (or pools of neurons) synaptically inhibit each other. KEY Excitatory inhibitory To extensors Three or more neurons are connected in acyclic inhibitory loop. Figure 18.9 Models of oscillators underlying central pattern generators (a) An oscillator neuron generating bursts of impulses (e.gjn Aplysia). (b) A neuron with membra ne^potential oscillation but without impulses (e.g., a neuron controlling pumping of the crustacean scaphognathite, or gill baiier). fc> A network oscillator composed of reciprocal inhibitory half-centers, (d) A network oscillator composed of closed-loop cyclic inhibition. All three cells may be spontaneously active or may receive unpatterned excitatory input (dashed lines). If cell 1 is active first, its activity inhibits cell 3, but this inhibition prevents cell 3 from inhibiting cell 2.Cell 2 can now be active, inhibiting cell 1 and thus releasing cell 3 from inhibition. Cell 3 can then be active, inhibiting cell 2 and releasing cell 1 from inhibition,and so forth. 1.251 lli 12sT \lt 1. swing phase inhibits swing (anterior) 2. start of stance excites start of swing (anterior, lateral) 3. caudal positions excite start of swing (p o steri or, later al) 4. targeting (tarsi go to last position of anterior tarsi, lateral) 5a. increased resistance increases force (coactivation; all directions) 5b. increased load prolongs stance (all directions) 6. do not step on your own toes I The temporaJ sequence of the movements of all legs can be explained by the ictions of a distributed command structure consisting of six more or less idependent walking-pattern generators and at least three different kinds of A Sternum Tergum leg muscles (locust) II*J IM iH L^fl X 1. eli asti cal íT IF: í DCPPEĚSOft -OF lUUH>í.UíTít^ UNK :•■■'■■■ Irochanter depressor (trigger1 muscle) HĽEJLJN iHELHAL ARCHj RJDčiE muečlľ EPTLĽUfW. ofthiwi.cc or TnOCnŕňTEna _ -LÍVATCT DF ihi}(:kmi^M COS A OF SECOND LES COWL ĎF TMtfd leg rnooiwjTcn .VTi-mrnr-, ings can have different shapes Paleodtctyopiera (extinct) Raphidia (snakefly) Panorpa (skoipionfly) Eoscenos (Slrepsiptera) Liolhrips (thrips) Libellufa f dragonfly] CeJonřtes (wasp) Lalhyrophthalmus (hoveifly) Dissosleira (locust) w^m w Megabpropus (damsel Fly) Sphinx (hawk moth) Orneodes (moth) -ST' Aj- ■ - '/* IP I taxa, fore and hind wings are simila * ^^^^r '. ^ \ :.>* Libelluta iifferent fore and h owards functional o-wing ■■ftMA Katydid ind wings and 5II1PJ LI IIL'ILTJ 1! shifted and may differ in stroke indirect depressor .elšvalóľä Ldirect depressor 150 (- I i!l2D yi ■■"■ 3D j>ne wjrigb«t eytte front wing 1=3 longitudinal depressors {indirect} 'sgupnlrsl depressors dursovenirai elevators -*-*- hind-wing I •-!-' E-D Inngil-jd nnl depressor (indirect) dorsovenlral duressors Hrtrftrtvftntrfll ŕ»l**vjfitnríí S i -L 0 30 40 h:iw ■(' : m Wrix. |:ne Ji 119 í fei) Time, na «C feedback loops and many inhibitory interneurons elevator motor excitatory inhibitory interneurons motor neuron (ü) The motor pattern of locust wing muscle excitation 30 60 Time (ms) that can generate the sequential, p at t rons to antagonistic muscles that un out requiring sensory feedback to tri in central control of locust flight, th levator and depressor m c an intrinsic central patte from a chained reflex (Fi How would one dete trol or central control í motor activity underlyin swer is to remove the re Depressor nutsde Levator muscle Wing-hinge proprioceptor Depression proprioceptors #lr -iftf- To amplifier ■Mh- Mr 4W- * * (b) The peripheral-control hypothesis Wind ^s^l Levator motor activity (c) The central-control hypothesis Wind V Absence of tarsal contact Sensory detection of depression Sensory detection of elevation Central pattern generator u X^ Depressor jr Levator motor neuron -^- Depressor motor neuron Depressor motor activity termed deaffererttation {(■ the locust, most if not a moved by cutting of the Figure 18.8 Control of fli wing movements and the motor and sensory activi locust.Two sorts of hypot tion of the motor pattern peripheral-control hypoth back resulting from a mo ment;and a central-contr tra! pattern generator pro out requiring moment-to central pattern generator wind on the head and th light requirement irge and small insects liferent f o 103J 10° J Crt >io -3^ 10 -6 (after Nachtigall 1981) ,-6' I--------1--------1—ZT i-----1-5—1-----r n—1---r irr° 10-3 10" 10" 10 Reynolds number [fflia w^ friction limite inertia limited mall nimals eat their rings at higher freuendes ^_500 i N oiooH O» 50 -I O" CD «4— to 1CH JU 5 H D) C 1 -i * ŕ * *. «^w other *^: '^7^.insects *. ^v^. humming-&ÍS, birds ■ f butterflies* .fe- other birds* ' 5 10 50 100 500 wing length [mm] Some insects can hover. Dragonfhes beat tore win ind hind wings in anti-phase. Other insects change the angles of wings and body axi »nd produce lift without thrust. Aeschna junacea hovering flight Norberg 1975 forewings shaded; wing beat frequency 17 Hz uring the pstroke he wing is otated entral st\'\ s?VV %V*V\ ** * . lomw . Nemestrino captto a. Brodsky 19S4 undersurface shaded; wing beat frequency 143 Hz Wing rotation icreases thrust JtfľiCľ. thru s direction of flight top reversal movement of wing lip bottom,, reversal stationary view leading edge dorsal side ventral side Podélné sv: Přímé svaly Nepřímé sval Dorzo-ventr. s „Přepínací' wing joint. They may power the wing or control wing rotation, deformation etc. direct flight muscles donata and Blattodea use direct mu es for wing upstroke and downstroke Elevators contract ^ Depressors contract any insects sing ndirect uscles direct mixed indirect Stretch receptors and teg movement and position o "creases the wing beat f r wing hinge stretch receptor tegula receptors njfil rt TWiirn tretch receptors are active during the upstro hey inhibit elevator motor neurons and activat depressor neurons ey excite evator otor eurons. ořitň ftcnl Hing ^hkl^LSuN-ILJL l^y of righl hand win j 1-flWtji wf tťgula un flight wing elevation rhľvrttOť Hlůtui rtcuruii lili:iV ÜDOpLir Action of tenula senary neurons in flight 50ms Jj^ I fl-^frwfj^-F^-jL ■%■■ r^rVl>-l A^ř^J.I^h^W—IJ-r^ü^JjJf-*M^ ^ IPA. sJir-'A Irr mLUřiic í-? —!ŕ—fr^Ht—fo—tt—ft '■- V^- H/t—V—'|Jr uv"rtfcn^bcjl tvrff SDms How do mall insects e.g. diptera, wasps) generate wingbeat requencies? Wingbeat freouencv ÍH?) 3 1 r i i i r r i 11 -------r i i i i ' i ■ i —^— Qóůnata ~^—^~~ LpflVfltcrDpiCrQ — Btattoóea Mantodea Wingbeat frequencies q ft. I in inserts of different op era orders; Sotavalta P947) PlecQptera — fteurvptera ■ Mecaptera • MepQtepUra —— Tricftoptera ---------- ff&mptera -------------------- ftemiptera - Psosuptsra Broad-winged Lepiöoptera -------------------Other Lopidopterz ------------------- Coleepterů ----------------------Hymenoptera ^—^—^— Ľiptera I ^ ÍIÍiSÍtiUítHSIííTíIíI« uscles of Diptera and Hymenoptera vibrate the thorax ox" at resonance equencies. hese muscles are irphologically and mctionally >ecialized ('fibrillar muscles'^ ŕluwfiili'úké The wing joint comprises a 'click' mechanism that drives the wings 'Steering Strausfeld 89 m\k\ě T+X •I* M» synchronous' or 'myogenic' ..ecause they do not contract in synchrony ith the ..jotor neurons that Manduca sexta ^Étyl wing beat/WVWWVWV d epresso m^^V^4^4^h^*4,*4^ gi s Calfiphora erythrocephala wing beatmWttm depressor^--------------------------^--------- elevator^----------------^-----------------^ 0.1 & I---------------------1 n ^ anrdiWd id other mechanical parameters are integrated with visual information (flow-fields, landmarks, targets) PATTERN MOTION Ccampaufld eye*) BODY- MOTION rhftltertsi CDGEOniCNtATiOH icnmpounö eyes J WING LOAD Jrtihg campnfiiför m sen^i llfl] TONtC DORSAL LIGHT RESPONSE ítĎmpuunrJ eyesi Hfc A D POSTÜRE (neck Sense OrgansI , les; halte res, modified hind wings that serve > sensory structures, "hey work like roscopes and measure ccelerations. ventral ► e halteres directly eeds to the wing motor neuropil halters nerve StrausfeldÄ Sevan 1985 Compound eyes Visual information from the brain Sensilla on wings Motor neuron Haltere control muscles / Sensory neuron Sensilla on halteres IGURE 10.24 The mechanism of direct haltere control in the blowfly, Calliphora. The visual terneurons from the compound eyes activate the haltere control muscles. Twisting movements of the älteres activate their sensilla that feed to the wing muscle motor neurons and modulate their control, eprinted with permission from Chan, W P., F. Prete, and M. H. Dickinson.Visual input to the effer- nt control system of a fly's "gyroscope" Science 280: 289-292. Copyright 1998. American Association r the Advancement of Science. JI after Bacon and Strausfeld, 1 A ■ ŕ pathway that allows them to track fomale flies * FAT BODY ttl*HllllHII|||tt Glycogen —i Triacylglycerides Diacylglycerides Proline t Alanine HEMOLYMPH Trehalose FLIGHT MUSCLE // Glycogen \ Lipoprotein Free fatty acids Proline Alanine Arginine : phosphate/