
Statistical Practice in Epidemiology

with R

Computer exercises
www.pubhealth.ku.dk/~bxc/SPE

Department of Public Health &
Institute of Mathematical Statistics

University of Tartu, Estonia

May 2007

Bendix Carstensen Steno Diabetes Center, Gentofte, Denmark
& Dept. of Biostatistics, University of Copenhagen, Denmark
bxc@steno.dk
http://www.biostat.ku.dk/~bxc

Peter Dalgaard Dept. of Biostatistics, University of Copenhagen, Denmark
pd@biostat.ku.dk
http://www.biostat.ku.dk/~pd

Krista Fischer Institute of Public Health, University of Tartu, Estonia
Krista.Fischer@ut.ee

Lyle Gurrin School of Population Health, University of Melbourne, Australia
lgurrin@unimelb.edu.au
http://www.epi.unimelb.edu.au/about/staff/gurrin-lyle

Michael Hills (Retired) Highgate, London, UK
mhills@blueyonder.co.uk
http://www.mhills.pwp.blueyonder.co.uk
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The course venue is:
University of Tartu, Institute of Mathematical Statistics, J. Liivi 2, Tartu.
(2 in the circle on the map below).
Go to the Tartu homepage (www.tartu.ee), choose Maps → Tartu city map and enter

“Liivi 2” in the search box, click find and afterwards click on the search results for Liivi 2.

Print the map and appear there Thursday morning at 8:30. See you!

Preliminary program:

Daily timetable
8:45 – 9:15 Recap of yesterday’s practi-

cals
9:15 – 10:00 Lecture

10:00 – 10:30 Coffee break
10:30 – 12:30 Practical
12:30 – 14:00 Lunch at Café Wilde
14:00 – 15:00 Lecture
15:00 – 17:30 Practical (incl. coffee)

Friday 25/05
8:45 – 9:00 Welcome: Introduction of University of Tartu, the course faculty and students (KF).
9:00 – 9:30 History of R. Language concepts. Objects. Functions (PD).
9:30 – 10:00 Interface to other dataformats. Dataframes. Search path. Simple simulation (MP).

10:00 – 10:30 Coffee break
10:30 – 12:30 Practical: Reading data.
12:30 – 14:00 Lunch
14:00 – 14:30 Basic epidemiological concepts (MP).
14:30 – 17:30 Practical: Tabulation of data.
18:30 – Welcome reception at . . .
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Saturday 26/05
8:45 – 9:15 Recap of yesterday’s practicals
9:15 – 9:30 Modelling tools and model objects (PD).
9:30 – 10:00 Logistic regression for cc-studies. Poisson regression for follow-up studies (BxC).

10:00 – 10:30 Parametrization of models (BxC).
10:30 – 11:00 Coffee break
11:00 – 12:30 Practical: Logistic regression for melanoma data (EL).
12:30 – 14:00 Lunch
14:00 – 15:00 Causal inference (KF).
15:00 – 17:30 Practical: Simulation illustrating causal inference and logistic regression.

Sunday 27/05
8:45 – 9:15 Recap of yesterday’s practicals
9:15 – 10:00 Graphics in R. (PD).

10:00 – 10:30 Coffee break
10:30 – 12:30 Practical: Graphics meccano.
13:00 – Lunch / Excursion by boat on Emaljõgi

Monday 28/05
8:45 – 9:00 Recap of yesterday’s practicals
9:00 – 9:45 Survival analysis in continuous time. Parametric survival models (KF).
9:45 – 10:10 Interval censoring (BxC).

10:10 – 10:40 Coffee break
10:40 – 12:30 Practical: Estonian stroke study.
12:30 – 14:00 Lunch
14:00 – 14:45 Timesplitting and SMR (BxC).
14:45 – 17:30 Practical: Time-splitting and SMR.

Tuesday 29/05
8:45 – 9:15 Recap of yesterday’s practicals
9:15 – 9:45 Nested and matched cc-studies (BxC).
9:45 – 10:15 Case-cohort studies (MP).

10:15 – 10:45 Coffee break
10:45 – 12:30 Practicals: Matched case-control study.

Case-cohort study (Norwegian malformations).
12:30 – 14:00 Lunch
14:00 – 16:00 Practical: Computer intensive methods: Bootstrap.
16:00 – 16:30 Competing risk models (BxC).
16:30 – 17:00 Multistage models (MP).
19:00 – Course dinner at . . .
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Wednesday 30/05
9:00 – 10:00 Practicals: Competing risks — histological subtypes of liver cancer.

or: Multistage model data (heart from the msm package.
10:00 – 11:00 Recap of yesterday’s and today’s practicals
11:00 – 11:30 Course evaluation and closure.
11:30 – 13:00 Lunch & departure.
13:00 – 18:00 Post-mortem (Faculty alone).
19:00 – Faculty dinner.
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Introduction to practicals

Datasets for the practicals in this course will be available on the local machines and on the course
homepage in the folder www.pubhealth.ku.dk/~bxc/SPE/data

The general convention is that when R-functions are mentioned in the text they will normally
not be explained in any great detail. Hence you should get into the habit of consulting the help
page for any function that you are not entirely familiar with. Either by using the help available
through Help → Html help in the title bar, or by typing one of:

?Lexis.diagram
args( Lexis.diagram )

The first form brings up a help-page and the second just a listing of the function arguments with
their defaults (without any explanation).

When running the exercises it is a good idea to have some text-editor open too, where you
keep the R-commands. You can the cut and paste from this into the R-window and vice versa.
Note also the File → Save History... possibilty from the R command window, which allows you
to dump all the commands you have written there so far into a file.

R has an inbuilt text-editor, accessible from the menu: File→New script or File→Open
script. Type your R-commands in this, highlight them and press Ctrl R and they will be run.

Another slightly more fancy option is to install Tinn-R from
http://www.sciviews.org/Tinn-R/. This is a seperate editor with R-syntax highlighting which
allows you to send you commands to R too.

vi



Chapter 1

Exercises

1.1 Practice with basic R

Skip this if you are familiar with R.
The main purpose of this session is to give participants who have not had much (or any)

experience with using R a chance to practice the basics and to ask questions.

1.1.1 Probability functions

R has a set of probability functions for calculating the cumulative probability and its inverse
function for calculating quantiles in all the probability distributions you are likely to need. The
cumulative probability functions are

pnorm, pchisq, pbinom, ppois, etc.

and the quantile functions are

qnorm, qchisq, qbinom, qpois, etc.

See help(pnorm), etc., and try

> pnorm(1.96)
> qnorm(0.975)

1. Find the probability below 1.5 in a Gaussian (normal) distribution.

2. What is the probability between −1.64 and +1.64 in a Gaussian distribution?

3. Find the probability below 4.3 in a chi-squared distribution on 1 degree of freedom.

4. Find the probability above 4.3 in a chi-squared distribution on 1 degree of freedom.

5. What is the probability above 10 in a chi-squared distribution on 5 df?

6. What is the 95% quantile in a chi-squared distribution on 1 df?

1.1.2 Vectors

1. Create a vector w with components 1, -1, 2, -2

2. Display this vector

3. Obtain a description of w using str()

1



2 Practise with basic R Statistical Practise in Epidemiology

4. Create the vector w+1, and display it.

5. Create the vector v with components (0, 1, 5, 10, 15, ... , 75) using c() and seq().

6. Find the length of this vector.

1.1.3 Data frames

We shall use the births data which concern 500 mothers who had singleton births in a large
London hospital. The outcome of interest is the birth weight of the baby, also dichotomised as
normal or low birth weight. These data are available in the Epi package:

> library(Epi)
> data(births)
> help(births)
> names(births)
> head(births)

1.1.4 Referencing parts of the data frame

Typing births will list the entire data frame - not usually very helpful. Now try

> births[1, "bweight"]
> births[2, "bweight"]
> births[1:10, "bweight"]

1. Display the data on the variable gestwks for row 7 in the births data frame.

2. Display all the data in row 7.

3. Display the first 10 rows of the data on the variable gestwks.

1.1.5 Turning a variable into a factor

In R categorical variables are known as factors, and the different categories are called the levels of
the factor. Variables such as hyp and sex are originally coded using integer codes, and by default
R will interpret these codes as numeric values taken by the variables. For R to recognize that the
codes refer to categories it is necessary to convert the variables to be factors, and to label the
levels. To convert the variable hyp to be a factor, try

> births$hyp <- factor(births$hyp)
> str(births)

This makes sure that hyp is now a factor with two levels, labelled "0" and "1" which are the
original values taken by the variable. It is possible to change the labels to (say) "normal" and
"hyper" with

> births$hyp <- factor(births$hyp, labels = c("normal", "hyper"))
> str(births)

1. Convert the variable sex into a factor

2. Label the levels of sex as "M" and "F".
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1.1.6 Frequency tables

When starting to look at any new data frame the first step is to check that the values of the
variables make sense and correspond to the codes defined in the coding schedule. For categorical
variables (factors) this can be done by looking at one-way frequency tables and checking that only
the specified codes (levels) occur. The most useful function for making simple frequency tables is
table. The distribution of the factor hyp can be viewed using

> with(births, table(hyp))

or by specifying the data frame as in

> table(births$hyp)

For simple expressions the choice is a matter of taste, but with is preferable for more complicated
expressions.

1. Find the frequency distribution of sex.

2. Find the two-way frequency distrubtion of sex and hyp.

1.1.7 Grouping the values of a numeric variable

For a numeric variable like matage it is often useful to group the values and to create a new factor
which codes the groups. For example we might cut the values taken by matage into the groups
20–24, 25–29, 30–34, 35–39, 40–44, and then create a factor called agegrp with 4 levels
corresponding to the four groups. The best way of doing this is with the function cut. Try

> births$agegrp <- cut(births$matage, breaks = c(20, 25, 30, 35, 40, 45), right = FALSE)
> with(births, table(agegrp))

By default the factor levels are labelled [20-25), [25-30), etc., where [20-25) refers to the interval
which includes the left hand end (20) but not the right hand end (25). This is the reason for
right=FALSE. When right=TRUE (which is the default) the intervals include the right hand end
but not the left hand.

Observations which are not inside the range specified in the breaks() part of the command
result in missing values for the new factor. You can specify that you want to cut a variable into a
given number of intervals of equal length by specifying the number of intervals. For example

> births$agegrp = cut(births$matage, breaks = 5, right = FALSE)
> with(births, table(agegrp))

shows 5 intervals of width 4.

1. Summarize the numeric variable gestwks, which records the length of gestation for the
baby, and make a note of the range of values.

2. Create a new factor gest4 which cuts gestwks at 20, 35, 37, 39, and 45 weeks, including the
left hand end, but not the right hand. Make a table of the frequencies for the four levels of
gest4.

3. Create a new factor gest5 which cuts gestwks into 5 equal intervals, and make a table of
frequencies.
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1.1.8 Generating new variables

New variables can be produced using assignment together with the usual mathematical operations
and functions. For example

> logbw <- log(births$bweight)

produces the variable logbw in your work space (Global environment), while

> births$logbw <- log(births$bweight)

produces the variable logbw in the births data frame. Logs base 10 are obtained with log10( ).
Logical variables take the values TRUE or FALSE, and behave like factors. New variables can

be created which are logical functions of existing variables. For example

> births$vlow <- births$bweight < 2000
> str(births)

creates a logical variable vlow (in births with levels TRUE and FALSE, according to whether
bweight is less than 2000 or not. One common use of logical variables is to restrict a command to
a subset of the data. For example, to list the values taken by bweight for women whose babies
have very low birth weight, try

> subset(births, vlow)$bweight

to create a new dataframe restricted to women with babies of very low birth weight, try

> births.low <- subset(births, vlow)
> summary(births.low)

1. Create a logical variable called early according to whether gestwks is less than 30 or not.
Make a frequency table of early.

2. Display the id numbers of women with gestwks less than 30 weeks.

1.1.9 Using a text editor with R

When working with R it is best to use a text editor to prepare a batch file (or script) which
contains R commands and then to run them from the script. For Windows we recommend using
the text editor Tinn-R, but you can use your favourite text editor instead if you prefer. Start up
the editor and enter the following lines:

library(Epi)
data(births)
births$hyp <- factor(hyp, labels=c("normal","hyper"))
births$sex <- factor(sex, labels=c("M","F"))

Now save the script and run it. One major advantage of running all your R commands from a
script is that you end up with a record of exactly what you did which can be repeated at any
time. This will also help you redo the analysis in the (highly likely) event that your data changes
before you have finished all analyses.

1. Edit the script to create a factor cutting matage at 20, 25, 30, 35, 40, 45 years, and run just
this part of the script.

2. Edit the script to create a factor cutting gestwks at 20, 35, 37, 39, 45 weeks, and run just
this part of the script.

3. Save and run the entire script.
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1.1.10 Working with R

When starting R it is always a good idea to use getwd() to print the working directory. You may
not be where you think you are! The command dir() can be used to see what files you have in
the working directory.

When exiting from R you are offered the chance of saving all the objects in your current work
space. This is not recommended as the work space can fill up with temporary objects, and it is
easy to forget what these are when you resume the session. It is better to build up a script file as
you work, and to run this at the start of a new session.

To save the output from an R command in a file the sink() command is used. For example,

> sink("output.txt")
> summary(births)

first instructs R to re-direct output away from the R terminal to the file "output.txt" and then
summarizes the births data frame, the output from which goes to the sink. While a sink is open all
output will go to it. Opening a file with sink() will overwrite its contents - to append output to
a file, use the append=TRUE option with sink(). To close a sink, use sink() without arguments.

> sink()

1. Sink output to a file called "output1.txt".

2. Make frequency tables of hyp and sex

3. Make a table of mean birth weight by sex

4. Close the sink

5. From windows, have a look inside the file output1.txt and check that the output you
expected is in the file.

You can save any R object to disc. For example, to save the data frame births try

> save(births, file = "births2.Rdata")

which will save the births data frame in the file births2.Rdata. By default the data frame is
saved as a binary file, but the option ascii=TRUE can be used to save it as a text file. To load the
object from the file use

> load("births2.Rdata")

The commands save() and load() can be used with any R objects, but they are particularly
useful when dealing with large data frames.
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1.2 Reading data into R

1.2.1 Introduction

It is said that Mrs Beeton, the 19th century cook and writer, began her recipe for rabbit stew
with the instruction “First catch your rabbit”. Sadly, the story is untrue, but it does contain an
important moral. R is a language and environment for data analysis. If you want to do something
interesting with it, you need data.

For teaching purposes, data sets are often embedded in R packages. The base R distribution
contains a whole package dedicated to data which includes around 100 data sets. This is attached
towards the end of the search path, and you can see its contents with

> objects("package:datasets")

A description of all of these objects is available using the help() function. For example

> help(Titanic)

gives an explanation of the Titanic data set, along with references giving the source of the data.
The Epi package also contains some data sets. These are not available automatically when you

load the Epi package, but you can make a copy in your workspace using the data() function. For
example

> library(Epi)
> data(bdendo)

will create a data frame called bdendo in your workspace containing data from a case-control
study of endometrial cancer. Datasets in the Epi package also have help pages. You can type
help(bdendo) for further information.

To go back to the cooking analogy, these data sets are the equivalent of microwave ready meals,
carefully packaged and requiring minimal work by the consumer. Your own data will never be
able in this form and you must work harder to read it in to R.

This exercise introduces you to the basics of reading external data into R. It consists of reading
the same data from different formats. Although this may appear repetitive, it allows you to see
the many options available to you, and should allow you to recognize when things go wrong.

You will need to copy the following files to your working directory: fem.dat, fem-dot.dat,
fem.csv, fem.dta.

1.2.2 Data sources

Sources of data can be classified into three groups:

1. Data in human readable form, which can be inspected with a text editor.

2. Data in binary format, which can only be read by a program that understands that format
(SAS, SPSS, Stata, Excel, ...).

3. Online data from a database management system (DBMS)

This exercise will deal with the first two forms of data. Epidemiological data sets are rarely large
enough to justify being kept in a DBMS. If you want further details on this topic, you can consult
the “R Data Import/Export” manual that comes with R.
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1.2.3 Data in text files

Human-readable data files are generally kept in a rectangular format, with individual records in
single rows and variables in columns. Such data can be read into a data frame in R.

Before reading in the data, you should inspect the file in a text editor and ask three questions:

1. How are columns in the table separated?

2. How are missing values represented?

3. Are variable names included in the file?

The file fem.dat contains data on 118 female psychiatric patients. The data set contains nine
variables.

ID Patient ID
AGE Age in years
IQ IQ score
ANXIETY Anxiety (1=none, 2=mild, 3=moderate,4=severe)
DEPRESS Depression (1=none, 2=milde, 3=moderate or severe)
SLEEP Sleeping normally (1=yes, 2=no)
SEX Lost interest in sex (1=yes, 2=no)
LIFE Considered suicide (1=yes, 2=no)
WEIGHT Weight change (kg) in previous 6 months

Inspect the file fem.dat with a text editor to answer the questions above.
The most general function for reading in free-format data is read.table(). This function reads

a text file and returns a data frame. It tries to guess the correct format of each variable in the
data frame (integer, double precision, or text).

Read in the table with:

> fem <- read.table("fem.dat", header = TRUE)

Note that you must assign the result of read.table() to an object. If this is not done, the data
frame will be printed to the screen and then lost.

You can see the names of the variables with

> names(fem)

the structure of the data frame can be seen with

> str(fem)

You can also inspect the top few rows with

> head(fem)

Note that the IQ of subject 9 is -99, which is an illegal value: nobody can have a negative IQ. In
fact -99 has been used in this file to represent a missing value. In R the special value NA (not
available) is used to represent missing values. All R functions recognize NA values and will handle
them appropriately, although sometimes the appropriate response is to stop the calculation with
an error message.

You can recode the missing values with

> fem$IQ[fem$IQ == -99] <- NA
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1.2.4 Things that can go wrong

Sooner or later when reading data into R, you will make a mistake. The frustrating part of
reading data into R is that most mistakes are not fatal: they simply cause the function to return a
data frame that is not what you wanted. There are three common mistakes, which you should
learn to recognize.

1.2.4.1 Forgetting the headers

The first row of the file fem.dat contains the variable names. The read.table() function does
not assume this by default so you have to specify this with the argument header=TRUE. See what
happens when you forget to include this option:

> fem2 <- read.table("fem.dat")
> str(fem2)
> head(fem2)

and compare the resulting data frame with fem. What are the names of the variables in the data
frame? What is the class of the variables?

Explanation: Remember that read.table() tries to guess the mode of the variables
in the text file. Without the header=TRUE option it reads the first row, containing the
variable names, as data, and guesses that all the variables are character, not numeric.
By default, all character variables are coerced to factors by read.table. The result is
a data frame consisting entirely of factors (You can prevent the conversion of
character variables to factors with the argument as.is=TRUE).

If the variable names are not specified in the file, then they are given default names V1, V2,
.... You will soon realise this mistake if you try to access a variable in the data frame by, for
example

> fem2$IQ

as the variable will not exist
There is one case where omitting the header=TRUE option is harmless (apart from the situation

where there is no header line, obviously). When the first row of the file contains one less value
than subsequent lines, read.table() infers that the first row contains the variable names, and
the first column of every subsequent row contains its row name.

1.2.4.2 Using the wrong separator

By default, read.table assumes that data values are separated by any amount of white space.
Other possibilities can be specified using the sep argument. See what happens when you assume
the wrong separator, in this case a tab, which is specified using the escape sequence "\t"

> fem3 <- read.table("fem.dat", sep = "\t")
> str(fem3)

How many variables are there in the data set?

Explanation: If you mis-specify the separator, read.table() reads the whole line as
a single character variable. Once again, character variables are coerced to factors, so
you get a data frame with a single factor variable.
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1.2.4.3 Mis-specifying the representation of missing values

The file fem-dot.dat contains a version of the FEM dataset in which all missing values are
represented with a dot. This is a common way of representing missing values, but is not
recognized by default by the read.table() function, which assumes that missing values are
represented by “NA” (not available).

Inspect the file with a text editor, and then see what happens when you read the file in
incorrectly:
> fem4 <- read.table("fem-dot.dat", header = TRUE)
> str(fem4)

You should have enough clues by now to work out what went wrong.
You can read the data correctly using the na.strings argument

> fem4 <- read.table("fem-dot.dat", header = TRUE, na.strings = ".")

1.2.5 Spreadsheet data

Spreadsheets have become a common way of exchanging data. All spreadsheet programs can save
a single sheet in comma-separated variable (CSV) format, which can then be read into R. There
are two functions in R for reading in CSV data: read.csv() and read.csv2().

To understand why there are two functions, inspect the contents of the function read.csv() by
typing its name
> read.csv

function (file, header = TRUE, sep = ",", quote = "\"", dec = ".",
fill = TRUE, comment.char = "", ...)

read.table(file = file, header = header, sep = sep, quote = quote,
dec = dec, fill = fill, comment.char = comment.char, ...)

<environment: namespace:utils>

The first two lines show the arguments to the read.csv() function and their default values
(header=TRUE, etc) The next two lines show the body of the function, which shows that the
default arguments are simply passed verbatim onto the read.table() function. Hence
read.csv() is a wrapper function that chooses the correct arguments for read.table() for you.
You only need to supply the name of the CSV file and all the other details are taken care of.

Now inspect the read.csv2 function to find the difference between this function and read.csv.

Explanation: The CSV format is not a single standard. The file format depends on
the locale of your computer – the settings that determine how numbers are
represented. In some countries, the decimal separator is a point “.” and the variable
separator in a CSV file is a comma “,”. In other countries, the decimal separator is a
comma “,” and the variable separator is a semi-colon “;”. The read.csv() function is
used for the first format and the read.csv2() function is used for the second format.

The file fem.csv contains the FEM dataset in CSV format. Inspect the file to work out which
format is used, and read it into R.

On Microsoft Windows, you can copy values directly from an open Excel spreadsheet using the
clipboard. Highlight the cells you want to copy in the spread sheet and select copy from the
pull-down edit menu. Then type read.table(file="clipboard") to read the data in. Beware,
however, that the clipboard on Windows operates on the WYSIWYG principle
(what-you-see-is-what-you-get). If you have a value 1.23456789 in your spreadsheet, but have
formatted the cell so it is displayed to two decimal places, then the value read into R will be the
truncated value 1.23.
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1.2.6 Binary data

The foreign package allows you to read data in binary formats used by other statistical packages.
Since R is an open source project, it can only read binary formats that are themselves “open” in
the sense that the standards for reading and writing data are well-documented. SAS is an
important example. R cannot read SAS datasets. However, the SAS XPORT format is well
documented and has been adopted as a data interchange format by the US Food and Drug
Administration http://www.sas.com/govedu/fda/faq.html. Hence there is a function in the
foreign package for reading SAS XPORT files.

The file fem.dta contains the FEM dataset in the format used by Stata. Read it into R with

> library(foreign)
> fem5 <- read.dta("fem.dta")
> head(fem5)

The Stata data set contains value and variable labels. Stata variables with value labels are
automatically converted to factors.

There is no equivalent of variable labels in an R data frame, but the original variable labels are
not lost. They are still attached to the data frame as an invisible attribute, which you can see with

> attr(fem5, "var.labels")

A lot of meta-data is attached to the data in the form of attributes. You can see the whole list of
attributes with

> attributes(fem5)

or just the attribute names with

> names(attributes(fem5))

1.2.7 Summary

In this exercise we have seen how to create a data frame in R from an external text file. We have
also reviewed some common mistakes that result in garbled data.

The capabilities of the foreign package for reading binary data have also been demonstrated
with a sample Stata data set.

http://www.sas.com/govedu/fda/faq.html
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1.3 Tabulation in R

1.3.1 Introduction

R and its add-on packages provide several different tabulation functions with different capabilities.
The appropriate function to use depends on your goal. There are at least three different uses for
tables.

The first use is to create simple summary statistics that will be used for further calculations in
R. The functions table(), tapply(), by(), and xtabs() will do this. The appearance of these
tables is, however, quite basic, as their principal goal is to create new objects for future
calculations.

A quite different use of tabulation is to make “production quality” tables for publication. You
may want to generate reports for publication in paper form, or on the World Wide Web. The
package xtables provides this capability, but it is not covered by this course.

An intermediate use of tabulation functions is to create human-readable tables for discussion
within your work-group, but not for publication. The Epi package provides a function
stat.table() for this purpose.

1.3.2 Basic contingency tables

The bdendo data set in the Epi package contains data on a case-control study of endometrial
cancer. Type

> library(Epi)
> data(bdendo)

to create a copy of the data frame bdendo in your work space. Use the functions str() and
head() to inspect the data frame.

The study concerns 63 cases of endometrial cancer that occurred in a retirement community in
Los Angeles between 1971 and 1975. Each case was matched with 4 healthy controls, who were
also living in the community at the time of the case.

The table() function can be used to create contingency tables. The following table
cross-tabulates case-control status (d) with an indicator of whether the women had used estrogens
(est)

> table(bdendo$d, bdendo$est)

The tables produced by the table() function are very plain. If you want some summary
statistics, use the twoby2() function from the Epi package.

> twoby2(bdendo$d, bdendo$est)

Tables in R are objects that can be passed on to other functions for further manipulation.

> est.tab <- table(bdendo$d, bdendo$est)
> pctab(est.tab)

The pctab() function takes a contingency table as an argument and turns it into a table of
percentages.

You can also pass the table to the fisher.test() function which will print some summary
statistics for the association between the two variables.

> fisher.test(est.tab)
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1.3.3 Manipulating contingency tables

The UCBAdmissions data set is a ready-made contingency table that comes as part of the
“datasets” package in R. You just need to type
> UCBAdmissions

to see it, and help(UCBAdmissions) to see a description of the data. This is a three-way
contingency table of all prospective students who applied to the University of California, Berkeley
(UCB) in 1973, classified by sex, department and whether they were accepted or rejected. The
five departments are given arbitrary labels “A” to “E”.

1.3.3.1 Flattening tables

The default method of printing three-way (or higher-dimensional) tables is not very easy to
comprehend. The ftable() function “flattens” contingency tables so that they are
human-readable
> ftable(UCBAdmissions)

A flattened contingency table is an object in its own right:
> ucbflat <- ftable(UCBAdmissions)
> ucbflat

An ftable object can even be written to file
> write.ftable(ucbflat, file = "ucb.txt")

Open up the file ucb.txt in a text editor to view its contents (it will be in the working directory
of your R session). You can also read an ftable from a file
> ucbflat2 <- read.ftable("ucb.txt")

The function all.equal() can be used to test whether two R objects are the same or not. Use
this to ensure that ucbflat and ucbflat2 are the same.

Flattened tables can also be coerced back to three-dimensional contingency tables
> as.table(ucbflat2)

Use the all.equal() function again to ensure that the three dimensional table you have
produced is the same as the original UCBAdmissions data.

1.3.3.2 Coercing tables to data frames

Another way of converting a three-dimensional table into a two-dimensional structure is to turn it
into a data frame
> ucb.frame <- as.data.frame(UCBAdmissions)
> ucb.frame

This creates a new data frame with one variable for each of the classifying factors and an extra
variable “Freq” for the frequency counts.

We can create collapsed contingency tables from this data frame using the xtabs() function
> xtabs(Freq ~ Gender + Admit, data = ucb.frame)

This function uses a formula interface to create a table. It sums over the value of Freq within
cells defined by cross-classifying Gender and Admit. Note that xtabs() has a data argument
which tells it where to look for variables. This makes it easier to use than the table() function.

Use the pctab() function to turn this contingency table into a table of percentages. What does
this tell you about the relative success rates of the two genders applying to UCB in 1973?
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1.3.4 Mantel-Haenszel testing on tables

The reason why we are using the UCBAdmissions data set (even though it is not an
epidemiological example) is because it is a nice example of confounding. Females are more often
rejected than males. The question is whether this is due to sex discrimination.

Use the xtabs() and pctab() functions to find

1. the percent of all applicants rejected by each department

2. the distribution of applicants among departments separately for males and females

These tables suggest that the higher rejection probability for females could be the result of
confounding by department.

The function mantelhaen.test() does Mantel-Haenszel testing for the independence of two
factors within strata defined by a third factor. One way to call a function is to supply, as a single
argument, a 3-dimensional contingency table, for which the first two dimensions are the factors of
interest.

Apply the function mantelhaen.test() to the original UCBAdmissions three-way table to see if
gender is associated with acceptance within strata defined by department.

For 2× 2 tables, the function mantelhaen.test() not only gives a p-value, but also a summary
odds ratio and 95% confidence interval.

There is no significant association between gender and admission after controlling for
department. The explanation for the higher success rate of male candidates is that they were
more likely to apply for departments with a higher acceptance probability. A nice way to see this
visually is with a mosaic plot.

> mosaicplot(UCBAdmissions, sort = c(3, 2, 1))

The argument sort determines what order the margins of the table are taken in. Change the
order of the sort argument to display other mosaic plots, and try to interpret them.

1.3.5 Tables of summary statistics

The stat.table() function in the Epi package provides more printer-friendly tables than the
functions provided by base R. The stat.table() function can be used to produce both
contingency tables and tables of summary statistics.

1.3.5.1 One-way tables

You will need to use the data set nickel which is contained in the Epi package.

> data(nickel)

This data set is an occupational cohort of workers in the nickel refining industry. Each of the 679
subjects has a numeric exposure index, exp, based on their job history, which estimates their
life-long exposure to nickel. Create a new variable exp4 that classifies the exposure into four
categories

> nickel$exp4 <- cut(nickel$exp, breaks = c(0, 0.5, 4.5, 8.5, Inf),
+ include.lowest = TRUE, right = FALSE)

The simplest table is created by

> stat.table(index = exp4, data = nickel)
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This creates a count of individuals, classified by levels of the factor exp4. Compare this table with
the equivalent one produced by the table() function. Note that stat.table() has a data
argument that allows you to use variables in a data frame without attaching it.

You can display several summary statistics in the same table by giving a list of expressions to
the contents argument:

> stat.table(index = exp4, contents = list(count(), percent(exp4)),
+ data = nickel)

Only a limited set of expressions are allowed: see the help page for stat.table() for details.
You can also calculate marginal tables by specifying margin=TRUE in your call to

stat.table(). Do this for the above table. Check that the percentages add up to 100 and the
total for count() is the same as the number of rows of the data frame nickel.

1.3.5.2 Improving the Presentation of Tables

The stat.table() function provides default column headings based on the contents argument,
but these are not always very informative. Supply your own column headings using a tagged list
as the value of the contents argument:

contents = list("N" = count(), "(%)" = percent(exp4))

This improves the readability of the table. It remains to give an informative title to the index
variable. You can do this in the same way: instead of giving exp4 as the index argument to
stat.table(), use a named list:

index = list("Years of exposure" = exp4)

1.3.5.3 Cases, Follow-up and Rates

The above examples illustrate the basic features of stat.table(). However, our main interest in
the Welsh nickel-smelter’s study, is not to count subjects, but to evaluate the risk with years of
exposure in “high-risk” occupations.

Add two new variables, one indicating death from lung cancer (d.lung) and one measuring the
follow-up time in years.

> nickel <- transform(nickel, d.lung = icd %in% c(162, 163), flwupt = ageout -
+ agein)

A count of cases and follow-up time can be created using the following contents argument:

contents = list(sum(d.lung), sum(flwupt))

Create a table with these contents, providing your own informative labels. To calculate rates, a
special function ratio() is provided. A call to ratio(d, y, scale) calculates scale * sum(d)
/ sum(y) within categories defined by the index variable. To calculate incidence rates per
100,000 person-years we therefore use.

contents = ratio(d.lung, flwupt, 100000)

Add an extra column to your table giving incidence rates, in addition to number of cases and
follow-up time.
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1.3.5.4 Printing tables

Just like every other R function, stat.table() produces an object that can be saved and printed
later, or used for further calculation. You can control the appearance of a stat.table object
with an explicit call to print(my.table)

There are two arguments to the print method for stat.table objects. The width argument
specifies the minimum column width. Use this to print one of the tables you created above,
preventing long column headers being folded over too many lines.

The second argument to the print method is digits which controls the number of digits
printed after the decimal point. This table

> case.tab <- stat.table(exp4, list(cases = sum(d.lung)), data = nickel)

counts lung cancer cases, but prints them to 2-decimal places. Use the digits argument to print
the table correctly.

Use print.default() instead of print() to print one of your tables. This shows the internal
structure of the table. You may need to know this if you wish to extract data from a stat.table
object.

1.3.6 Summary

In this exercise we have seen that tables in R are also objects which can be passed to other R
functions for further analysis. Table objects can be transformed into other objects without loss of
information.

The stat.table() function in the Epi package provides print-friendly tables of summary
statistics. Further information about the capabilities of stat.table() can be found in the help
page.
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1.4 The measurement of effects

1.4.1 Introduction

Identifying the response variable correctly is the key to analysis. The main types are:

• Metric (a measurement taking many values, usually with units)

• Binary (two values coded 0/1)

• Failure (does the subject fail at end of follow-up, and how long was follow-up)

• Count (aggregated failure data)

The response variable must be numeric.
Variables on which the response may depend are called explanatory variables. They can be

factors or numeric. A further important aspect of explanatory variables is the role they will play
in the analysis.

• Primary role: exposure

• Secondary role: confounder

The word effect is a general term referring to ways of comparing the values of the response
variable at different levels of an explanatory variable. The main measures of effect are:

• Differences in means for a metric response.

• Ratios of odds for a binary response.

• Ratios of rates for a failure or count response.

What other measures of effects might be used?

1.4.2 The function effx

The function effx is intended to introduce the estimation of effects in epidemiology, together
with the related ideas of stratification and controlling, without the need for familiarity with
statistical modelling.

We shall use the births data in the Epi package, which can be inspected with the command
?births. The variables we shall be interested in are bweight (birth weight) and hyp
(hypertension). An alternative way of characterizing birth weight is shown in lowbw which is
coded 1 for babies with low birth weight, and 0 otherwise. Other variables of interest are sex (of
the baby) and gestwks, the gestation time. All variables are numeric, so first we need first to do
a little housekeeping. To save too much typing these commands are in the file births-house.r
which can be run with the command source("births-house.r") (or from your editor):

> source("births-house.r")

Now try

> effx(response = bweight, typ = "metric", exposure = sex, data = births)

The effect of sex on birth weight, measured as a difference in means, is −197. The command

> stat.table(sex, mean(bweight), data = births)
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verifies this (3032.8− 3229.9 = −197.1). The p-value refers to the test that there is no effect of
sex on birth weight. Use effx to find the effect of hyp on bweight.

For another example, consider the effect of sex on the binary response lowbw.

> effx(response = lowbw, typ = "binary", exposure = sex, data = births)

The effect of sex on lowbw, measured as an odds ratio, is 1.43. The command

> stat.table(sex, list(odds = ratio(lowbw, 1 - lowbw, 100)), data = births)

can be used to verify this (16.26/11.39 = 1.427). Use effx to find the effect of hyp on lowbw.

1.4.3 Factors on more than two levels

The variable gest4 is the result of cutting gestwks into 4 groups with boundaries [20,35) [35,37)
[37,39) [39,45). We shall find the effects of gest4 on the metric response bweight.

> effx(response = bweight, typ = "metric", exposure = gest4, data = births)

There are now 3 effects

[35,37) vs [20,35) 856.6
[37,39) vs [20,35) 1360.0
[39,45) vs [20,35) 1668.0

The command

> stat.table(gest4, mean(bweight), data = births)

verifies that the effect of agegrp (level 2 vs level 1) is 2590− 1733 = 857, etc. Find the effects of
gest4 on lowbw. Use the option base=4 to change the baseline for gest4 from 1 to 4.

1.4.4 Stratified effects

As an example we shall stratify the effects of hyp on bweight by sex with

> effx(bweight, type = "metric", exposure = hyp, strata = sex, data = births)

The effects of hyp in the different strata defined by sex are −496 and −380.
Use effx to stratify the effect of hyp on lowbw first by sex and then by gest4.

1.4.5 Controlling the effect of hyp for sex

The effect of hyp is controlled for sex by first looking at the effects of hyp in the two stata defined
by sex, and then combining these effects if they are similar. In this case the effcts were −496 and
−380 which look similar (the test for effect modification is a test of whether they differ
significantly) so we can combine them, and control for sex. The combining is done by declaring
sex as a control variable:

> effx(bweight, type = "metric", exposure = hyp, control = sex, data = births)

The effect of hyp on bweight controlled for sex is −448. Note that it is the name of the control
variable which is passed, not the variable itself. There can be more than one control variable,
control=list(sex,agegrp).

Many people go straight ahead and control for variables which are likely to confound the effect
of exposure without bothering to stratify first, but there are times when it is useful to stratify first.
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1.4.6 Numeric exposures

If we wished to study the effect of gestation time on the baby’s birth weight then gestwks is a
numeric exposure. Assuming that the relationship of the response with gestwks is roughly linear
(for a metric response) or log-linear (for a binary response) we can find the linear effect of
gestwks.

> effx(response = bweight, type = "metric", exposure = gestwks, data = births)

The linear effect of gestwks is 197 g per extra week of gestation. The linear effect of gestwks on
lowbw can be found similarly

> effx(response = lowbw, type = "binary", exposure = gestwks, data = births)

The linear effect of gestwks on lowbw is a reduction by a factor of 0.408 per extra week of
gestation, i.e. the odds of a baby having a low birth weight is reduced by a factor of 0.408 per one
week increase in gestation.

You cannot stratify by a numeric variable, but you can study the effects of a numeric exposure
stratified by (say) agegrp with

> effx(lowbw, type = "binary", exposure = gestwks, strata = agegrp, data = births)

You can control for a numeric variable by putting it in control=.

1.4.7 Checking on linearity

At this stage it will be best to make a visual check using plot. For example, to check whether
bweight goes up linearly with gestwks try

> with(births, plot(gestwks, bweight))

Is the relationship roughly linear? It is not possible to check graphically whether log odds of a
baby being low birth weight goes down linearly with gestation because the individual odds are
either 0 or ∞. Instead we use the grouped variable gest4:

> tab <- stat.table(gest4, ratio(lowbw, 1 - lowbw, 100), data = births)
> str(tab)
> odds <- tab[1, 1:4]
> plot(1:4, log(odds), type = "b")

The relationship is remarkably linear, but remember this is quite crude because it takes no
account of unequal gestation intervals. More about checking for linearity later.

1.4.8 Frequency data

Data from very large studies are often summarized in the form of frequency data, which records
the frequency of all possible combinations of values of the variables in the study. Such data are
sometimes presented in the form of a contingency table, sometimes as a data frame in which one
variable is the frequency. As an example, consider the UCBAdmissions data, which is one of the
standard R data sets, and refers to the outcome of applications to 6 departments by gender. The
command

> UCBAdmissions

shows that the data are in the form of a 2× 2× 6 contingency table for the three variables Admit
(admitted/rejected), Gender (male/female), and Dept (A/B/C/D/E/F). Thus in department A
512 males were admitted while 312 were rejected, and so on. The question of interest is whether
there is any bias against admitting female applicants.

The command
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> ucb <- as.data.frame(UCBAdmissions)
> head(ucb)

coerces the contingency table to a data frame, and shows the first 10 lines. The relationship
between the contingency table and the data frame should be clear. The command

> ucb$Admit <- as.numeric(ucb$Admit) - 1

turns Admit into a numeric variable coded 1 for rejection, 0 for admission, so

> effx(Admit, type = "binary", exposure = Gender, weights = Freq, data = ucb)

shows the odds of rejection for female applicants to be 1.84 times the odds for males (note the use
of weights to take account of the frequencies). A crude analysis therefore suggests there is a
strong bias against admitting females. Continue the analysis by stratifying the crude analysis by
department - does this still support a bias against females? What is the effect of gender controlled
for department?
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1.5 Logistic regression

1.5.1 Malignant melanoma in Denmark

In the mid-80s a case-control study on risk factors for malignant melanoma was conducted in
Denmark (Østerlind et al. The Danish case-control study of cutaneous malignant melanoma I:
Importance of host factors. Int J Cancer 1988; 42: 200-206).

The cases were patients with skin melanoma (excluding lentigo melanoma), newly diagnosed
from 1 Oct, 1982 to 31 March, 1985, aged 20-79, from East Denmark, and they were identified
from the Danish Cancer Registry.

The controls (twice as many as cases) were drawn from the residents of East Denmark in April,
1984, as a random sample stratified by sex and age (within the same 5 year age group) to reflect
the sex and age distribution of the cases. This is called group matching, and in such a study, it is
necessary to control for age and sex in the statistical analysis. (Yes indeed: In spite of the fact
that stratified sampling by sex and age removed the statistical association of these variables with
melanoma from the final case-control data set, the analysis must control for variables which
determine the probability of selecting subjects from the base population to the study sample.)

The population of East Denmark is a dynamic one. Sampling the controls only at one time
point is a rough approximation of indidence density sampling, which ideally would spread out
over the whole study period. Hence the exposure odds ratios calculable from the data are
estimates of the corresponding hazard rate ratios between the exposure groups.

After exclusions, refusals etc., 474 cases (92% of eligible cases) and 926 controls (82%) were
interviewed. This was done face-to-face with a structured questionnaire by trained interviewers,
who were not informed about the subject’s case-control status.

For this exercise we have selected a few host variables from the study in an ascii-file,
melanoma.dat. The variables are listed in table 2.1.

Table 1.1: Variables in the melanoma dataset.

Variable Units or Coding Type Name

Case-control status 1=case, 0=control numeric cc
Sex 1=male, 2=female numeric sex
Age at interview age in years numeric age
Skin complexion 0=dark, 1=medium, 2=light numeric skin
Hair colour 0=dark brown/black, 1=light brown,

2=blonde, 3=red numeric hair
eye colour 0=brown, 1=grey, green, 2=blue numeric eyes
Freckles 1=many, 2=some, 3=none numeric freckles
Naevi, small no. naevi < 5mm numeric nvsmall
Naevi, largs no. naevi ≥ 5mm numeric nvlarge

1.5.2 Reading the data

Start R and load the Epi package using the function library(). Read the data set from the file
melanoma.dat (this should be in your working directory) to a data frame with name mm using the
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read.table() function. Remember to specify that missing values are coded ”.”, and that variable
names are in the first line of the file. View the overall structure of the data frame, and list the
first 20 rows of mm.

1.5.3 House keeping

The structure of the data frame mm tells us that all the variables are numeric (integer), so first you
need to do a bit of house keeping. For example the variables sex, skin, hair, eye need to be
converted to factors, with labels, and freckles which is coded 4 for none down to 1 for many
(not very intuitive) needs to be recoded, and relabelled.

To avoid too much typing and to leave plenty of time to think about the analysis, these house
keeping commands are in a script file called melanoma-house.r. You should study this script
carefully before running it. Note that the file starts by reading in the data, so whenever you run
it you start with the original data set. The coding of freckles can be reversed by subtracting the
current codes from 4. Once recoded the variable needs to be converted to a factor with labels
”none”, etc. Age is currently a numeric variable recording age to the nearest year, and it will be
convenient to group these values into (say) 10 year age groups, using cut. In this case we choose
to create a new variable, rather than change the original.

Look again at the structure of the data frame mm and note the changes. Use the command
summary(mm) to look at the univariate distributions.

This is enough housekeeping for now - let’s turn to something a bit more interesting.

1.5.4 One variable at a time

As a first step it is a good idea to start by looking at the effect of each of the variables, controlled
for age in 10 year age groups and sex. Try

> effx(cc, type = "binary", exposure = skin, list(age.cat, sex), data = mm)

to see the effect of skin colour. Look at the effects of hair, eyes and freckles in the same way.

1.5.5 Generalized linear models

The function effx is just a wrapper for the glm function, and you can show this by fitting the
glm directly with

> m.frk <- glm(cc ~ freckles + age.cat + sex, family = "binomial", data = mm)
> summary(m.frk)
> coef(m.frk)
> exp(coef(m.frk))

Comparison with effx shows the results to be the same. An alternative way of summarizing the
glm is to use

> ci.lin(m.frk, Exp = TRUE)
> round(ci.lin(m.frk, Exp = TRUE, alpha = 0.1)[, c(5, 6, 7)], 2)

Note that in effx the type of response is ”binary” whereas in glm the family of probability
distributions used to fit the model is ”binomial”. There is a 1-1 relationship between type and
family:

metric gaussian
binary binomial
failure/count poisson
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1.5.6 Likelihood ratio tests

There are 2 effects for the 3 levels of freckles, and glm provides a test for each effect separately,
but to test for no effect at all of freckles you need a likelihood ratio test. This involves fitting
two models, one with freckles and one without, and recording the change in deviance.

> m1 <- glm(cc ~ freckles + age.cat + sex, family = "binomial", data = mm)
> m2 <- glm(cc ~ age.cat + sex, family = "binomial", data = mm, subset = !is.na(freckles))
> summary(m1)
> summary(m2)

The change in residual deviance is 1785.9− 1737.1 = 48.8 on 1389− 1387 = 2 degrees of freedom.
Use the function pchisq to find the probability of exceeding 48.8 on 2df. The test is more easily
carried out with

> anova(m2, m1, test = "Chisq")

There are 3 effects for the 4 levels of hair colour (hair). Fit two glm’s and use anova to test for
no effects of hair colour.

1.5.7 Relevelling

From the above you can see that subjects at each of the 3 levels light-brown, blonde, and red, are
at greater risk than subjects with dark hair, with similar odds ratios. This suggests creating a
new variable hair2 which has just two levels, dark and the other three. The Relevel function has
been used for this in the house keeping script.

Use effx to compute the odds-ratio of melanoma between persons with red, blonde or light
brown hair versus those with dark hair. Reproduce these results by fitting an appropriate glm.

1.5.8 Controlling for other variables

When you control the effect of an exposure for some variable you are asking a question about
what would the effect be if the variable is kept constant. For example, consider the effect of
freckles controlled for hair2. We first stratify by hair2 with

> effx(cc, type = "binary", exposure = freckles, control = list(age.cat, sex), strata = hair2,
+ data = mm)

The effect of freckles is still apparent in each of the two strata for hair colour. Use effx to control
for hair2.

> effx(cc, type = "binary", exposure = freckles, control = list(age.cat, sex, hair2),
+ data = mm)

It is tempting to control for variables without thinking about the question you are thereby asking.
This can lead to nonsense.

1.5.9 Stratification using glm

We shall reproduce the output from

> effx(cc, type = "binary", exposure = freckles, control = list(age.cat, sex), strata = hair2,
+ data = mm)

using a glm. To do this requires a nested model formula:

> nested <- glm(cc ~ hair2/freckles + age.cat + sex, family = "binomial", data = mm)
> exp(coef(nested))
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In amongst all the other effects you can see the two effects of freckles for dark hair (1.61 and 2.84)
and the two effects of freckles for other hair (1.42 and 3.15). You can improve this output with
ci.lin. Try this.

> ci.lin(nested, Exp = T)[, c(5, 6, 7)]

1.5.10 Naevi

The distributions of nvsmall and nvlarge are very skew to the right. You can see this with

> with(mm, stem(nvsmall))
> with(mm, stem(nvlarge))

Because of this it is wise to categorize them into a few classes

• small naevi into four: 0, 1, 2-4, and 5+;

• large naevi into three: 0, 1, and 2+.

This has been done in the house keeping script. Look at the joint frequency distribution of these
new variables using with(mm, table( )). Are they strongly associated?

Compute the sex- and age-adjusted OR estimates (with 90% CIs) associated with the number
of small naevi first by using effx, and then by fitting separate logistic regression models including
sex, age.cat and nvsma4 in the model formula. Do the same with nvlar3.

Now fit a glm containing age.cat sex nvsma4 and nvlar3 and place the result in m.nvboth.
What is the interpretation of the coefficients for nvsma4 and nvlar3?

1.5.11 Treating freckles as a numeric exposure

The evidence for the effect of freckles is already convincing. However, to demonstrate how it is
done, we shall perform a linear trend test by treating freckles as a numeric exposure with

> mm$fscore <- as.numeric(mm$freckles)
> effx(cc, type = "binary", exposure = fscore, control = list(age.cat, sex), data = mm)

You can check for linearity of the log odds of being a case with fscore by comparing the model
containing freckles as a factor with the model containg freckles as numeric.

> m1 <- glm(cc ~ freckles + age.cat + sex, family = "binomial", data = mm)
> m2 <- glm(cc ~ fscore + age.cat + sex, family = "binomial", data = mm)
> anova(m2, m1, test = "Chisq")

There is no evidence against linearity (p = 0.22).
It is sometimes helpful to look at the linearity in more detail with

> m1 <- glm(cc ~ C(freckles, contr.cum) + age.cat + sex, family = "binomial", data = mm)
> ci.lin(m1, Exp = TRUE)[c(2, 3), c(5, 6, 7)]
> m2 <- glm(cc ~ fscore + age.cat + sex, family = "binomial", data = mm)
> ci.lin(m2, Exp = TRUE)[2, c(5, 6, 7)]

The use of C(freckles,contr.cum) makes odds ratios versus the previous level not the baseline.
If the logodds are linear then these odds ratios should be the same (and the same as the odds
ratio for fscore in m2.
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1.5.12 Graphical displays

The odds ratios (with CIs) can be graphically displayed using function plotEst() in Epi. It uses
the value of ci.lin() evaluated on the fitted model object. As the intercept and the effects of
age and sex are of no interest, we shall drop the corresponding rows (the 7 first ones) from the
matrix produced by ci.lin(), and the plot is based just on the 1st, 5th and the 6th column of
this matrix:

> plotEst(exp(ci.lin(m.nvboth)[-(1:7), -(2:4)]), xlog = T, vref = 1)

The xlog argument makes the OR axis logarithmic.

1.5.13 Further questions

Investigate some of these questions:

1. Is there still an effect of freckles even for those with dark skins?

2. Is there any effect of eye colour? Is there still an effect after taking account of skin colour?

3. If the main focus of interest is the effect of freckles which variables would you control for?
Fit the appropriate model and summarize your conclusions. Plot the coefficients with their
confidence intervals.
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1.6 Statistical simulation and causal inference

Sometimes it is useful to generate artificial data in order to study, how statistical analysis
procedures work. By solving next exercises you will learn to use basic tools for such statistical
simulation.

1. Generate a sample of size 1000 having a normal distribution with mean 100 and standard
deviation 10 and then obtain summary statistics and a histogram of that sample:

x <- rnorm(1000,100,10)
summary(x)
hist(x)

Now replace sample size 1000 by 20 and repeat the same commands.

2. Generate data from binomial (Bernoulli) distribution, taking values 1 and 0 with
probabilities p and 1− p, respectively. Let’s take p = 0.4:

x <- rbinom(500,1,0.4)
table(x)

3. Now let’s generate another 0/1 variable Y , being dependent on previously generated X, so
that P (Y = 1|X = 1) = 0.2 and P (Y = 1|X = 0) = 0.1.

y <- rbinom(500,1,0.1*x+0.1)
table(x,y)
prop.table(table(x,y),1)

Test the association either by χ2-test or logistic regression:

chisq.test(table(x,y))
summary(glm(y~x,family="binomial"))

4. In the following we are interested in evaluating the effect of an occupational hazard, (job)
on the occurrence of depression. Suppose the following “real” causal relationships hold:

• depression occurs more frequently among females than males.

• females are more likely to select the risk job category.

• persons with depression tend to smoke more frequently (i.e. depression “causes”
smoking).

• persons in the risk job tend to smoke more than other professions (i.e. this job “causes”
smoking).

The task is to simulate a dataset in accordance with this model, and subsequently analyse it
to see how the results come out.

(a) Sketch a causal graph (not necessarily with R) of the situation.

(b) Simulate a dataset (size=2000) by assuming all four variables to be binary, thus use
rbinom(2000,1,p), where p is a vector of length 2000 with the probabilities of value 1.
The latter can be constructed by e.g.:
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linpred <- b0 + b1 * VAR1 + b2 * VAR2
p <- 1 / ( 1 + exp( -linpred )

Here VAR1 and VAR2 are already generated variables (indicators of gender, job, smoking
etc. and b0, b1 and b2 the coeffcients of your choice (b1 and b2 are the true log odds
ratios).

(c) Example R commands to generate the data:

# linear predictors for job and depression
joblp <- -1 + 3*sex
deprlp <- -3 + 2*sex

il <- function(x) 1/(1+exp(-x)) # inverse logit function

# variables job and depression:
job<-rbinom(2000,1,il(joblp))
depr<-rbinom(2000,1,il(deprlp))

# smoking - dependent on job and depression:
smlp <- -2 + 3*depr + 3*job
smok <- rbinom(2000,1,il(smlp))

summary(glm(smok~depr+job,family=binomial))

# look at the data
#(if too many 0-cells, change some coefficients)

ftable(job,smok,sex,depr)

(d) To estimate the effect of job on depression, fit the following logistic regression models
for the outcome “depression” depending on “job”:

• unadjusted model
• adjusted for sex
• adjusted for smoking
• adjusted for sex and smoking

(e) Which (if any) of the models gives an unbiased estimate of the actual causal effect of
interest?

(f) How can the answer be seen from the graph?

(g) Suppose the job actually causes depression. Change the data-generation algorithm and
see, whether you find the right answer by the correct model.

(h) Now suppose the job increases the probability of depression for females, but decreases
the probability of depression for males. Change the algorithm to incorporate that
interaction. What do you see, if you fit a properly adjusted model, but without that
interaction? Can you get the right parameters back when fitting the correct model?
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1.7 Graphics in R

This is an exercise that is designed to introduce you to the basic concepts in the way R graphis is
used, in order to give you practise with the tools needed to do the Graphics meccano exercise.

There are three kinds of plotting functions in R:

1. Functions that generate a new plot, e.g. hist() and plot().

2. Functions that add extra things to an existing plot, e.g. lines() and text().

3. Functions that allow you to interact with the plot, e.g. locator() and identify().

The normal procedure for making a graph in R is to make a fairly simple initial plot and then add
on points, lines, text etc., preferably in a script.

1.7.1 Simple plot on the screen

Load the births data and get an overview of the variables:

> data(births)
> str(births)

Now attach the dataframe and look at the birthweight distribution with

> attach(births)
> hist(bweight)

The histogram can be refined – take a look at the possible options with

> `?`(hist)

and try some of the options, for example:

> hist(bweight, col = "gray", border = "white")

To look at the relationship between birthweight and gestational weeks, try

> plot(gestwks, bweight)

You can change the plot-symbol by the option pch=. If you want to see all the plot symbols try:

> plot(1:25, pch = 1:25)

1. Make a plot of the birth weight versus maternal age with

> plot(matage, bweight)

2. Label the axes with

> plot(matage, bweight, xlab = "Maternal age", ylab = "Birth weight (g)")

1.7.2 Colours

There are many colours recognized by R. You can list them all by colours() or, equivalently,
colors() (R allows you to use British or American spelling). To colour the points of birthweight
versus gestational weeks, try

> plot(gestwks, bweight, pch = 16, col = "green")

This creates a solid mass of colour in the centre of the cluster of points and it is no longer possible
to see individual points. You can recover this information by overwriting the points with black
circles using the points() function.

> points(gestwks, bweight, pch = 1)
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1.7.3 Adding to a plot

The points() function just used is one of several functions that add elements to an existing plot.
By using these functions, you can create quite complex graphs in small steps.

Suppose we wish to recreate the plot of birthweight vs gestational weeks using different colours
for male and female babies. To start with an empty plot, try

> plot(gestwks, bweight, type = "n")

Then add the points with the points function.

> points(gestwks[sex == 1], bweight[sex == 1], col = "blue")
> points(gestwks[sex == 2], bweight[sex == 2], col = "red")

To add a legend explaining the colours, try

> legend("topleft", pch = 1, legend = c("Boys", "Girls"), col = c("blue", "red"))

which puts the legend in the top left hand corner.
Finally we can add a title to the plot with

> title("Birth weight vs gestational weeks in 500 singleton births")

1.7.3.1 Using indexing for plot elements

One of the most powerful features of R is the possibility to index vectors, not only to get subsets
of them, but also for repeating their elements in complex sequences.

Putting separate colours on males and female as above would become very clumsy if we had a 5
level factor instead of sex.

Instead of specifying one color for all points, we may specify a vector of colours of the same
length as the gestwks and bweight vectors. This is rather tedious to do directly, but R allows
you to specify an expression anywhere, so we can use the fact that sex takes the values 1 and 2,
as follows:

First create a colour vector with two colours, and take look at sex:

> c("blue", "red")
> sex

Now see what happens if you index the colour vector by sex:

> c("blue", "red")[sex]

For every occurrence of a 1 in sex you get "blue", and for every occurrence of 2 you get "red",
so the result is a long vector of "blue"s and "red"s corresponding to the males and females. This
can now be used in the plot:

> plot(gestwks, bweight, pch = 16, col = c("blue", "red")[sex])

The same trick can be used if we want to have a separate symbol for mothers over 40 say. First
generate the indexing variable:

> oldmum <- (matage >= 40) + 1

Note we add 1 because ( matage >= 40 ) generates a logic variable, so by adding 1 we get a
numeric variable with values 1 and 2, suitable for indexing:

> plot(gestwks, bweight, pch = c(16, 3)[oldmum], col = c("blue", "red")[sex])
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so where oldmum is 1 we get pch=16 (a dot) and where oldmum is 2 we get pch=3 (a cross).
R will accept any kind of complexity in the indexing as long as the result is a valid index, so

you don’t need to create the variable oldmum, you can create it on the fly:

> plot(gestwks, bweight, pch = c(16, 3)[(matage >= 40) + 1], col = c("blue", "red")[sex])

1. Make a three level factor for maternal age with cutpoints at 30 and 40 years.

2. Use this to make the plot of gestational weeks with three different plotting symbols. (Hint:
Indexing with a factor automatically gives indexes 1,2,3 etc.).

1.7.3.2 Generating colours

R has functions that generate a vector of colours for you. For example,

> rainbow(4)

produces a vector with 4 colours (not immediately human readable, though). There are a few
other functions that generates other sequences of colours, type ?rainbow to see them.

Gray-tones are produced by the function gray (or grey), which takes a numerical argument
between 0 and 1; gray(0) is black and gray(1) is white. Try:

> plot(0:10, pch = 16, cex = 3, col = gray(0:10/10))
> points(0:10, pch = 1, cex = 3)

1.7.4 Interacting with a plot

The locator() function allows you to interact with the plot using the mouse. Typing
locator(1) shifts you to the graphics window and waits for one click of the left mouse button.
When you click, it will return the corresponding coordinates.

You can use locator() inside other graphics functions to position graphical elements exactly
where you want them. Recreate the birth-weight plot, and then add the legend where you wish it
to appear by typing

> legend(locator(1), pch = 1, legend = c("Boys", "Girls"), col = c("blue", "red"))

The identify() function allows you to find out which records in the data correspond to points
on the graph. Try

> identify(gestwks, bweight)

When you click the left mouse button, a label will appear on the graph identifying the row
number of the nearest point in the data frame births. If there is no point nearby, R will print a
warning message on the console instead. To end the interaction with the graphics window, right
click the mouse: the identify function returns a vector of identified points.

1. Use identify() to find which records correspond to the smallest and largest number of
gestational weeks.

2. View all the variables corresponding to these records with

> births[identify(gestwks, bweight), ]
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1.7.5 Saving your graphs for use in other documents

Once you have a graph on the screen you can click on File → Save as , and choose the format
you want your graph in. The PDF (Acrobat reader) format is normally the most economical, and
Acrobat reader has good options for viewing in more detail on the screen. The Metafile format
will give you an enhanced metafile .emf, which can be imported into a Word document by
Insert → Picture → From File . Metafiles can be resized and edited inside Word.

If you want exact control of the size of your plot-file you can start a graphics device before
doing the plot. Instead of appearing on the screen, the plot will be written directly to a file. After
the plot has been completed you will need to close the device again in order to be able to access
the file. Try:

> win.metafile(file = "plot1.emf", height = 3, width = 4)
> plot(gestwks, bweight)
> dev.off()

This will give you a enhanced metafile plot1.emf with a graph which is 3 inches tall and 4 inches
wide.

1.7.6 The par() command

It is possible to manipulate any element in a graph, by using the graphics options. These are
collected on the help page of par(). For example, if you want axis labels always to be horizontal,
use the command par(las=1). This will be in effect until a new graphics device is opened.

Look at the typewriter-version of the help-page with

> `?`(par)

or better, use the the html-version through Help → Html help → Packages → base → P →
par .

It is a good idea to take a print of this (having set the text size to “smallest” because it is long)
and carry it with you at any time to read in buses, cinema queues, during boring lectures etc.
Don’t despair, few R-users can understand what all the options are for.
par() can also be used to ask about the current plot, for example par("usr") will give you the

exact extent of the axes in the current plot.
If you want more plots on a single page you can use the command

> par(mfrow = c(2, 3))

This will give you a layout of 2 rows by 3 columns for the next 6 graphs you produce. The plots
will appear by row, i.e. in the top row first. If you want the plots to appear columnwise, use par(
mfcol=c(2,3) ) (you still get 2 rows by 3 columns).

If you want a more detailed control over the layout of multiple graphs on a single page you
would want to look at ?layout.
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1.8 Graphical meccano

The plot in figure 1.1 is from a randomized study of the effect of Tamoxifen treatment on bone
mineral metabolism, in a group of patients who were treated for breast cancer.

It was originally created by S-PLUS in 1993. The data are available in the file alkfos.csv
(using comma as separator, so read.csv will read it).

The purpose of this exercise is to show you how to build a similar graph using the graphical
features in R. This will take you through a number of fundamental techniques.

To get started, execute the following R code. You probably should not study the code in too
much detail at this point.

alkfos <- read.csv("data/alkfos.csv") # change filename as needed
# express the data as % change from baseline
alkfos.pctchange <- (sweep(alkfos[-1], 1, alkfos$c0, "/") - 1)*100
# Generate by-group statistics for each column
(available <- aggregate(!is.na(alkfos[-1]),list(alkfos$grp), sum))
(means <- aggregate(alkfos.pctchange, list(alkfos$grp), mean, na.rm=TRUE))
(sds <- aggregate(alkfos.pctchange, list(alkfos$grp), sd, na.rm=TRUE))
# aggregate() gives data frames. Convert to matrices and get rid of
# the 1st column (group number)
available <- as.matrix(available[-1])
means <- as.matrix(means[-1])
sds <- as.matrix(sds[-1])
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Figure 1.1: Orginal figure to be reproduced in R
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sems <- sds/sqrt(available)
# These are the examination times
times <- c(0,3,6,9,12,18,24)

Now we start building the plot. It is important that you use some form of script to hold the R
code since you will frequently have to modify and rerun previously entered code.

1. First, plot the means for group 1 (i.e. means[1,]) against times, using type="b" (look up
what this does)

2. Then add a similar curve for group 2 to the plot using points or lines. Notice that the
new points are below the y scale of the plot, so you need to revise the initial plot by setting
a suitable ylim value.

3. It is not too important here (it was for some other variables in the study), but the S-PLUS
plot has the points for the second group offset horizontally by a small amount (.25) to
prevent overlap. Redo the plot with this modification.

4. Add the error bars using segments. (You can calculate the endpoints using
upper <- means + sems etc.). You may have to adjust the ylim again.

5. Add the horizontal line at y = 0 using abline

6. Use xlab and ylab in the initial plot call to give better axis labels.

7. We need a nonstandard x axis. Use xaxt="n" to avoid plotting it at first, then add a
custom axis with axis

8. The counts below the x axis can be added using mtext on lines 5 and 6 below the bottom of
the plot, but you need to make room for the extra lines. Use par(mar=.1 + c(8,4,4,2))
before plotting anything to achieve this.

9. Further things to fiddle with: Get rid of the bounding box. Add Control/Tamoxifen labels
to the lines of counts. Perhaps use different plotting symbols. Rotate the y axis values.
Modify the linewidths or line styles.

10. Finally, try plotting to the pdf() device and view the results using Acrobat Reader. You
may need to change the pointsize option and/or the plot dimensions for optimal
appearance. You might also try saving the plot as a metafile and include it in a Word
document.
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1.9 Survival analysis: The Stroke dataset

In the file stroke.csv you can find data about all registered cases of stroke in Tartu, during
1991-1993. In the dataset there are the following variables:

AGE - age in years
SEX - sex (1-male, 0-female)
DSTR - date of stroke
DIED - date of death
DGN - specific diagnosis, type of stroke (ID - unidentified)
COMA - indicator, whether the patient was in coma after stroke
MINF - history of myocardial infarction of the patient
DIAB - history of diabetes
HAN - history of hypertension

The follow-up was stopped at 01/01/1996. For subjects who were alive at that time, the value
of the variable DIED is missing.

1. Use either read.table or read.csv to load the dataset. Do not forget to
look into the file before to see, what is the field separator.

2. Using the dates of diagnosis and death, define a new variable for time under observation and
the censoring indicator.

3. Plot the Kaplan-Meier estimates of survival (use the function survfit) function for
different specific diagnoses of stroke. Also find the median survival for each of the
diagnoses? Do the medians exist? Why?

4. Plot the log-cumulative hazards for different diagnoses. Do hazards look proportional?

5. Plot the Kaplan-Meier estimates of survival function separately for men and woman. Also
test the difference using the logrank test. What do you conclude?

6. Fit a Cox regression model with a) age only; b) age and sex as covariates. What do you
conclude? How would you make a Kaplan-Meier graph showing both, age and sex effects?

7. Include other significant covariates in the model. For the final model, check, whether the
proportionality assumption is fulfilled for each of the variables, using the cox.zph function.
If not, try whether stratification helps to solve the problem.

8. Plot the predicted survival curves for 75 years old patients for each of the different
sub-diagnoses of stroke.

9. Plot the predicted survival curves for patients with and without hypertension.
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1.10 Interval-censored data: Conversion to diabetes

A largely a-symptomatic disease as diabetes is diagnosed by a test. When persons are in a trial to
prevent diabetes, then tests are taken at presceduled times, so it is only known wheter a person is
diseased or not at the visit dates.

If we consider the disease irreversible, then we effectively assume that the person has been well
(non-diseased) prior to any visit where he is well. Moreover, disease onset must have been
somewhere between the last time the person was seen well and the first time seen ill.

The data we will analyse are from an intervention trial, “Addition” where high-risk persons are
followed for development of diabetes. The intervention is at the level of the general practitioner.
The aim was to see if education of GPs had any effect on diabtes occurrence among their patients.

1. Load the dataset by data(DMconv), and find out what is in there, using str(DMconv) and
?DMconv.

2. Make a histogram for the observed times of last seen well and first seen ill. Remember to
subtract the date of entry to convert dates to time since entry. (Use cal.yr if you want
time in years).

3. Now fit a model without covariates, exploring how the specification of the intervals for the
baseline hazard influence the estimates, e.g. by:

m0 <-
Icens( first.well = cal.yr(doe)-cal.yr(doe), # Timescale is time since entry

last.well = cal.yr(dlw)-cal.yr(doe),
first.ill = cal.yr(dfi)-cal.yr(doe),

data = DMconv,
breaks = c(seq(0,6,2),10) # constant rate in intervals (0:6)

m0

You should try exploring different specifications of breaks=.

4. Extract the resulting estimated rates using summary. Make sure you are aware of the
meaning of the parameters. Plot them as a function of time. (You may want to look at the
graphics option type="s" in ?par).

5. Choose a sensible division of the baseline (3, for example), and fit a multiplicative relative
risk model for the effect for the covariates, by adding the extra parameters:

model = "MRR",
formula = ~ gtol + grp,

Explain the meaning of the parameters.

6. You can get the parameters from the model by using the generic function summary on the
model object. Plot the estimated rates for the four groups of patients.

7. Now try to fit an additive excess risk model (model="AER") with the same covariates. Plot
the estimated rates in each of the four groups using this model.
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8. (Optional — very time-consuming!). The parameters in the additive excess risk model are
rates, so the normal (i.e. symmetric) approximation to their distribution is probably
inaccurate. Therefore it is possible to do boot-strap sampling from the dataset and get more
reliable confidence intervals for the parameter estimates. Try to fit the model using the
parameter boot=10 (not more!), and see how the result looks.

If you embed the function call in system.time() you can see how long it takes:

system.time(
m0 <-
Icens( ..., boot=10 )

)

Then you can decide wheter you want to try with boot=400 over lunch, or tonight when you
go to bed!
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1.11 Time-splitting and SMR: Thorotrast

In the period 1935–50 a contrast medium called Thorotrast was used for cerebral angiography
(X-ray imaging of the brain). This contrast medium contained 232Th, thorium. It turns out that
thorium is not excreted from the body, it is permanently deposited, some 60% in the liver, 20% in
the spleen and some 10% in the bone marrow, and a very small fraction in other organs.

Thorium is an α-emitting radionuclide, i.e. it emits α-rays (i.e. He-nuclei) which is ionizing,
but not partcularly penetrating; it only penetrates 2–3 cell-layers. The half-life of 232Th is
1.4×1010 years, so the patients that have been injected with Thorotrast exposed are exposed to a
constant, small α-radiation for life.

In the study is 990 Thorotrast patients who had a cerebral angiography in the period 1935–50
and 1480 controls who have had a cerebral angiography in the period 1946–63, on similar
indications as the Thorotrast patients, but with another contrast medium.

Persons undergoing cerebral angiography are in may cases seriously ill, they are suspected of
cerebral malformations or tumors, so both the Thorotrast group and the control group have very
high mortality rates, and a pattern of causes of death that differ substantially from the general
population. Especially during the first year after diagnosis there is a very high mortality among
the patients, which is entirely associated to the conditions that have lead to to the cerebral
angiography. Therefore, only the follow-up of both Thorotrast patients and control patients is
only relevant from one year after angiography.

1.11.1 The data sets

There are two sources of data for this exercise, the cohort data and the mortality rates from
Denmark. The dataset with the cohort is loaded by data(thoro); and you can get an explanation
by typing ?thoro. The relevant cause-specific mortality figures for Denmark are loaded by
data(gmortDK). As well as overall mortality (rt), the file also contains the mortality for all
cancers, etc. For a complete explanation, use ?gmortDK.

1. First take a look at the cohort data by e.g. head(thoro) and/or summary(thoro).

Note that the date variables are of class “Date”, i.e. they are stored as days since 1 January
1970, you may want to try for example:

bd <- thoro$birthdat[1:5]
bd
as.numeric(bd)
cal.yr(bd)
(cal.yr(bd)-1970)*365.25

Don’t forget to use ?cal.yr.

2. Declare the follow-up timescales for the dataset, using the Lexis command, e.g.:

thL <- Lexis( entry = list("per"=cal.yr(injecdat),
"age"=cal.yr(injecdat)-cal.yr(birthdat),
"tfi"=0),

exit = list("per"=cal.yr(exitdat)),
status = exitstat,

id = id,
data = thoro )
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str( thL )
head( thL )

Explain the meaning of the variables added by Lexis, and how they relate to the data
variables.

3. Note that thL has got class “Lexis”. Now make a Lexis diagram using the defined object
thL:

plot( thL )

This really uses the function plot.Lexis to make the plot. Use ?plot.Lexis to find the
available options for this command, and try to improve the plots with indications of the
exit-status of the persons in the cohort.

Try to make the life-lines of thorotrast patients and controls different color. Hint: use the
indexing facility for a character vector with color names, see the section “Adding to a plot”
in “A short introduction to R”.

1.11.2 Rates

4. The first analytical task is to look at overall mortality by contrast medium (contrast).

Tabulate the number of deaths and person-years from the study by group using
stat.table(). You will want to convert the dates to fractions of calender years by the
function cal.yr() before computing the follow-up time. Remember to start follow-up one
year after angiography (injecdat) and exclude persons without follow-up beyond one year,
for example by:

thoro$Y <- pmax( 0, cal.yr(thoro$exitdat)-cal.yr(thoro$injecdat)-1 )
thoro$D <- as.numeric( !is.na(thoro$cause) & thoro$Y > 0 )
thoro <- thoro[thoro$Y>0,]
stat.table( contrast,

list( D=sum( D ), Y=sum( Y ), Rate=ratio( D, Y/1000 ) ),
margin=TRUE, data=thoro )

5. Declare the reduced data as “Lexis” using entrydat as date of entry. Use the generated
dataframe to produce the same table by stat.table.

6. Compute 95% confidence intervals for the overall rates and for the rate-ratio between the
two groups.

Try to do this also by fitting a Poisson-model with glm and subsequently use ci.lin to
compute the rates and the RR.

7. (Optional — skip if you are not in the mood for hairy data manipulation):
It is well known that Thorotrast causes liver cancer; try to tabulate the number of liver
cancers by patient group.

One may argue that the deaths caused by liver cancer should not be counted, so repeat the
mortality calculations above after censoring patients at date of liver cancer diagnosis.
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8. An important question is how the mortality rates in the two groups varies with time since
injection.

In order to see if the mortality changes the same way in the two groups, split the follow-up
time by time since injection using splitLexis. Split follow-up in intervals of 1 year during
the first years say 5 years from time since angiography and subsequently every 5 years, eg.
by:

thx <- splitLexis(thL, breaks=list( tfi=c(0:4,seq(5,55,5)) )

Take a look at the split data for example by listing the ovbservations with id==1, (use for
example subset(thx,id==1)). Make sure that you understand how they relate to the
original record.

9. Compute mortality rates in each interval separately for the two groups, using stat.table.
How do the rates in the two groups of patients behave by time since injection?

10. (Optional) Try to show it in a graph. Hint: Assign the result of stat.table() to an object
at take a look at the dimnames() of this object. Then use matplot() to plot the two sets of
rates by taking appropriate subsets of the object.

11. The next step is to model the mortality and the rate-ratio in the two groups by a smooth
function. Therefore, we split the follow-up in small intervals, and fit a model using natural
splines for the mortality as a function of time.

thxx <- splitLexis(thL, breaks=list("tfi"=c(0,seq(1,100,0.5))))
dim( thxx )

In order to do so we need a quantitative variable for each of the intervals, giving the
midpoints of the intervals, as well as a failure indicator:

thxx$m.tfi <- timeBand( thxx, "tfi", "middle" )
thxx$fail <- (status(thxx) > 0)

Remember to consult the help pages for timeBand, status and deltat.

12. A Poisson model can now be used to fit a model for the mortality using natural splines. The
point is to fit a separate mortality curve for each contrast group as a function of time since
injection:

• Splines are available in the splines package, which is loaded by library(splines).

• The definition of splines requires the definition of internal knots (knots) and boundary
knots (Boundary.knots, abbreviated Bo). These are most conveniently defined before
the splines.

• If you want separate splines for each level of contrast, use the interaction operator “:”.

• To get the parametrization as log-rates in each of the groups we remove the overall
intercept from the model by “-1”, and include an intercept with the splines by
intercept=TRUE (or i=T).

• Finally we scale the person-years by 1000, in order to get results in rates per 1000
person-years.
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Now, put these points together in the model specification:

kn <- c(4,8,seq(10,40,10))
bk <- c(1,50)
m1 <- glm( fail ~ -1 + contrast:ns( m.tfi, knots=kn, Bo=bk, i=T ) +

offset( log(lex.deltat)/1000 ),
family=poisson, data=thxx )

Note that we use the midpoint m.tfi as defined above as the regression variable in the
model.

13. Construct a contrast matrix to multiply with (some of) the coefficients of the model, so that
you get the estimated mortality rates at a set of points between 1 and 40 years, say.

You can extract the parameters and multiply them with the contrast matrix in one go by
using the facilities of ci.lin - remember ?ci.lin. This will give you estimated mortalities
at each of the time-points in tpt.

This can be used by pre-multiplying a matrix to the parameters to get estimates of the rates
at a number of points:

tpt <- seq(1,40,0.5)
CM <- ns( tpt, knots=kn, Bo=bk )
mort1 <- ci.lin( m1, ctr.mat=CM, subset="1:ns", Exp=TRUE )
mort2 <- ci.lin( m1, ctr.mat=CM, subset="2:ns", Exp=TRUE )

Because the contrast matrix CM is constructed using the ns with tpt as argument, the result
ci.lin will be log-rates estimated at each of the timepoints in tpt. Now, plot the two sets
of estimated mortalities as nice curves with confidence intervals.

14. Use the contrast matrix to construct estimates of the rate-ratio between the groups at the
same timepoints:

RR <- ci.lin( m1, ctr.mat=cbind(CM,-CM), subset=c("1:ns","2:ns"), Exp=TRUE )

1.11.3 SMR

The follow-up of the two groups of patients are in very different time periods and they have
differing age-distributions. Therefore it is desirable to control for age and calendar time. This
could be done by making an internal comparison of the two contrast groups controlled for age,
sex, and calendar period. However, because of the different calendar periods of follow-up, some
information would be lost. Instead, the comparison can be standardized for age, sex, and period,
using SMRs.

15. The Danish mortality figures are in the dataframe gmortDK. Load it by data(gmortDK) and
inspect it using ?gmortDK. In order to be able to match up the Danish population mortality
rates to the follow-up data these must first be split by current age and calendar time. The
names and coding of the age and period variables must be chosen so that they are the same
in gmortDK and in the split cohort data.

16. Split the dataset, now also along current age and period using cutpoints that correspond to
those from the population data:
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thxx <- splitLexis(thL, breaks=list( age=seq(0,90,5),
per=seq(1938,2038,5),
tfi=seq(0,55,0.5) ) )

17. Unlike other packages there is no need in R to sort the dataframe by variables we merge on,
or to name them explicitly — R will merge on all variables common to the two dataframes,
and only include records in the result that have contributions from both dataframes.

But you must make sure that variables have common names, so define agr and pgr in the
cohort data:

thxx$agr <- timeBand(thxx, "age", "left")
thxx$pgr <- timeBand(thxx, "per", "left")

and then make pgr in the population mortality data match the coding in the cohort data:

gmortDK$pgr <- gmortDK$per + 1900

Now you can merge the the population data with the follow-up data on the variables agr,
pgr and sex (only taking the relevant columns from gmortDK):

th1ap <- merge(thxx, gmortDK[,c("agr","pgr","sex","rt")],
by=c("agr","pgr","sex"))

18. The variable rt from gmortDK has the population mortality rate in cases per 1000
person-years. Multiply this with the person-years (lex.deltat) to form the expected
number of cases, E, say.

19. Compute the observed and expected number of cases as well as the ratio (SMR) by group
using stat.table. Further tabulate this by time since injection.

20. Now use the log of E as offset-variable to estimate in a model where the SMR in each of the
two groups of patients are assumed to depend smoothly on time since injection. Plot the
SMR for each of the groups, and the ratio of SMRs as a function of time since injection.
(This is parallel to what you did with the rates).

21. Do the ratios of SMRs differ substantially from the rate ratios obtained without using the
reference rates?

22. (Open-ended and complicated): How would you go about controlling potential confounding
by age and calendar time without using SMR? Fit a model where the rate-ratio between
thorotrast patients and controls is included as a separate term. Fit the same model using an
SMR-analysis and compare the results.
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1.12 Matched case-control study: Salmonella Typhimurium

In the fall of 1996 an unusually large number of Salmonella Typhimurium cases were recorded in
Fyn county in Denmark. The Danish Zoonosis Centre set up a matched case-control study to
investigate the source of the infection. Cases and two age-, sex- and residency-matched controls
were telephone interviewed about their food intake during the previous two weeks.

The data from this study are in the dataframe S.typh, which can be accessed after loading the
survival package by typing data(S.typh). A description of the variables can be seen on the
help page for the S.typh dataset.

1. Examine the effect of pork on the risk of S.typh infection, using coxph. Remember to use
library(survival) before using coxph.

Alternatively you may use clogit, which is just a wrapper for coxph, albeit using the
algorithm in a slightly less efficient way.

2. Look through the other food exposure variables and find out if any of them have a strong
association with the outcome.

3. You should have found in question 2 that plant7 is a risk factor, while fruit is protective.
Two questions that this finding raises are

(a) What is the effect of each variable adjusted for the other in a main effects model?

(b) What is the effect of plant7 stratified by fruit and vice versa, that is, the effect of
fruit stratified by plant7?

For (a), fit the relevant main effects model. Interpret the parameters and make a note of the
results.

One possibility for part (b), for example, is that the effect of eating meat from plant7 on
the risk of S.typh depends on whether or not the person ate fruit. Is this an interaction
model? How would you parametrise the model to address this question? (Remember the
I() function). Fit each of the stratified models and interpret the results.

4. A third alternative in addition to the main effects and stratified models of question 3 is a
model featuring an interaction between the two variables fruit and plant7. One way of
studying the interaction of these two factors is to create a new variable with four levels
corresponding to the four possible combinations of the two levels of plant7 and the two
levels of fruit, using plant7:fruit in the model. Try this and see what happens.

If you want the lowest risk category, i.e. plant7==0 and fruit==1 as the reference category
in the interaction model, you must reparametrise. Do that now and fill in the right hand
table below, using the output from the original parametrisation of the interaction model to
fill out the left hand table below.

How do the results from this analysis compare to the ones that you found in question 3? In
particular, does the interaction model provide a better fit to the data than the main effects
model?
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log(OR) fruit
plant7 0 1

0

1

log(OR) fruit
plant7 0 1

0 0

1

5. How would you report the results? (In other words, what model do you prefer and how
would report the estimates from that model?). Fill in the tables below.

log(OR) fruit
plant7 0 1

0

1

OR (95% c.i.) fruit
plant7 0 1

0 1

1
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1.13 Case-cohort study of congenital malformations

The purpose of this exercise is to study mortality from malformations for children and youth after
the first year of life. The data we will use are from the Norwegian Birth Registry and concern the
1.27 million children born in Norway in the period 1967-1989. The data on births are matched to
the registry on causes of deaths, and deaths that are due to malformations are recorded.

We will in our analyses use information on all the 672 deaths due to malformations (“cases”) as
well as information on a subcohort of 1270 children sampled at random among all the 1.27 million
children born in the period. (One of the cases turned out to be a subcohort member.) The
variables in the data set are:

sex sex of the child (1=boy; 2=girl)

wgt birth weight in grams

mage mother’s age in years at birth

age child’s age in years at death or censoring

sta status (1=dead from malformations; 0=censored)

subc subcohort status (1=member; 0=not member)

Read the data in the file “malform.txt” into R and name the resulting data frame malform.

1.13.1 Exploring the data

Explore the distribution of maternal age, birth weight and sex using graphical and tabular
methods. Create factor variables for birth weight and sex by the cut function using suitable
break points.

NB You should add these derived variables to the data frame malform. If you write them to the
global environment you will have difficulty in section 1.13.3.

1.13.2 Delaying entry for cases

The fundamental problem with case-cohort sampling is that the cases contribute too much
follow-up time, relative to the subjects in the subcohort. There are two ways around this.

The first method is to pretend that cases only enter the cohort fractionally before they become
a case. In this example, we will assume that cases enter the cohort half a day (1/730th of a year)
before they die.

1. Create a new variable age.entry that takes the value 0.99 for subjects in the subcohort and
age - 1/730 for the other subjects. (The study only includes cases occurring after the first
year of life, but due to rounding error, the first case occurs at age 0.999).

2. Do a Cox regression, analysing the effects of maternal age or birthweight. To get correct
estimates define late entry with the age.entry variable. Use the robust option to coxph to
get correct standard errors.

3. Compare the results with a naive Cox regression that ignores the fact that the data come
from a case-cohort sample, and treats them like a small cohort. The estimates from the
naive model are attenuated. Why?

4. Do further modelling with all three risk factors and decide on a final model.
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1.13.3 Using an offset

The second method of correcting the Cox regression is to downweight the contribution of the cases
using an offset term. A small complication is that a case which occurs in the subcohort has to
appear twice in the data set: once where it appears down-weighted, and once where it does not.

1. Create a unique identifier variable id and add it to the the malform data frame.

2. Create a data frame malform.cases containing only the cases. (hint: subset). Add an
extra variable dummy taking the value −100

3. Create a data frame malform.subcohort containing only the subjects in the subcohort.
The status variable should be reset to 0 (censored) for these subjects. Add an extra variable
dummy taking the value 0.

4. Combine the data frames malform.cases and malform.subcohort to form a new data
frame malform2 (hint: rbind).

5. Fit a Cox regression to the data frame malform2. In order to fit the model correctly and get
the correct variance estimate you must add the terms + offset(dummy) + cluster(id) to
the formula in coxph. The cluster term automatically gives robust standard errors, so there
is no need to set robust=TRUE.

1.13.4 Advanced topic: The Self-Prentice variance estimator

The Self-Prentice estimate of the variance requires some extra computation.
First create a backup copy of the variance

if (is.null(cox.fit$naive.var)) {
cox.fit$naive.var <- cox.fit$var

}

where cox.fit is the output from coxph. Then calculate the variance as follows:

dfb <- as.matrix(resid(cox.fit,type="dfbeta"))
d2 <- dfb[malform$subc==1,]
alpha <- 0.001 #Sampling proportion for subcohort
cox.fit$var <- cox.fit$naive.var + (1-alpha)*crossprod(d2)
summary(cox.fit)

Compare the result with the previous variance estimate.
Put this sequence of commands in a function, so that you can reapply it without having to type

all the commands again.
The Self-Prentice variance estimator uses extra information – the sampling fraction for the

subcohort – and therefore should be more accurate than the other method. True or false?
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1.14 Multi-State Markov Models

1.14.1 Introduction

The Multi-State Markov transition model is a generalization of the Poisson regression model for
diseases that have multiple diagnostic states, instead of a simple dichotomy between “diseased”
and “healthy”. Follow-up studies for such diseases generally create “panel data”, in which the
disease state of each subject is observed only intermittently, typically at a clinical visit where a
diagnostic examination is carried out. Transitions between disease states are therefore
interval-censored. There may also be uncertainty about the quality of the disease classification.
So-called “hidden” Markov models make a distinction between the true disease state and the
observed one, in order to examine the effect of diagnostic misclassification.

The msm package by Christopher Jackson allows you to fit multi-state Markov models. In
addition to the online help, there is an introductory manual for msm in PDF format, which is
installed with the package. This practical uses examples taken from the manual, but only shows a
selection of the capabilities of the msm package.

1.15 The heart data set

The data frame heart is provided with the msm package. It describes the follow up history of 622
patients following a heart transplant, monitoring the development of a post-transplant
complication called coronary allograph vasculopathy (CAV). You can make it available by typing

> data(heart, package = "msm")

and see a description of the contents with help(heart, package="msm"). The reason we are
using the package argument here is that there is another, completely different data set called
“heart” in the survival package. If both msm and survival packages are loaded, and you do not use
the package argument, then you will get whichever one is first on your search path.

We are concerned with modelling the variable state which takes values from 1 to 4:

1. healthy

2. mild CAV

3. severe CAV

4. death

and how this evolves with time since transplant (variable years).
Before fitting any models, you should spend some time exploring the data in a more informal

way. Here is a list of possible questions:

• How old were the subjects when they had their transplant?

• How many were male and how many were female?

• How many visits did the subjects have?

• How lonng were they followed up for?

• What is the interval between visits?

The statetable.msm() function tabulates the transitions that are observed between
consecutive clinical visits.
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> library(msm)
> statetable.msm(state, subject = PTNUM, data = heart)

How many deaths occurred in total?
If we were only interested in mortality, and not CAV, we could treat this as a survival analysis

problem. Create a new data frame containing only the last visit of each subject. Plot a
Kaplan-Meier curve of post-transplant survival.

This analysis is incomplete, since CAV may be an important predictor of mortality. The msm
package can be used to take this into account.

1.15.1 Fitting a multi-state model

The first task in fitting a multi-state model is to define which transitions are permitted. This can
be done by creating a square matrix taking value 1 for the permitted transitions and 0 for the
forbidden ones.

qmat0 <- matrix(c(0,1,0,1,
1,0,1,1,
0,1,0,1,
0,0,0,0),

nrow = 4, ncol = 4, byrow=TRUE,
dimnames=list(from=1:4,to=1:4))

Print this matrix. Draw a graph, by hand, with four nodes, representing the states, and arrows
between nodes representing the allowed transitions.

A crude estimate of the transition rates can be made with

> qmat1 <- crudeinits.msm(state ~ years, subject = PTNUM, data = heart,
+ qmatrix = qmat0)
> print(qmat1)

This function ignores the interval-censoring in the data by assuming that transitions occur at the
time of clinical visits. As the function name suggests, it is designed to provide initial values for
the model.

The model itself is fitted with a similar function call.

> heart.msm <- msm(state ~ years, subject = PTNUM, data = heart,
+ qmatrix = qmat1, death = 4)

By giving the argument death=4, we specify that state 4 is a special state, whose transition times
are not interval censored: unlike the other states, the time of transition to state 4 (i.e. time of
death) is known exactly.

The argument qmatrix has a dual purpose: it specifies which transitions are allowed and gives
initial values for the transition intensities.

Print the heart.msm object and use the summary function. The output may not be especially
useful, so some extractor functions are provided to abstract useful statistics from the output:

• sojourn.msm(heart.msm) gives the mean sojourn time for each state. This means the
amount of time spent in each disease state before moving on to the next one.

• plot(heart.msm) Plots parametric survival curves, stratified by disease state. These show
how more severe CAV is associated with higher mortality. Compare these curves with the
Kaplan-Meier estimate you previously plotted.
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• pmatrix.msm(heart.msm, t) creates the transition probability matrix for a time interval t.
If P is the transition matrix then Pij(t) gives the probability of a subject being in state j at
time t, given that they were in state i at time 0. Use this to calculate the proportion of
transplant patients that we expect to be healthy 1, 5, and 10 years after transplant.

1.15.2 Adding covariates

We shall consider whether transition rates are different for males and females. Before doing so,
save the estimated transition intensity matrix from the previous model, to act as a new set of
initial values

> qmat2 <- qmatrix.msm(heart.msm)$estimate

To examine the effect of sex, supply a formula to the covariate argument

> heart.msm.sex <- msm(state ~ years, subject = PTNUM, data = heart,
+ qmatrix = qmat2, death = 4, covariate = ~sex)

Then

> hazard.msm(heart.msm.sex)

gives hazard rate ratios, and confidence intervals, for the allowed transitions.

1.15.3 Applying constraints

By default, the effect of the covariates is assumed to be different for each possible transition. In
this case, there are 7 possible transitions, and therefore 7 hazard rate ratio estimates. We can also
simplify the model, to answer some more clinically relevant questions:

1. Is the mortality rate higher (or lower) for females?

2. Is the rate of CAV progression higher?

3. Is the rate of CAV recovery higher?

This is done by supplying a constraint argument

constraint = list(sex = c(1,2,3,1,2,3,2))

The constraint argument gives a numeric label to the allowed transitions (reading across the
rows of the qmatrix), and constrains the effect of the covariate to be the same for all transitions
with the same label. The labels are shown as super-scripts below:

0 11 0 12

13 0 11 12

0 13 0 12

0 0 0 0


Fit this constrained model to the heart data and answer the above questions.
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1.15.4 A misclassification model

So far, we have assumed that any observed improvements in CAV state are real (i.e. transitions
from state 2 to 1 and from state 3 to 2 really do take place). An alternative interpretation is that
CAV is a progressive disease, which can only get worse with time, and that any apparent
improvements in disease status are due to misclassification. The msm package can also fit such
models.

Consider a model in which improvements in disease status are no longer possible. Draw a new
graph for this model, and write down a new matrix, equivalent to qmat0 with 1 for allowed
transitions and 0 for the forbidden transitions. Create a new qmatrix of initial values for the new
model, using the estimated transition intensities of the previous model. You also need to create a
misclassification matrix ematrix with the following values

0 0.1 0 0
0.1 0 0.1 0
0 0.1 0 0
0 0 0 0


The ematrix has a similar interpretation as qmatrix, but applies to misclassification probabilities
instead of transition intensities. Zero values indicate impossible misclassification. The fourth row
consists entirely of zeros, showing that death cannot be misclassified. Likewise, the fourth column
is zero, indicating that states 1-3 cannot be misclassified as death. Non-zero values indicate
possible misclassifications, and also supply initial values for the model. Hence, for example: if the
true disease state is 1 (healthy), we may observe state 2 (mild CAV) instead. Initially, the
misclassification probability is assumed to be 10%, but the model will calculate a new estimate
during the course of model fitting.

Fit a new model, without covariates, using the new qmatrix and with an extra argument
ematrix = ematrix. Note that the default method for calculating the maximum likelihood
estimates does not work particularly well on this problem. You can improve the estimates by
giving the optional arguments method="BFGS" and use.deriv=TRUE to the msm() function. Use
the ematrix.msm function to extract the estimated misclassification matrix. Plot the new survival
curves and compare them with the previous ones.

1.15.5 Summary

Further information about the msm package and its capabilities can be found in the msm manual.
This is a PDF document that can be viewed with the R function call.

> RShowDoc("msm-manual", package = "msm")
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1.16 Competing risks: The Danish Thorotrast study

In the period 1935–50 a contrast medium called Thorotrast was used for cerebral angiography
(X-ray imaging of the brain). This contrast medium contained 232Th, thorium. It turns out that
thorium is not excreted from the body, it is permanently deposited, some 60% in the liver, 20% in
the spleen and some 10% in the bone marrow, and a very small fraction in other organs.

Thorium is an α-emitting radionuclide, i.e. it emits α-rays (i.e. He-nuclei) which is ionizing,
but not partcularly penetrating; it only penetrates 2–3 cell-layers. The half-life of 232Th is
1.4×1010 years, so the patients that have been injected with Thorotrast exposed are to a
constant, small α-radiation for life.

A number of studies of persons subjected to Thorotrast have been conducted (Japan, Germany,
Protugal, Sweden and Denmark). The data used in this workshop comes from one of the largest
studies, the Danish, which incorporates 999 exposed patients injected with Thorotrast between
1935 and 1947, and 1480 controls who have had a cerebral angiography in the period 1946–63, on
similar indications as the Thorotrast patients.

Persons undergoing cerebral angiography are in may cases seriously ill, they are suspected of
cerebral malformations or tumors, so both the Thorotrast group and the control group have very
high mortality rates, and a pattern of causes of death that differ much from the general
population. Especially during the first year after diagnosis, there is a very high mortality among
the patients, which is entirely associated to the conditions that have lead to to the cerebral
angiography. Therefore, the follow-up of both Thorotrast patients and control patients started
one year after the angiograpy, at which time 811 Thorotrast patients and 1236 control patients
were alive.

Since the Thorotrast patients recieve a continuous dose to the liver they have very high rates of
liver cancer. All 127 liver cancers except 8 have been classified as one of three different subtypes:
hepatocellular carcinoma, cholangiocellular carcinoma and haemagiosarcoma.

1.16.1 Cumulative dose

Thorium in the form of Thorotrast has a tendency to form small “lumps” when it deposits in the
liver. Because of the limited range of the α-rays this causes the radiation dose per time to be less
than proportional to the injected dose, because some of the emitted particles never reach beyond
the “lump”. It has been estimated that this give rise to the following conversion factors between
injected volume and liver dose:

Inj. volume Liver dose rate
(ml) (Gy/year/dl)

1–9 1.40
10–19 1.25
20–29 1.10
30–39 0.95
40–49 0.85
50–59 0.76
60–69 0.72
70–79 0.69
80–99 0.65

The relationship between injected volume v (mea-
sured in dl) and effective radiation dose rate ρ (in
Gray/year/dl) can be quite well approximated by the
function:

ρ = 1.502− 1.937× v + 1.109× v2

so the annual dose δ (in Gray/per year) is approxi-
mately:

δ = (1.502− 1.937× v + 1.109× v2)× v
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1.16.2 The data sets

The dataset is available in the Epi package, so you can load the data and inspect it by:
> data(thoro)

This will load the dataframe thoro with information about 2470 cases of cerebral angiography.
See the details and variable description on the help page using ?thoro.

1.16.3 Competing risks: Tumour histology

1. Now, we will look at the incidence rates of the three different histological subtypes of liver
cancer. There are no cases of liver cancer in the control group, so this analysis is only of
interest for the Thorotrast group, so start by defining a dataset only containing the
Thorotrast group (contrast==1, for example by:

> tht <- thoro[thoro$contrast == 1, ]

Note that there are some liver cancer cases that it has not been possible to type, hence the
number events for hepcc, chola and hmang do not add up to that for liver.

2. Tabulate the event indicators for these three types of events against the existence of a date
of livercancer diagnosis is.na(liverdat). Then define a date of exit, dox, for the analysis
of these three types of event, using date of death or unknown type of liver cancer as
censoring date:

> tht$dox <- pmin(tht$liverdat, tht$exitdat, na.rm = T)
> tht <- subset(tht, dox > injecdat)

3. Then define the cumulative dose per year:

> tht <- transform(tht, dl = volume/100)
> tht <- transform(tht, gpy = (1.502 - 1.937 * dl + 1.109 * dl^2) *
+ dl)

4. Now create the dataset needed for Cox-analysis of the three competing risks of the three
types of liver cancer.

> hepcc <- tht
> hepcc$event <- hepcc$hepcc
> hepcc$type <- "hepcc"
> chola <- tht
> chola$event <- chola$chola
> chola$type <- "chola"
> hmang <- tht
> hmang$event <- hmang$hmang
> hmang$type <- "hmang"
> th.cmp <- rbind(hepcc, chola, hmang)

Make sure that you understand the mechanics of what goes on in the construction of the
datsets.

5. Now do a stratified Cox-analysis of the three rates, using time since injection as time and
injected dose as covariate:

> library(survival)
> mi <- coxph(Surv(dox - injecdat, event) ~ volume:type + strata(type),
+ data = th.cmp)
> m1 <- coxph(Surv(dox - injecdat, event) ~ volume + strata(type),
+ data = th.cmp)
> anova(mi, m1, test = "Chisq")
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What is the difference between the two models, i.e. what is being tested by anova?

6. Is there any effect of age at entry? Fit the relevant model to answer this question.

7. If we want to assess the effcet of (deterministically) time varying variables we must split
time into intervals of length say 1 year. Note that it is immaterial whether we split time
before or after we duplicate the dataset for competing risk analysis.

However we first must declare the timescales:

> thc.L <- Lexis(entry = list(per = cal.yr(injecdat), tfi = 0),
+ exit = list(per = cal.yr(dox)), exit.status = event, data = th.cmp)
> str(thc.L)

Then we can split the data along the time since injection and compute the midpoint of the
intervals.

> thsplit <- splitLexis(thc.L, breaks = list(tfi = 0:100))
> thsplit$m.tfi <- timeBand(thsplit, "tfi", "middle")

Now make an analysis equivalent to the Cox-analysis, using splines to model the underlying
hazard (remember that a Lexis object allows the use of the extractor functions status()
and deltat):

> Pi <- glm(status(thsplit) ~ ns(m.tfi, kn = seq(5, 40, 5), Bo = c(1,
+ 50), intercept = T):type + volume:type + offset(log(deltat(thsplit))),
+ family = poisson, data = thsplit)
> P1 <- update(Pi, . ~ . - volume:type + volume)
> anova(Pi, P1)

How do the conclusions differ from those from the Cox-model?

8. Now, compute the cumulative dose at the beginning of each interval:

> thsplit$cdos <- thsplit$m.tfi * thsplit$gpy

You may want to also generate the lagged versions, that is variables which at any one time
of follow-up give the cumulative dose as it was, say 10 or 20 years earlier:

> thsplit$l10dos <- pmax(thsplit$m.tfi - 10, 0) * thsplit$gpy

Fit models that allows you to test whether the cumulative dose has different effects on the
three types of liver cancer.

In particular, address the question of whether the effect of cumulative dose is proportional
between the three types of liver cancer.

1.16.4 Competing risks: Probability of liver cancer.

It may be of interest to estimate how large a fraction of the thorotrast patients actually get a liver
cancer.

1. Estimate this proportion by taking the fraction of the patients that actually acquire a liver
cancer (look at the variable liver).

2. Work out the Nelson-Aalen estimators for the cumulative incidence of liver cancer and the
mortality wihtout liver cancer, as a function of time since injection.
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3. Use these two to compute the probability of getting liver cancer before time t = 1, 2, . . . , 50
years after injection. (Use the lung cancer example from the lectures).

Remember to make a plot of it.



Chapter 2

Solutions

There is a chapter for each of the exercises that has been used at the course. For each one there is
also a printout of the R-program that performs the analyses, as well as the graphs produced by
the programs.

2.1 Practice with basic R

Skip this if you are familiar with R.
The main purpose of this session is to give participants who have not had much (or any)

experience with using R a chance to practice the basics and to ask questions.

2.1.1 Probability functions

R has a set of probability functions for calculating the cumulative probability and its inverse
function for calculating quantiles in all the probability distributions you are likely to need. The
cumulative probability functions are

pnorm, pchisq, pbinom, ppois, etc.

and the quantile functions are

qnorm, qchisq, qbinom, qpois, etc.

See help(pnorm), etc., and try

> pnorm(1.96)

[1] 0.9750021

> qnorm(0.975)

[1] 1.959964

1. Find the probability below 1.5 in a Gaussian (normal) distribution.

> pnorm(1.5)

[1] 0.9331928

2. What is the probability between −1.64 and +1.64 in a Gaussian distribution?

> pnorm(1.64) - pnorm(-1.64)

53
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[1] 0.8989948

3. Find the probability below 4.3 in a chi-squared distribution on 1 degree of freedom.

> pchisq(4.3, 1)

[1] 0.9618876

4. Find the probability above 4.3 in a chi-squared distribution on 1 degree of freedom.

> 1 - pchisq(4.3, 1)

[1] 0.03811237

5. What is the probability above 10 in a chi-squared distribution on 5 df?

> 1 - pchisq(10, 5)

[1] 0.07523525

6. What is the 95% quantile in a chi-squared distribution on 1 df?

> qchisq(0.95, 1)

[1] 3.841459

2.1.2 Vectors

1. Create a vector w with components 1, -1, 2, -2

> w <- c(1, -1, 2, -2)

2. Display this vector

> w

[1] 1 -1 2 -2

3. Obtain a description of w using str()

> str(w)

num [1:4] 1 -1 2 -2

4. Create the vector w+1, and display it.

> w + 1

[1] 2 0 3 -1

5. Create the vector v with components (0, 1, 5, 10, 15, ... , 75) using c() and seq().

> v <- c(0, 1, seq(5, 75, 5))
> v

[1] 0 1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

6. Find the length of this vector.

> length(v)

[1] 17
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2.1.3 Data frames

We shall use the births data which concern 500 mothers who had singleton births in a large
London hospital. The outcome of interest is the birth weight of the baby, also dichotomised as
normal or low birth weight. These data are available in the Epi package:

> library(Epi)
> data(births)
> help(births)
> names(births)

[1] "id" "bweight" "lowbw" "gestwks" "preterm" "matage" "hyp"
[8] "sex"

> head(births)

id bweight lowbw gestwks preterm matage hyp sex
1 1 2974 0 38.52 0 34 0 2
2 2 3270 0 NA NA 30 0 1
3 3 2620 0 38.15 0 35 0 2
4 4 3751 0 39.80 0 31 0 1
5 5 3200 0 38.89 0 33 1 1
6 6 3673 0 40.97 0 33 0 2

2.1.4 Referencing parts of the data frame

Typing births will list the entire data frame - not usually very helpful. Now try

> births[1, "bweight"]

[1] 2974

> births[2, "bweight"]

[1] 3270

> births[1:10, "bweight"]

[1] 2974 3270 2620 3751 3200 3673 3628 3773 3960 3405

1. Display the data on the variable gestwks for row 7 in the births data frame.

> births[7, "gestwks"]

[1] 42.14

2. Display all the data in row 7.

> births[7, ]

id bweight lowbw gestwks preterm matage hyp sex
7 7 3628 0 42.14 0 29 0 2

3. Display the first 10 rows of the data on the variable gestwks.

> births[1:10, "gestwks"]

[1] 38.52 NA 38.15 39.80 38.89 40.97 42.14 40.21 42.03 39.33
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2.1.5 Turning a variable into a factor

In R categorical variables are known as factors, and the different categories are called the levels of
the factor. Variables such as hyp and sex are originally coded using integer codes, and by default
R will interpret these codes as numeric values taken by the variables. For R to recognize that the
codes refer to categories it is necessary to convert the variables to be factors, and to label the
levels. To convert the variable hyp to be a factor, try

> births$hyp <- factor(births$hyp)
> str(births)

`data.frame': 500 obs. of 8 variables:
$ id : num 1 2 3 4 5 6 7 8 9 10 ...
$ bweight: num 2974 3270 2620 3751 3200 ...
$ lowbw : num 0 0 0 0 0 0 0 0 0 0 ...
$ gestwks: num 38.5 NA 38.2 39.8 38.9 ...
$ preterm: num 0 NA 0 0 0 0 0 0 0 0 ...
$ matage : num 34 30 35 31 33 33 29 37 36 39 ...
$ hyp : Factor w/ 2 levels "0","1": 1 1 1 1 2 1 1 1 1 1 ...
$ sex : num 2 1 2 1 1 2 2 1 2 1 ...

This makes sure that hyp is now a factor with two levels, labelled "0" and "1" which are the
original values taken by the variable. It is possible to change the labels to (say) "normal" and
"hyper" with

> births$hyp <- factor(births$hyp, labels = c("normal", "hyper"))
> str(births)

`data.frame': 500 obs. of 8 variables:
$ id : num 1 2 3 4 5 6 7 8 9 10 ...
$ bweight: num 2974 3270 2620 3751 3200 ...
$ lowbw : num 0 0 0 0 0 0 0 0 0 0 ...
$ gestwks: num 38.5 NA 38.2 39.8 38.9 ...
$ preterm: num 0 NA 0 0 0 0 0 0 0 0 ...
$ matage : num 34 30 35 31 33 33 29 37 36 39 ...
$ hyp : Factor w/ 2 levels "normal","hyper": 1 1 1 1 2 1 1 1 1 1 ...
$ sex : num 2 1 2 1 1 2 2 1 2 1 ...

1. Convert the variable sex into a factor

> births$sex <- factor(births$sex)

2. Label the levels of sex as "M" and "F".

> births$sex <- factor(births$sex, labels = c("M", "F"))

2.1.6 Frequency tables

When starting to look at any new data frame the first step is to check that the values of the
variables make sense and correspond to the codes defined in the coding schedule. For categorical
variables (factors) this can be done by looking at one-way frequency tables and checking that only
the specified codes (levels) occur. The most useful function for making simple frequency tables is
table. The distribution of the factor hyp can be viewed using

> with(births, table(hyp))

hyp
normal hyper

428 72



Tartu 2007: Solutions Practise with basic R 57

or by specifying the data frame as in

> table(births$hyp)

normal hyper
428 72

For simple expressions the choice is a matter of taste, but with is preferable for more complicated
expressions.

1. Find the frequency distribution of sex.

> table(births$sex)

M F
264 236

> with(births, table(sex))

sex
M F

264 236

2. Find the two-way frequency distrubtion of sex and hyp.

> with(births, table(sex, hyp))

hyp
sex normal hyper
M 221 43
F 207 29

2.1.7 Grouping the values of a numeric variable

For a numeric variable like matage it is often useful to group the values and to create a new factor
which codes the groups. For example we might cut the values taken by matage into the groups
20–24, 25–29, 30–34, 35–39, 40–44, and then create a factor called agegrp with 4 levels
corresponding to the four groups. The best way of doing this is with the function cut. Try

> births$agegrp <- cut(births$matage, breaks = c(20, 25, 30, 35,
+ 40, 45), right = FALSE)
> with(births, table(agegrp))

agegrp
[20,25) [25,30) [30,35) [35,40) [40,45)

2 68 200 194 36

By default the factor levels are labelled [20-25), [25-30), etc., where [20-25) refers to the interval
which includes the left hand end (20) but not the right hand end (25). This is the reason for
right=FALSE. When right=TRUE (which is the default) the intervals include the right hand end
but not the left hand.

Observations which are not inside the range specified in the breaks() part of the command
result in missing values for the new factor. You can specify that you want to cut a variable into a
given number of intervals of equal length by specifying the number of intervals. For example

> births$agegrp = cut(births$matage, breaks = 5, right = FALSE)
> with(births, table(agegrp))
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agegrp
[23,27) [27,31) [31,35) [35,39) [39,43)

16 83 215 150 36

shows 5 intervals of width 4.

1. Summarize the numeric variable gestwks, which records the length of gestation for the
baby, and make a note of the range of values.

> with(births, summary(gestwks))

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
24.69 37.94 39.13 38.72 40.09 43.16 10.00

2. Create a new factor gest4 which cuts gestwks at 20, 35, 37, 39, and 45 weeks, including the
left hand end, but not the right hand. Make a table of the frequencies for the four levels of
gest4.

> births$gest4 <- cut(births$gestwks, breaks = c(20, 35, 37, 39,
+ 45))

3. Create a new factor gest5 which cuts gestwks into 5 equal intervals, and make a table of
frequencies.

> births$gest5 <- cut(births$gestwks, breaks = 5)
> table(births$gest5)

(24.7,28.4] (28.4,32.1] (32.1,35.8] (35.8,39.5] (39.5,43.2]
5 7 27 237 214

2.1.8 Generating new variables

New variables can be produced using assignment together with the usual mathematical operations
and functions. For example

> logbw <- log(births$bweight)

produces the variable logbw in your work space (Global environment), while

> births$logbw <- log(births$bweight)

produces the variable logbw in the births data frame. Logs base 10 are obtained with log10( ).
Logical variables take the values TRUE or FALSE, and behave like factors. New variables can

be created which are logical functions of existing variables. For example

> births$vlow <- births$bweight < 2000
> str(births)

`data.frame': 500 obs. of 13 variables:
$ id : num 1 2 3 4 5 6 7 8 9 10 ...
$ bweight: num 2974 3270 2620 3751 3200 ...
$ lowbw : num 0 0 0 0 0 0 0 0 0 0 ...
$ gestwks: num 38.5 NA 38.2 39.8 38.9 ...
$ preterm: num 0 NA 0 0 0 0 0 0 0 0 ...
$ matage : num 34 30 35 31 33 33 29 37 36 39 ...
$ hyp : Factor w/ 2 levels "normal","hyper": 1 1 1 1 2 1 1 1 1 1 ...
$ sex : Factor w/ 2 levels "M","F": 2 1 2 1 1 2 2 1 2 1 ...
$ agegrp : Factor w/ 5 levels "[23,27)","[27,31)",..: 3 2 3 3 3 3 2 4 4 4 ...
$ gest4 : Factor w/ 4 levels "(20,35]","(35,37]",..: 3 NA 3 4 3 4 4 4 4 4 ...
$ gest5 : Factor w/ 5 levels "(24.7,28.4]",..: 4 NA 4 5 4 5 5 5 5 4 ...
$ logbw : num 8.00 8.09 7.87 8.23 8.07 ...
$ vlow : logi FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE ...
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creates a logical variable vlow (in births with levels TRUE and FALSE, according to whether
bweight is less than 2000 or not. One common use of logical variables is to restrict a command to
a subset of the data. For example, to list the values taken by bweight for women whose babies
have very low birth weight, try

> subset(births, vlow)$bweight

[1] 1203 1780 1946 1663 1546 628 1999 1791 1019 1402 1880 708 1741 981 693
[16] 1570 864 1764 1618 1500 1595 1801 924 1325 1431 1541 1824 1874 1324 1938

to create a new dataframe restricted to women with babies of very low birth weight, try

> births.low <- subset(births, vlow)
> summary(births.low)

id bweight lowbw gestwks preterm
Min. : 22.0 Min. : 628 Min. :1 Min. :24.69 Min. :0.000
1st Qu.:175.8 1st Qu.:1233 1st Qu.:1 1st Qu.:30.71 1st Qu.:1.000
Median :257.5 Median :1558 Median :1 Median :32.64 Median :1.000
Mean :249.6 Mean :1462 Mean :1 Mean :32.75 Mean :0.862
3rd Qu.:326.2 3rd Qu.:1788 3rd Qu.:1 3rd Qu.:35.14 3rd Qu.:1.000
Max. :476.0 Max. :1999 Max. :1 Max. :40.45 Max. :1.000

NA's : 1.00 NA's :1.000
matage hyp sex agegrp gest4 gest5

Min. :25.00 normal:17 M:12 [23,27): 1 (20,35]:21 (24.7,28.4]: 5
1st Qu.:31.00 hyper :13 F:18 [27,31): 6 (35,37]: 4 (28.4,32.1]: 6
Median :34.00 [31,35):13 (37,39]: 3 (32.1,35.8]:13
Mean :33.57 [35,39): 8 (39,45]: 1 (35.8,39.5]: 4
3rd Qu.:36.75 [39,43): 2 NA's : 1 (39.5,43.2]: 1
Max. :41.00 NA's : 1

logbw vlow
Min. :6.443 Mode:logical
1st Qu.:7.117 TRUE:30
Median :7.351
Mean :7.240
3rd Qu.:7.489
Max. :7.600

1. Create a logical variable called early according to whether gestwks is less than 30 or not.
Make a frequency table of early.

> early <- births$gestwks < 30
> table(early)

early
FALSE TRUE
485 5

2. Display the id numbers of women with gestwks less than 30 weeks.

> subset(births, early)$id

[1] 142 181 214 226 275

2.1.9 Using a text editor with R

When working with R it is best to use a text editor to prepare a batch file (or script) which
contains R commands and then to run them from the script. For Windows we recommend using
the text editor Tinn-R, but you can use your favourite text editor instead if you prefer. Start up
the editor and enter the following lines:
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library(Epi)
data(births)
births$hyp <- factor(hyp, labels=c("normal","hyper"))
births$sex <- factor(sex, labels=c("M","F"))

Now save the script and run it. One major advantage of running all your R commands from a
script is that you end up with a record of exactly what you did which can be repeated at any
time. This will also help you redo the analysis in the (highly likely) event that your data changes
before you have finished all analyses.

1. Edit the script to create a factor cutting matage at 20, 25, 30, 35, 40, 45 years, and run just
this part of the script.

2. Edit the script to create a factor cutting gestwks at 20, 35, 37, 39, 45 weeks, and run just
this part of the script.

3. Save and run the entire script.

2.1.10 Working with R

When starting R it is always a good idea to use getwd() to print the working directory. You may
not be where you think you are! The command dir() can be used to see what files you have in
the working directory.

When exiting from R you are offered the chance of saving all the objects in your current work
space. This is not recommended as the work space can fill up with temporary objects, and it is
easy to forget what these are when you resume the session. It is better to build up a script file as
you work, and to run this at the start of a new session.

To save the output from an R command in a file the sink() command is used. For example,

> sink("output.txt")
> summary(births)

id bweight lowbw gestwks
Min. : 1.0 Min. : 628 Min. :0.00 Min. :24.69
1st Qu.:125.8 1st Qu.:2862 1st Qu.:0.00 1st Qu.:37.94
Median :250.5 Median :3188 Median :0.00 Median :39.12
Mean :250.5 Mean :3137 Mean :0.12 Mean :38.72
3rd Qu.:375.2 3rd Qu.:3551 3rd Qu.:0.00 3rd Qu.:40.09
Max. :500.0 Max. :4553 Max. :1.00 Max. :43.16

NA's :10.00
preterm matage hyp sex agegrp

Min. : 0.0000 Min. :23.00 normal:428 M:264 [23,27): 16
1st Qu.: 0.0000 1st Qu.:31.00 hyper : 72 F:236 [27,31): 83
Median : 0.0000 Median :34.00 [31,35):215
Mean : 0.1286 Mean :34.03 [35,39):150
3rd Qu.: 0.0000 3rd Qu.:37.00 [39,43): 36
Max. : 1.0000 Max. :43.00
NA's :10.0000

gest4 gest5 logbw vlow
(20,35]: 31 (24.7,28.4]: 5 Min. :6.443 Mode :logical
(35,37]: 32 (28.4,32.1]: 7 1st Qu.:7.959 FALSE:470
(37,39]:167 (32.1,35.8]: 27 Median :8.067 TRUE :30
(39,45]:260 (35.8,39.5]:237 Mean :8.023
NA's : 10 (39.5,43.2]:214 3rd Qu.:8.175

NA's : 10 Max. :8.424
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first instructs R to re-direct output away from the R terminal to the file "output.txt" and then
summarizes the births data frame, the output from which goes to the sink. While a sink is open all
output will go to it. Opening a file with sink() will overwrite its contents - to append output to
a file, use the append=TRUE option with sink(). To close a sink, use sink() without arguments.

1. Sink output to a file called "output1.txt".

2. Make frequency tables of hyp and sex

3. Make a table of mean birth weight by sex

4. Close the sink

5. From windows, have a look inside the file output1.txt and check that the output you
expected is in the file.

You can save any R object to disc. For example, to save the data frame births try

> save(births, file = "births2.Rdata")

which will save the births data frame in the file births2.Rdata. By default the data frame is
saved as a binary file, but the option ascii=TRUE can be used to save it as a text file. To load the
object from the file use

> load("births2.Rdata")

The commands save() and load() can be used with any R objects, but they are particularly
useful when dealing with large data frames.

2.2 Reading data into R

R 2.5.1
---------------------------------------------
Program: data.R
Folder: C:\Bendix\Undervis\SPE\OLD\2007\pracs\r
Started: torsdag 20. september 2007, 16:35:25
---------------------------------------------
> objects(package:datasets)
Error in try(name) : object "package" not found
[1] "ability.cov" "airmiles" "AirPassengers"
[4] "airquality" "anscombe" "attenu"
[7] "attitude" "austres" "beaver1"
[10] "beaver2" "BJsales" "BJsales.lead"
[13] "BOD" "cars" "ChickWeight"
[16] "chickwts" "co2" "CO2"
[19] "crimtab" "discoveries" "DNase"
[22] "esoph" "euro" "euro.cross"
[25] "eurodist" "EuStockMarkets" "faithful"
[28] "fdeaths" "Formaldehyde" "freeny"
[31] "freeny.x" "freeny.y" "HairEyeColor"
[34] "Harman23.cor" "Harman74.cor" "Indometh"
[37] "infert" "InsectSprays" "iris"
[40] "iris3" "islands" "JohnsonJohnson"
[43] "LakeHuron" "ldeaths" "lh"
[46] "LifeCycleSavings" "Loblolly" "longley"
[49] "lynx" "mdeaths" "morley"
[52] "mtcars" "nhtemp" "Nile"
[55] "nottem" "Orange" "OrchardSprays"
[58] "PlantGrowth" "precip" "presidents"
[61] "pressure" "Puromycin" "quakes"
[64] "randu" "rivers" "rock"
[67] "Seatbelts" "sleep" "stack.loss"
[70] "stack.x" "stackloss" "state.abb"
[73] "state.area" "state.center" "state.division"
[76] "state.name" "state.region" "state.x77"
[79] "sunspot.month" "sunspot.year" "sunspots"
[82] "swiss" "Theoph" "Titanic"
[85] "ToothGrowth" "treering" "trees"
[88] "UCBAdmissions" "UKDriverDeaths" "UKgas"
[91] "USAccDeaths" "USArrests" "USJudgeRatings"
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[94] "USPersonalExpenditure" "uspop" "VADeaths"
[97] "volcano" "warpbreaks" "women"
[100] "WorldPhones" "WWWusage"
> help(Titanic)
> library(Epi)
> data(bdendo)
> fem <- read.table("../data/fem.dat", header = TRUE)
> names(fem)
[1] "ID" "AGE" "IQ" "ANXIETY" "DEPRESS" "SLEEP" "SEX"
[8] "LIFE" "WEIGHT"
> str(fem)
'data.frame': 118 obs. of 9 variables:
$ ID : int 1 2 3 4 5 6 7 8 9 10 ...
$ AGE : int 39 41 42 30 35 44 31 39 35 33 ...
$ IQ : int 94 89 83 99 94 90 94 87 -99 92 ...
$ ANXIETY: int 2 2 3 2 2 NA 2 3 3 2 ...
$ DEPRESS: int 2 2 3 2 1 1 2 2 2 2 ...
$ SLEEP : int 2 2 2 2 1 2 NA 2 2 2 ...
$ SEX : int 1 1 1 1 1 2 1 1 1 1 ...
$ LIFE : int 1 1 1 1 2 2 1 2 1 1 ...
$ WEIGHT : num 2.23 1 1.82 -1.18 -0.14 0.41 -0.68 1.59 -0.55 0.36 ...
> head(fem)
ID AGE IQ ANXIETY DEPRESS SLEEP SEX LIFE WEIGHT

1 1 39 94 2 2 2 1 1 2.23
2 2 41 89 2 2 2 1 1 1.00
3 3 42 83 3 3 2 1 1 1.82
4 4 30 99 2 2 2 1 1 -1.18
5 5 35 94 2 1 1 1 2 -0.14
6 6 44 90 NA 1 2 2 2 0.41
> fem$IQ[fem$IQ == -99] <- NA
> fem2 <- read.table("../data/fem.dat")
> str(fem2)
'data.frame': 119 obs. of 9 variables:
$ V1: Factor w/ 118 levels "1","10","100",..: 118 1 30 41 52 63 74 85 96 107 ...
$ V2: Factor w/ 19 levels "29","30","31",..: 19 11 13 14 2 7 16 3 11 7 ...
$ V3: Factor w/ 24 levels "-99","100","102",..: 24 18 13 7 23 18 14 18 11 1 ...
$ V4: Factor w/ 5 levels "1","2","3","4",..: 5 2 2 3 2 2 NA 2 3 3 ...
$ V5: Factor w/ 4 levels "1","2","3","DEPRESS": 4 2 2 3 2 1 1 2 2 2 ...
$ V6: Factor w/ 3 levels "1","2","SLEEP": 3 2 2 2 2 1 2 NA 2 2 ...
$ V7: Factor w/ 3 levels "1","2","SEX": 3 1 1 1 1 1 2 1 1 1 ...
$ V8: Factor w/ 3 levels "1","2","LIFE": 3 1 1 1 1 2 2 1 2 1 ...
$ V9: Factor w/ 68 levels "-0.09","-0.14",..: 68 60 37 52 18 2 27 10 48 9 ...
> head(fem2)
V1 V2 V3 V4 V5 V6 V7 V8 V9

1 ID AGE IQ ANXIETY DEPRESS SLEEP SEX LIFE WEIGHT
2 1 39 94 2 2 2 1 1 2.23
3 2 41 89 2 2 2 1 1 1
4 3 42 83 3 3 2 1 1 1.82
5 4 30 99 2 2 2 1 1 -1.18
6 5 35 94 2 1 1 1 2 -0.14
> fem2$IQ
NULL
> fem3 <- read.table("../data/fem.dat", sep = "\t")
> str(fem3)
'data.frame': 119 obs. of 1 variable:
$ V1: Factor w/ 119 levels "1 39 94 2 2 2 1 1 2.23",..: 119 1 31 42 53 64 75 86 97 108 ...
> fem4 <- read.table("../data/fem-dot.dat", header = TRUE)
> str(fem4)
'data.frame': 118 obs. of 9 variables:
$ ID : int 1 2 3 4 5 6 7 8 9 10 ...
$ AGE : int 39 41 42 30 35 44 31 39 35 33 ...
$ IQ : Factor w/ 23 levels ".","100","102",..: 18 13 7 23 18 14 18 11 1 16 ...
$ ANXIETY: Factor w/ 5 levels ".","1","2","3",..: 3 3 4 3 3 1 3 4 4 3 ...
$ DEPRESS: Factor w/ 4 levels ".","1","2","3": 3 3 4 3 2 2 3 3 3 3 ...
$ SLEEP : Factor w/ 3 levels ".","1","2": 3 3 3 3 2 3 1 3 3 3 ...
$ SEX : Factor w/ 3 levels ".","1","2": 2 2 2 2 2 3 2 2 2 2 ...
$ LIFE : Factor w/ 3 levels ".","1","2": 2 2 2 2 3 3 2 3 2 2 ...
$ WEIGHT : Factor w/ 68 levels "-0.09","-0.14",..: 61 38 53 18 2 28 10 49 9 27 ...
> fem4 <- read.table("../data/fem-dot.dat", header = TRUE, na.strings = ".")
> read.csv
function (file, header = TRUE, sep = ",", quote = "\"", dec = ".",

fill = TRUE, comment.char = "", ...)
read.table(file = file, header = header, sep = sep, quote = quote,

dec = dec, fill = fill, comment.char = comment.char, ...)
<environment: namespace:utils>
> library(foreign)
> fem5 <- read.dta("../data/fem.dta")
> head(fem5)
id age iq anxiety depress sleep sex life weight

1 1 39 94 mild mild no yes yes 2.23
2 2 41 89 mild mild no yes yes 1.00
3 3 42 83 moderate moderate or severe no yes yes 1.82
4 4 30 99 mild mild no yes yes -1.18
5 5 35 94 mild none yes yes no -0.14
6 6 44 90 <NA> none no no no 0.41
> attr(fem5, "var.labels")
[1] "Patient ID"
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[2] "Age in years"
[3] "IQ score"
[4] "Anxiety"
[5] "Depression"
[6] "Sleeping normally"
[7] "Lost interest in sex"
[8] "Considered suicide"
[9] "Weight change (kg) in previous 6 months"
> attributes(fem5)
$datalabel
[1] "Data on 118 female psychiatric patients"

$time.stamp
[1] " 1 Jun 2006 12:36"

$names
[1] "id" "age" "iq" "anxiety" "depress" "sleep" "sex"
[8] "life" "weight"

$formats
[1] "%8.0g" "%8.0g" "%8.0g" "%8.0g" "%18.0g" "%8.0g" "%8.0g" "%8.0g"
[9] "%9.0g"

$types
[1] 252 251 252 251 251 251 251 251 254

$val.labels
[1] "" "" "" "anxiety" "depress" "yesno" "yesno"
[8] "yesno" ""

$var.labels
[1] "Patient ID"
[2] "Age in years"
[3] "IQ score"
[4] "Anxiety"
[5] "Depression"
[6] "Sleeping normally"
[7] "Lost interest in sex"
[8] "Considered suicide"
[9] "Weight change (kg) in previous 6 months"

$row.names
[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12"
[13] "13" "14" "15" "16" "17" "18" "19" "20" "21" "22" "23" "24"
[25] "25" "26" "27" "28" "29" "30" "31" "32" "33" "34" "35" "36"
[37] "37" "38" "39" "40" "41" "42" "43" "44" "45" "46" "47" "48"
[49] "49" "50" "51" "52" "53" "54" "55" "56" "57" "58" "59" "60"
[61] "61" "62" "63" "64" "65" "66" "67" "68" "69" "70" "71" "72"
[73] "73" "74" "75" "76" "77" "78" "79" "80" "81" "82" "83" "84"
[85] "85" "86" "87" "88" "89" "90" "91" "92" "93" "94" "95" "96"
[97] "97" "98" "99" "100" "101" "102" "103" "104" "105" "106" "107" "108"
[109] "109" "110" "111" "112" "113" "114" "115" "116" "117" "118"

$version
[1] -8

$label.table
$label.table$anxiety

none mild moderate severe
1 2 3 4

$label.table$depress
none mild moderate or severe

1 2 3

$label.table$yesno
yes no
1 2

$label.table[[4]]
NULL

$label.table[[5]]
NULL

$label.table[[6]]
NULL

$label.table[[7]]
NULL

$label.table[[8]]
NULL

$label.table[[9]]
NULL
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$class
[1] "data.frame"

> names(attributes(fem5))
[1] "datalabel" "time.stamp" "names" "formats" "types"
[6] "val.labels" "var.labels" "row.names" "version" "label.table"
[11] "class"
>
---------------------------------------------
Program: data.R
Folder: C:\Bendix\Undervis\SPE\OLD\2007\pracs\r
Ended: torsdag 20. september 2007, 16:35:26

Elapsed: 00:00:01
---------------------------------------------
> proc.time()

user system elapsed
1.73 0.16 4.63
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2.3 Tabulation in R

2.3.1 Introduction

R and its add-on packages provide several different tabulation functions with different capabilities.
The appropriate function to use depends on your goal. There are at least three different uses for
tables.

The first use is to create simple summary statistics that will be used for further calculations in
R. The functions table(), tapply(), by(), and xtabs() will do this. The appearance of these
tables is, however, quite basic, as their principal goal is to create new objects for future
calculations.

A quite different use of tabulation is to make “production quality” tables for publication. You
may want to generate reports for publication in paper form, or on the World Wide Web. The
package xtables provides this capability, but it is not covered by this course.

An intermediate use of tabulation functions is to create human-readable tables for discussion
within your work-group, but not for publication. The Epi package provides a function
stat.table() for this purpose.

2.3.2 Basic contingency tables

The bdendo data set in the Epi package contains data on a case-control study of endometrial
cancer. Type

> library(Epi)
> data(bdendo)

to create a copy of the data frame bdendo in your work space. Use the functions str() and
head() to inspect the data frame.

The study concerns 63 cases of endometrial cancer that occurred in a retirement community in
Los Angeles between 1971 and 1975. Each case was matched with 4 healthy controls, who were
also living in the community at the time of the case.

The table() function can be used to create contingency tables. The following table
cross-tabulates case-control status (d) with an indicator of whether the women had used estrogens
(est)

> table(bdendo$d, bdendo$est)

No Yes
0 125 127
1 7 56

The tables produced by the table() function are very plain. If you want some summary
statistics, use the twoby2() function from the Epi package.

> twoby2(bdendo$d, bdendo$est)

2 by 2 table analysis:
------------------------------------------------------
Outcome : No
Comparing : 0 vs. 1

No Yes P(No) 95% conf. interval
0 125 127 0.4960 0.4347 0.5575
1 7 56 0.1111 0.0539 0.2152

95% conf. interval
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Relative Risk: 4.4643 2.1961 9.0752
Sample Odds Ratio: 7.8740 3.4554 17.9429

Conditional MLE Odds Ratio: 7.8292 3.3856 21.1587
Probability difference: 0.3849 0.2471 0.4780

Exact P-value: 0
Asymptotic P-value: 0

------------------------------------------------------

Tables in R are objects that can be passed on to other functions for further manipulation.

> est.tab <- table(bdendo$d, bdendo$est)
> pctab(est.tab)

No Yes All N
0 49.6 50.4 100.0 252.0
1 11.1 88.9 100.0 63.0

The pctab() function takes a contingency table as an argument and turns it into a table of
percentages.

You can also pass the table to the fisher.test() function which will print some summary
statistics for the association between the two variables.

> fisher.test(est.tab)

Fisher's Exact Test for Count Data

data: est.tab
p-value = 9.133e-09
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
3.385563 21.158729

sample estimates:
odds ratio
7.829222

2.3.3 Manipulating contingency tables

The UCBAdmissions data set is a ready-made contingency table that comes as part of the
“datasets” package in R. You just need to type

> UCBAdmissions

, , Dept = A

Gender
Admit Male Female
Admitted 512 89
Rejected 313 19

, , Dept = B

Gender
Admit Male Female
Admitted 353 17
Rejected 207 8

, , Dept = C

Gender
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Admit Male Female
Admitted 120 202
Rejected 205 391

, , Dept = D

Gender
Admit Male Female
Admitted 138 131
Rejected 279 244

, , Dept = E

Gender
Admit Male Female
Admitted 53 94
Rejected 138 299

, , Dept = F

Gender
Admit Male Female
Admitted 22 24
Rejected 351 317

to see it, and help(UCBAdmissions) to see a description of the data. This is a three-way
contingency table of all prospective students who applied to the University of California, Berkeley
(UCB) in 1973, classified by sex, department and whether they were accepted or rejected. The
five departments are given arbitrary labels “A” to “E”.

2.3.3.1 Flattening tables

The default method of printing three-way (or higher-dimensional) tables is not very easy to
comprehend. The ftable() function “flattens” contingency tables so that they are
human-readable

> ftable(UCBAdmissions)

Dept A B C D E F
Admit Gender
Admitted Male 512 353 120 138 53 22

Female 89 17 202 131 94 24
Rejected Male 313 207 205 279 138 351

Female 19 8 391 244 299 317

A flattened contingency table is an object in its own right:

> ucbflat <- ftable(UCBAdmissions)
> ucbflat

Dept A B C D E F
Admit Gender
Admitted Male 512 353 120 138 53 22

Female 89 17 202 131 94 24
Rejected Male 313 207 205 279 138 351

Female 19 8 391 244 299 317

An ftable object can even be written to file

> write.ftable(ucbflat, file = "ucb.txt")
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Open up the file ucb.txt in a text editor to view its contents (it will be in the working directory
of your R session). You can also read an ftable from a file

> ucbflat2 <- read.ftable("ucb.txt")

The function all.equal() can be used to test whether two R objects are the same or not. Use
this to ensure that ucbflat and ucbflat2 are the same.

Flattened tables can also be coerced back to three-dimensional contingency tables

> as.table(ucbflat2)

, , Dept = A

Gender
Admit Male Female
Admitted 512 89
Rejected 313 19

, , Dept = B

Gender
Admit Male Female
Admitted 353 17
Rejected 207 8

, , Dept = C

Gender
Admit Male Female
Admitted 120 202
Rejected 205 391

, , Dept = D

Gender
Admit Male Female
Admitted 138 131
Rejected 279 244

, , Dept = E

Gender
Admit Male Female
Admitted 53 94
Rejected 138 299

, , Dept = F

Gender
Admit Male Female
Admitted 22 24
Rejected 351 317

Use the all.equal() function again to ensure that the three dimensional table you have
produced is the same as the original UCBAdmissions data.

2.3.3.2 Coercing tables to data frames

Another way of converting a three-dimensional table into a two-dimensional structure is to turn it
into a data frame
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> ucb.frame <- as.data.frame(UCBAdmissions)
> ucb.frame

Admit Gender Dept Freq
1 Admitted Male A 512
2 Rejected Male A 313
3 Admitted Female A 89
4 Rejected Female A 19
5 Admitted Male B 353
6 Rejected Male B 207
7 Admitted Female B 17
8 Rejected Female B 8
9 Admitted Male C 120
10 Rejected Male C 205
11 Admitted Female C 202
12 Rejected Female C 391
13 Admitted Male D 138
14 Rejected Male D 279
15 Admitted Female D 131
16 Rejected Female D 244
17 Admitted Male E 53
18 Rejected Male E 138
19 Admitted Female E 94
20 Rejected Female E 299
21 Admitted Male F 22
22 Rejected Male F 351
23 Admitted Female F 24
24 Rejected Female F 317

This creates a new data frame with one variable for each of the classifying factors and an extra
variable “Freq” for the frequency counts.

We can create collapsed contingency tables from this data frame using the xtabs() function

> xtabs(Freq ~ Gender + Admit, data = ucb.frame)

Admit
Gender Admitted Rejected
Male 1198 1493
Female 557 1278

This function uses a formula interface to create a table. It sums over the value of Freq within
cells defined by cross-classifying Gender and Admit. Note that xtabs() has a data argument
which tells it where to look for variables. This makes it easier to use than the table() function.

Use the pctab() function to turn this contingency table into a table of percentages. What does
this tell you about the relative success rates of the two genders applying to UCB in 1973?

2.3.4 Mantel-Haenszel testing on tables

The reason why we are using the UCBAdmissions data set (even though it is not an
epidemiological example) is because it is a nice example of confounding. Females are more often
rejected than males. The question is whether this is due to sex discrimination.

Use the xtabs() and pctab() functions to find

1. the percent of all applicants rejected by each department

2. the distribution of applicants among departments separately for males and females
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These tables suggest that the higher rejection probability for females could be the result of
confounding by department.

The function mantelhaen.test() does Mantel-Haenszel testing for the independence of two
factors within strata defined by a third factor. One way to call a function is to supply, as a single
argument, a 3-dimensional contingency table, for which the first two dimensions are the factors of
interest.

Apply the function mantelhaen.test() to the original UCBAdmissions three-way table to see if
gender is associated with acceptance within strata defined by department.

> mantelhaen.test(UCBAdmissions)

Mantel-Haenszel chi-squared test with continuity correction

data: UCBAdmissions
Mantel-Haenszel X-squared = 1.4269, df = 1, p-value = 0.2323
alternative hypothesis: true common odds ratio is not equal to 1
95 percent confidence interval:
0.7719074 1.0603298
sample estimates:
common odds ratio

0.9046968

For 2× 2 tables, the function mantelhaen.test() not only gives a p-value, but also a summary
odds ratio and 95% confidence interval.

There is no significant association between gender and admission after controlling for
department. The explanation for the higher success rate of male candidates is that they were
more likely to apply for departments with a higher acceptance probability. A nice way to see this
visually is with a mosaic plot.

> plt("UCB1")
> mosaicplot(UCBAdmissions, sort = c(3, 2, 1))

UCBAdmissions

Dept

G
en

de
r

A B C D E F

M
al

e
F

em
al

e

AdmittedRejectedAdmittedRejectedAdmittedRejectedAdmittedRejectedAdmittedRejectedAdmittedRejected



Tartu 2007: Solutions Tabulation and functions 71

The argument sort determines what order the margins of the table are taken in. Change the
order of the sort argument to display other mosaic plots, and try to interpret them.

Here we also use the offset argument to remove the space between the blocks:

> plt("UCB2")
> mosaicplot(UCBAdmissions, sort = c(2, 1, 3), off = c(0, 0, 0))
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2.3.5 Tables of summary statistics

The stat.table() function in the Epi package provides more printer-friendly tables than the
functions provided by base R. The stat.table() function can be used to produce both
contingency tables and tables of summary statistics.

2.3.5.1 One-way tables

You will need to use the data set nickel which is contained in the Epi package.

> data(nickel)

This data set is an occupational cohort of workers in the nickel refining industry. Each of the 679
subjects has a numeric exposure index, exp, based on their job history, which estimates their
life-long exposure to nickel. Create a new variable exp4 that classifies the exposure into four
categories

> nickel$exp4 <- cut(nickel$exp, breaks = c(0, 0.5, 4.5, 8.5, Inf),
+ include.lowest = TRUE, right = FALSE)

The simplest table is created by

> stat.table(index = exp4, data = nickel)
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--------------------
exp4 count()
--------------------
[0,0.5) 290
[0.5,4.5) 225
[4.5,8.5) 103
[8.5,Inf] 61
--------------------

This creates a count of individuals, classified by levels of the factor exp4. Compare this table with
the equivalent one produced by the table() function. Note that stat.table() has a data
argument that allows you to use variables in a data frame without attaching it.

You can display several summary statistics in the same table by giving a list of expressions to
the contents argument:

> stat.table(index = exp4, contents = list(count(), percent(exp4)),
+ data = nickel)

----------------------------------
exp4 count() percent(exp4)
----------------------------------
[0,0.5) 290 42.7
[0.5,4.5) 225 33.1
[4.5,8.5) 103 15.2
[8.5,Inf] 61 9.0
----------------------------------

Only a limited set of expressions are allowed: see the help page for stat.table() for details.
You can also calculate marginal tables by specifying margin=TRUE in your call to

stat.table(). Do this for the above table. Check that the percentages add up to 100 and the
total for count() is the same as the number of rows of the data frame nickel.

2.3.5.2 Improving the Presentation of Tables

The stat.table() function provides default column headings based on the contents argument,
but these are not always very informative. Supply your own column headings using a tagged list
as the value of the contents argument:

contents = list("N" = count(), "(%)" = percent(exp4))

This improves the readability of the table. It remains to give an informative title to the index
variable. You can do this in the same way: instead of giving exp4 as the index argument to
stat.table(), use a named list:

index = list("Years of exposure" = exp4)

> stat.table(index = list("Years of exposure" = exp4), contents = list(N = count(),
+ "(%)" = percent(exp4)), data = nickel)

----------------------------
Years of N (%)
exposure
----------------------------
[0,0.5) 290 42.7
[0.5,4.5) 225 33.1
[4.5,8.5) 103 15.2
[8.5,Inf] 61 9.0
----------------------------
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2.3.5.3 Cases, Follow-up and Rates

The above examples illustrate the basic features of stat.table(). However, our main interest in
the Welsh nickel-smelter’s study, is not to count subjects, but to evaluate the risk with years of
exposure in “high-risk” occupations.

Add two new variables, one indicating death from lung cancer (d.lung) and one measuring the
follow-up time in years.

> nickel <- transform(nickel, d.lung = icd %in% c(162, 163), flwupt = ageout -
+ agein)

A count of cases and follow-up time can be created using the following contents argument:

contents = list(sum(d.lung), sum(flwupt))

A table with these contents, with informative labels.

> stat.table(index = exp4, contents = list(D = sum(d.lung), Y = sum(flwupt)),
+ data = nickel)

----------------------------
exp4 D Y
----------------------------
[0,0.5) 42.00 7801.74
[0.5,4.5) 50.00 4924.49
[4.5,8.5) 27.00 1744.06
[8.5,Inf] 18.00 877.77
----------------------------

To calculate rates, a special function ratio() is provided. A call to ratio(d, y, scale)
calculates scale * sum(d) / sum(y) within categories defined by the index variable. To
calculate incidence rates per 100,000 person-years we therefore use.

contents = ratio(d.lung, flwupt, 100000)

Adding an extra column to the table gives the incidence rates in addition to number of cases and
follow-up time.

> stat.table(index = exp4, contents = list(D = sum(d.lung), Y = sum(flwupt),
+ "Rate/1000" = ratio(d.lung, flwupt, 1e+05)), data = nickel)

--------------------------------------
exp4 D Y Rate/1000
--------------------------------------
[0,0.5) 42.00 7801.74 538.34
[0.5,4.5) 50.00 4924.49 1015.33
[4.5,8.5) 27.00 1744.06 1548.11
[8.5,Inf] 18.00 877.77 2050.66
--------------------------------------

2.3.5.4 Printing tables

Just like every other R function, stat.table() produces an object that can be saved and printed
later, or used for further calculation. You can control the appearance of a stat.table object
with an explicit call to print(my.table)

There are two arguments to the print method for stat.table objects. The width argument
specifies the minimum column width. Use this to print one of the tables you created above,
preventing long column headers being folded over too many lines:
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> print(stat.table(index = exp4, contents = list(D = sum(d.lung),
+ Y = sum(flwupt), "Rate/1000" = ratio(d.lung, flwupt, 1e+05)),
+ data = nickel), width = 9)

------------------------------------------
exp4 D Y Rate/1000
------------------------------------------
[0,0.5) 42.00 7801.74 538.34
[0.5,4.5) 50.00 4924.49 1015.33
[4.5,8.5) 27.00 1744.06 1548.11
[8.5,Inf] 18.00 877.77 2050.66
------------------------------------------

The second argument to the print method is digits which controls the number of digits
printed after the decimal point. This table

> case.tab <- stat.table(exp4, list(cases = sum(d.lung)), data = nickel)

counts lung cancer cases, but prints them to 2-decimal places. Use the digits argument to print
the table correctly.

> print(case.tab, digits = 0)

--------------------
exp4 cases
--------------------
[0,0.5) 42
[0.5,4.5) 50
[4.5,8.5) 27
[8.5,Inf] 18
--------------------

Use print.default() instead of print() to print one of your tables. This shows the internal
structure of the table. You may need to know this if you wish to extract data from a stat.table
object:

> print.default(stat.table(index = exp4, contents = list(D = sum(d.lung),
+ Y = sum(flwupt), "Rate/1000" = ratio(d.lung, flwupt, 1e+05)),
+ data = nickel))

exp4
contents [0,0.5) [0.5,4.5) [4.5,8.5) [8.5,Inf]
D 42.0000 50.000 27.000 18.0000
Y 7801.7387 4924.492 1744.059 877.7672
Rate/1000 538.3415 1015.333 1548.113 2050.6576

attr(,"table.fun")
[1] "sum" "sum" "ratio"
attr(,"class")
[1] "stat.table" "matrix"

2.3.6 Summary

In this exercise we have seen that tables in R are also objects which can be passed to other R
functions for further analysis. Table objects can be transformed into other objects without loss of
information.

The stat.table() function in the Epi package provides print-friendly tables of summary
statistics. Further information about the capabilities of stat.table() can be found in the help
page.
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2.4 Logistic regression (glm)

2.4.1 Malignant melanoma in Denmark

In the mid-80s a case-control study on risk factors for malignant melanoma was conducted in
Denmark (Østerlind et al. The Danish case-control study of cutaneous malignant melanoma I:
Importance of host factors. Int J Cancer 1988; 42: 200-206).

The cases were patients with skin melanoma (excluding lentigo melanoma), newly diagnosed
from 1 Oct, 1982 to 31 March, 1985, aged 20-79, from East Denmark, and they were identified
from the Danish Cancer Registry.

The controls (twice as many as cases) were drawn from the residents of East Denmark in April,
1984, as a random sample stratified by sex and age (within the same 5 year age group) to reflect
the sex and age distribution of the cases. This is called group matching, and in such a study, it is
necessary to control for age and sex in the statistical analysis. (Yes indeed: In spite of the fact
that stratified sampling by sex and age removed the statistical association of these variables with
melanoma from the final case-control data set, the analysis must control for variables which
determine the probability of selecting subjects from the base population to the study sample.)

The population of East Denmark is a dynamic one. Sampling the controls only at one time
point is a rough approximation of indidence density sampling, which ideally would spread out
over the whole study period. Hence the exposure odds ratios calculable from the data are
estimates of the corresponding hazard rate ratios between the exposure groups.

After exclusions, refusals etc., 474 cases (92% of eligible cases) and 926 controls (82%) were
interviewed. This was done face-to-face with a structured questionnaire by trained interviewers,
who were not informed about the subject’s case-control status.

For this exercise we have selected a few host variables from the study in an ascii-file,
melanoma.dat. The variables are listed in table 2.1.

Table 2.1: Variables in the melanoma dataset.

Variable Units or Coding Type Name

Case-control status 1=case, 0=control numeric cc
Sex 1=male, 2=female numeric sex
Age at interview age in years numeric age
Skin complexion 0=dark, 1=medium, 2=light numeric skin
Hair colour 0=dark brown/black, 1=light brown,

2=blonde, 3=red numeric hair
eye colour 0=brown, 1=grey, green, 2=blue numeric eyes
Freckles 1=many, 2=some, 3=none numeric freckles
Naevi, small no. naevi < 5mm numeric nvsmall
Naevi, largs no. naevi ≥ 5mm numeric nvlarge

2.4.2 Reading the data

Start R and load the Epi package using the function library(). Read the data set from the file
melanoma.dat (this should be in your working directory) to a data frame with name mm using the
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read.table() function. Remember to specify that missing values are coded ”.”, and that variable
names are in the first line of the file. View the overall structure of the data frame, and list the
first 20 rows of mm.

'data.frame': 1400 obs. of 9 variables:
$ cc : int 1 1 1 0 1 0 0 0 0 1 ...
$ sex : int 2 1 2 2 2 2 2 1 2 2 ...
$ age : int 71 68 42 66 36 68 68 39 75 49 ...
$ skin : int 2 2 1 0 1 2 0 2 2 2 ...
$ hair : int 0 0 1 2 0 2 0 0 0 1 ...
$ eyes : int 2 2 2 1 2 2 1 2 2 2 ...
$ freckles: int 2 1 3 2 3 2 2 2 1 2 ...
$ nvsmall : int 2 3 22 0 1 0 0 3 5 6 ...
$ nvlarge : int 0 0 1 0 0 0 0 0 0 0 ...

cc sex age skin hair eyes freckles nvsmall nvlarge
1 1 2 71 2 0 2 2 2 0
2 1 1 68 2 0 2 1 3 0
3 1 2 42 1 1 2 3 22 1
4 0 2 66 0 2 1 2 0 0
5 1 2 36 1 0 2 3 1 0
6 0 2 68 2 2 2 2 0 0
7 0 2 68 0 0 1 2 0 0
8 0 1 39 2 0 2 2 3 0
9 0 2 75 2 0 2 1 5 0
10 1 2 49 2 1 2 2 6 0
11 0 1 48 2 1 2 3 4 0
12 1 2 67 0 0 2 2 1 0
13 0 1 50 1 0 2 3 4 0
14 1 2 38 2 0 1 3 8 0
15 0 2 33 2 1 2 2 3 0
16 0 2 39 1 0 1 3 0 2
17 0 2 39 1 1 2 3 0 0
18 1 1 50 0 1 1 1 3 1
19 0 2 35 2 0 2 2 1 0
20 0 2 35 2 0 1 3 5 0

2.4.3 House keeping

The structure of the data frame mm tells us that all the variables are numeric (integer), so first you
need to do a bit of house keeping. For example the variables sex, skin, hair, eye need to be
converted to factors, with labels, and freckles which is coded 4 for none down to 1 for many
(not very intuitive) needs to be recoded, and relabelled.

To avoid too much typing and to leave plenty of time to think about the analysis, these house
keeping commands are in a script file called melanoma-house.r. You should study this script
carefully before running it. Note that the file starts by reading in the data, so whenever you run
it you start with the original data set. The coding of freckles can be reversed by subtracting the
current codes from 4. Once recoded the variable needs to be converted to a factor with labels
”none”, etc. Age is currently a numeric variable recording age to the nearest year, and it will be
convenient to group these values into (say) 10 year age groups, using cut. In this case we choose
to create a new variable, rather than change the original.

Look again at the structure of the data frame mm and note the changes. Use the command
summary(mm) to look at the univariate distributions.

'data.frame': 1400 obs. of 13 variables:
$ cc : int 1 1 1 0 1 0 0 0 0 1 ...
$ sex : Factor w/ 2 levels "M","F": 2 1 2 2 2 2 2 1 2 2 ...
$ age : int 71 68 42 66 36 68 68 39 75 49 ...
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$ skin : Factor w/ 3 levels "dark","medium",..: 3 3 2 1 2 3 1 3 3 3 ...
$ hair : Factor w/ 4 levels "dark","light_brown",..: 1 1 2 3 1 3 1 1 1 2 ...
$ eyes : Factor w/ 3 levels "brown","grey-green",..: 3 3 3 2 3 3 2 3 3 3 ...
$ freckles: Factor w/ 3 levels "none","some",..: 2 3 1 2 1 2 2 2 3 2 ...
$ nvsmall : int 2 3 22 0 1 0 0 3 5 6 ...
$ nvlarge : int 0 0 1 0 0 0 0 0 0 0 ...
$ age.cat : Factor w/ 6 levels "[20,30)","[30,40)",..: 6 5 3 5 2 5 5 2 6 3 ...
$ hair2 : Factor w/ 2 levels "dark","other": 1 1 2 2 1 2 1 1 1 2 ...
$ nvsma4 : Factor w/ 4 levels "[0,1)","[1,2)",..: 3 3 4 1 2 1 1 3 4 4 ...
$ nvlar3 : Factor w/ 3 levels "[0,1)","[1,2)",..: 1 1 2 1 1 1 1 1 1 1 ...

cc sex age skin hair eyes freckles
Min. :0.0000 M:584 Min. :21.00 dark :318 dark :690 brown :187 none:633
1st Qu.:0.0000 F:816 1st Qu.:42.00 medium:594 light_brown:548 grey-green:450 some:526
Median :0.0000 Median :53.00 light :478 blonde : 61 blue :757 many:237
Mean :0.3386 Mean :52.89 NA's : 10 red :101 NA's : 6 NA's: 4
3rd Qu.:1.0000 3rd Qu.:64.00
Max. :1.0000 Max. :81.00

nvsmall nvlarge age.cat hair2 nvsma4 nvlar3
Min. : 0.000 Min. : 0.0000 [20,30): 61 dark :690 [0,1) :922 [0,1) :1263
1st Qu.: 0.000 1st Qu.: 0.0000 [30,40):202 other:710 [1,2) :192 [1,2) : 95
Median : 0.000 Median : 0.0000 [40,50):347 [2,5) :176 [2,15): 35
Mean : 1.163 Mean : 0.1565 [50,60):296 [5,50):103 NA's : 7
3rd Qu.: 1.000 3rd Qu.: 0.0000 [60,70):307 NA's : 7
Max. :46.000 Max. :14.0000 [70,85):187
NA's : 7.000 NA's : 7.0000

This is enough housekeeping for now - let’s turn to something a bit more interesting.

2.4.4 One variable at a time

As a first step it is a good idea to start by looking at the effect of each of the variables, controlled
for age in 10 year age groups and sex. Try
> effx(cc, type = "binary", exposure = skin, control = list(age.cat, sex), data = mm)

---------------------------------------------------------------------------
response : cc
type : "binary"
exposure : skin
control vars : age.cat sex

skin is a factor with levels: dark / medium / light
baseline is dark
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of skin on cc
controlled for age.cat sex

number of observations 1390

Effect 2.5% 97.5%
medium vs dark 1.39 1.03 1.88
light vs dark 1.65 1.21 2.26

Test for no effects of exposure on 2 df: p= 0.00595

to see the effect of skin colour. Look at the effects of hair, eyes and freckles in the same way.

---------------------------------------------------------------------------
response : cc
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type : "binary"
exposure : skin
control vars : age.cat sex

skin is a factor with levels: dark / medium / light
baseline is dark
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of skin on cc
controlled for age.cat sex

number of observations 1390

Effect 2.5% 97.5%
medium vs dark 1.39 1.03 1.88
light vs dark 1.65 1.21 2.26

Test for no effects of exposure on 2 df: p= 0.00595

---------------------------------------------------------------------------
response : cc
type : "binary"
exposure : hair
control vars : age.cat sex

hair is a factor with levels: dark / light_brown / blonde / red
baseline is dark
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of hair on cc
controlled for age.cat sex

number of observations 1400

Effect 2.5% 97.5%
light_brown vs dark 1.50 1.180 1.91
blonde vs dark 1.68 0.981 2.88
red vs dark 1.78 1.160 2.75

Test for no effects of exposure on 3 df: p= 0.00148

---------------------------------------------------------------------------
response : cc
type : "binary"
exposure : eyes
control vars : age.cat sex

eyes is a factor with levels: brown / grey-green / blue
baseline is brown
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of eyes on cc
controlled for age.cat sex

number of observations 1394

Effect 2.5% 97.5%
grey-green vs brown 0.835 0.580 1.20
blue vs brown 1.050 0.751 1.48
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Test for no effects of exposure on 2 df: p= 0.189

---------------------------------------------------------------------------
response : cc
type : "binary"
exposure : freckles
control vars : age.cat sex

freckles is a factor with levels: none / some / many
baseline is none
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of freckles on cc
controlled for age.cat sex

number of observations 1396

Effect 2.5% 97.5%
some vs none 1.51 1.17 1.95
many vs none 3.07 2.24 4.22

Test for no effects of exposure on 2 df: p= 2.55e-11

2.4.5 Generalized linear models

The function effx is just a wrapper for the glm function, and you can show this by fitting the
glm directly with
> m.frk <- glm(cc ~ freckles + age.cat + sex, family = "binomial", data = mm)
> summary(m.frk)

Call:
glm(formula = cc ~ freckles + age.cat + sex, family = "binomial",

data = mm)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.2630 -0.9123 -0.7732 1.3876 1.6914

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.89385 0.29048 -3.077 0.00209
frecklessome 0.41206 0.13030 3.163 0.00156
frecklesmany 1.12242 0.16184 6.936 4.05e-12
age.cat[30,40) -0.10515 0.31393 -0.335 0.73767
age.cat[40,50) -0.09830 0.29765 -0.330 0.74120
age.cat[50,60) -0.02955 0.30155 -0.098 0.92194
age.cat[60,70) -0.20094 0.30216 -0.665 0.50604
age.cat[70,85) -0.11732 0.31666 -0.370 0.71101
sexF -0.06223 0.11910 -0.523 0.60132

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1787.6 on 1395 degrees of freedom
Residual deviance: 1737.1 on 1387 degrees of freedom
(4 observations deleted due to missingness)

AIC: 1755.1

Number of Fisher Scoring iterations: 4

> coef(m.frk)
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(Intercept) frecklessome frecklesmany age.cat[30,40) age.cat[40,50) age.cat[50,60) age.cat[60,70)
-0.89385163 0.41206202 1.12242246 -0.10514744 -0.09830352 -0.02954865 -0.20093865

age.cat[70,85) sexF
-0.11732065 -0.06223165

> exp(coef(m.frk))

(Intercept) frecklessome frecklesmany age.cat[30,40) age.cat[40,50) age.cat[50,60) age.cat[60,70)
0.4090771 1.5099281 3.0722877 0.9001918 0.9063738 0.9708836 0.8179626

age.cat[70,85) sexF
0.8893000 0.9396652

Comparison with effx shows the results to be the same. An alternative way of summarizing
the glm is to use
> ci.lin(m.frk, Exp = TRUE)

Estimate StdErr z P exp(Est.) 2.5% 97.5%
(Intercept) -0.89385163 0.2904794 -3.07716003 2.089831e-03 0.4090771 0.2314987 0.7228725
frecklessome 0.41206202 0.1302954 3.16252098 1.564095e-03 1.5099281 1.1696303 1.9492338
frecklesmany 1.12242246 0.1618354 6.93557961 4.045653e-12 3.0722877 2.2372129 4.2190672
age.cat[30,40) -0.10514744 0.3139260 -0.33494338 7.376678e-01 0.9001918 0.4865425 1.6655181
age.cat[40,50) -0.09830352 0.2976535 -0.33026163 7.412023e-01 0.9063738 0.5057597 1.6243156
age.cat[50,60) -0.02954865 0.3015530 -0.09798826 9.219416e-01 0.9708836 0.5376316 1.7532730
age.cat[60,70) -0.20093865 0.3021576 -0.66501273 5.060423e-01 0.8179626 0.4524144 1.4788716
age.cat[70,85) -0.11732065 0.3166598 -0.37049423 7.110143e-01 0.8893000 0.4780870 1.6542062
sexF -0.06223165 0.1191019 -0.52250772 6.013169e-01 0.9396652 0.7440351 1.1867325

> round(ci.lin(m.frk, Exp = TRUE, alpha = 0.1)[, c(5, 6, 7)], 2)

exp(Est.) 5.0% 95.0%
(Intercept) 0.41 0.25 0.66
frecklessome 1.51 1.22 1.87
frecklesmany 3.07 2.35 4.01
age.cat[30,40) 0.90 0.54 1.51
age.cat[40,50) 0.91 0.56 1.48
age.cat[50,60) 0.97 0.59 1.59
age.cat[60,70) 0.82 0.50 1.34
age.cat[70,85) 0.89 0.53 1.50
sexF 0.94 0.77 1.14

Note that in effx the type of response is ”binary” whereas in glm the family of probability
distributions used to fit the model is ”binomial”. There is a 1-1 relationship between type and
family:

metric gaussian
binary binomial
failure/count poisson

2.4.6 Likelihood ratio tests

There are 2 effects for the 3 levels of freckles, and glm provides a test for each effect separately,
but to test for no effect at all of freckles you need a likelihood ratio test. This involves fitting
two models, one with freckles and one without, and recording the change in deviance.
> m1 <- glm(cc ~ freckles + age.cat + sex, family = "binomial", data = mm)
> m2 <- glm(cc ~ age.cat + sex, family = "binomial", data = mm, subset = !is.na(freckles))
> summary(m1)

Call:
glm(formula = cc ~ freckles + age.cat + sex, family = "binomial",

data = mm)

Deviance Residuals:
Min 1Q Median 3Q Max
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-1.2630 -0.9123 -0.7732 1.3876 1.6914

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.89385 0.29048 -3.077 0.00209
frecklessome 0.41206 0.13030 3.163 0.00156
frecklesmany 1.12242 0.16184 6.936 4.05e-12
age.cat[30,40) -0.10515 0.31393 -0.335 0.73767
age.cat[40,50) -0.09830 0.29765 -0.330 0.74120
age.cat[50,60) -0.02955 0.30155 -0.098 0.92194
age.cat[60,70) -0.20094 0.30216 -0.665 0.50604
age.cat[70,85) -0.11732 0.31666 -0.370 0.71101
sexF -0.06223 0.11910 -0.523 0.60132

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1787.6 on 1395 degrees of freedom
Residual deviance: 1737.1 on 1387 degrees of freedom
(4 observations deleted due to missingness)

AIC: 1755.1

Number of Fisher Scoring iterations: 4

> summary(m2)

Call:
glm(formula = cc ~ age.cat + sex, family = "binomial", data = mm,

subset = !is.na(freckles))

Deviance Residuals:
Min 1Q Median 3Q Max

-0.9524 -0.9037 -0.8859 1.4422 1.5160

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.67853 0.28168 -2.409 0.016
age.cat[30,40) -0.08943 0.30900 -0.289 0.772
age.cat[40,50) -0.08072 0.29291 -0.276 0.783
age.cat[50,60) 0.07473 0.29628 0.252 0.801
age.cat[60,70) -0.05427 0.29647 -0.183 0.855
age.cat[70,85) 0.07490 0.31000 0.242 0.809
sexF 0.04837 0.11574 0.418 0.676

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1787.6 on 1395 degrees of freedom
Residual deviance: 1785.9 on 1389 degrees of freedom
AIC: 1799.9

Number of Fisher Scoring iterations: 4

The change in residual deviance is 1785.9− 1737.1 = 48.8 on 1389− 1387 = 2 degrees of
freedom. Use the function pchisq to find the probability of exceeding 48.8 on 2df. The test is
more easily carried out with
> anova(m2, m1, test = "Chisq")

Analysis of Deviance Table

Model 1: cc ~ age.cat + sex
Model 2: cc ~ freckles + age.cat + sex
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 1389 1785.89
2 1387 1737.10 2 48.79 2.549e-11
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There are 3 effects for the 4 levels of hair colour (hair). Fit two glm’s and use anova to test for
no effects of hair colour.

2.4.7 Relevelling

From the above you can see that subjects at each of the 3 levels light-brown, blonde, and red, are
at greater risk than subjects with dark hair, with similar odds ratios. This suggests creating a
new variable hair2 which has just two levels, dark and the other three. The Relevel function has
been used for this in the house keeping script.

Use effx to compute the odds-ratio of melanoma between persons with red, blonde or light
brown hair versus those with dark hair.
---------------------------------------------------------------------------
response : cc
type : "binary"
exposure : hair2

hair2 is a factor with levels: dark / other
baseline is dark
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of hair2 on cc
number of observations 1400

Effect 2.5% 97.5%
1.54 1.23 1.92

Test for no effects of exposure on 1 df: p= 0.000143

Reproduce these results by fitting an appropriate glm.

2.4.8 Controlling for other variables

When you control the effect of an exposure for some variable you are asking a question about
what would the effect be if the variable is kept constant. For example, consider the effect of
freckles controlled for hair2. We first stratify by hair2 with
> effx(cc, type = "binary", exposure = freckles, control = list(age.cat, sex), strata = hair2,
+ data = mm)

---------------------------------------------------------------------------
response : cc
type : "binary"
exposure : freckles
control vars : age.cat sex
stratified by : hair2

freckles is a factor with levels: none / some / many
baseline is none
hair2 is a factor with levels: dark/other
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of freckles on cc
controlled for age.cat sex

stratified by hair2

number of observations 1396

Effect 2.5% 97.5%
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strata dark level some vs none 1.61 1.11 2.34
strata other level some vs none 1.42 1.00 2.01
strata dark level many vs none 2.84 1.76 4.58
strata other level many vs none 3.15 2.06 4.80

Test for effect modification on 2 df: p= 0.757

The effect of freckles is still apparent in each of the two strata for hair colour. Use effx to
control for hair2.

It is tempting to control for variables without thinking about the question you are thereby
asking. This can lead to nonsense.

2.4.9 Stratification using glm

We shall reproduce the output from
> effx(cc, type = "binary", exposure = freckles, control = list(age.cat, sex), strata = hair2,
+ data = mm)

---------------------------------------------------------------------------
response : cc
type : "binary"
exposure : freckles
control vars : age.cat sex
stratified by : hair2

freckles is a factor with levels: none / some / many
baseline is none
hair2 is a factor with levels: dark/other
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of freckles on cc
controlled for age.cat sex

stratified by hair2

number of observations 1396

Effect 2.5% 97.5%
strata dark level some vs none 1.61 1.11 2.34
strata other level some vs none 1.42 1.00 2.01
strata dark level many vs none 2.84 1.76 4.58
strata other level many vs none 3.15 2.06 4.80

Test for effect modification on 2 df: p= 0.757

using a glm. To do this requires a nested model formula:
> nested <- glm(cc ~ hair2/freckles + age.cat + sex, family = "binomial", data = mm)
> exp(coef(nested))

(Intercept) hair2other age.cat[30,40) age.cat[40,50)
0.3169581 1.5639083 0.9286674 0.9573093

age.cat[50,60) age.cat[60,70) age.cat[70,85) sexF
1.0464308 0.8495081 0.9351315 0.9012339

hair2dark:frecklessome hair2other:frecklessome hair2dark:frecklesmany hair2other:frecklesmany
1.6123583 1.4196216 2.8378600 3.1469251

In amongst all the other effects you can see the two effects of freckles for dark hair (1.61 and
2.84) and the two effects of freckles for other hair (1.42 and 3.15). You can improve this output
with ci.lin. Try this.
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2.4.10 Naevi

The distributions of nvsmall and nvlarge are very skew to the right. You can see this with
> with(mm, stem(nvsmall))

The decimal point is at the |

0 | 00000000000000000000000000000000000000000000000000000000000000000000+1034
2 | 00000000000000000000000000000000000000000000000000000000000000000000+65
4 | 00000000000000000000000000000000000000000000000000000000000
6 | 00000000000000000000000000
8 | 00000000000000000000
10 | 0000000000
12 | 00
14 | 0000000
16 |
18 | 000
20 | 0
22 | 000
24 | 0
26 |
28 |
30 |
32 |
34 |
36 | 0
38 |
40 |
42 |
44 |
46 | 0

> with(mm, stem(nvlarge))

The decimal point is at the |

0 | 00000000000000000000000000000000000000000000000000000000000000000000+1183
1 | 00000000000000000000000000000000000000000000000000000000000000000000+15
2 | 000000000000000000
3 | 0000000
4 | 0000
5 | 000
6 |
7 |
8 |
9 | 0
10 |
11 |
12 | 0
13 |
14 | 0

Because of this it is wise to categorize them into a few classes

• small naevi into four: 0, 1, 2-4, and 5+;

• large naevi into three: 0, 1, and 2+.

This has been done in the house keeping script. Look at the joint frequency distribution of these
new variables using with(mm, table( )). Are they strongly associated?
---------------------------------

---------nvlar3----------
nvsma4 [0,1) [1,2) [2,15)
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---------------------------------
[0,1) 93.9 4.9 1.2
[1,2) 89.6 8.3 2.1
[2,5) 85.8 9.7 4.5
[5,50) 71.8 16.5 11.7
---------------------------------

Compute the sex- and age-adjusted OR estimates (with 90% CIs) associated with the number
of small naevi first by using effx, and then by fitting separate logistic regression models including
sex, age.cat and nvsma4 in the model formula.
---------------------------------------------------------------------------
response : cc
type : "binary"
exposure : nvsma4
control vars : age.cat sex

nvsma4 is a factor with levels: [0,1) / [1,2) / [2,5) / [5,50)
baseline is [0,1)
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of nvsma4 on cc
controlled for age.cat sex

number of observations 1393

Effect 2.5% 97.5%
[1,2) vs [0,1) 1.59 1.15 2.21
[2,5) vs [0,1) 2.47 1.77 3.43
[5,50) vs [0,1) 5.06 3.28 7.81

Test for no effects of exposure on 3 df: p= <2e-16

exp(Est.) 2.5% 97.5%
(Intercept) 0.3564499 0.1993832 0.6372481
nvsma4[1,2) 1.5936186 1.1472356 2.2136867
nvsma4[2,5) 2.4653503 1.7722804 3.4294527
nvsma4[5,50) 5.0584685 3.2777723 7.8065531
age.cat[30,40) 0.9595575 0.5110162 1.8018030
age.cat[40,50) 1.0172163 0.5595729 1.8491407
age.cat[50,60) 1.1624871 0.6351686 2.1275867
age.cat[60,70) 1.0682888 0.5832709 1.9566227
age.cat[70,85) 1.1719606 0.6228091 2.2053172
sexF 0.9553673 0.7552541 1.2085027

Do the same with nvlar3.
---------------------------------------------------------------------------
response : cc
type : "binary"
exposure : nvlar3
control vars : age.cat sex

nvlar3 is a factor with levels: [0,1) / [1,2) / [2,15)
baseline is [0,1)
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of nvlar3 on cc
controlled for age.cat sex

number of observations 1393
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Effect 2.5% 97.5%
[1,2) vs [0,1) 1.82 1.19 2.78
[2,15) vs [0,1) 3.58 1.78 7.21

Test for no effects of exposure on 2 df: p= 4.81e-05

exp(Est.) 2.5% 97.5%
(Intercept) 0.4882029 0.2801567 0.8507456
nvlar3[1,2) 1.8182303 1.1908578 2.7761179
nvlar3[2,15) 3.5840528 1.7809624 7.2126367
age.cat[30,40) 0.9020223 0.4907297 1.6580293
age.cat[40,50) 0.9172969 0.5151752 1.6332962
age.cat[50,60) 1.0666074 0.5953609 1.9108599
age.cat[60,70) 0.8927764 0.4975674 1.6018929
age.cat[70,85) 0.9985714 0.5410858 1.8428590
sexF 1.0292748 0.8185439 1.2942577

Now fit a glm containing age.cat sex nvsma4 and nvlar3 and place the result in m.nvboth.
What is the interpretation of the last two coefficients?

2.4.11 Treating freckles as a numeric exposure

The evidence for the effect of freckles is already convincing. However, to demonstrate how it is
done, we shall perform a linear trend test by treating freckles as a numeric exposure with
> mm$fscore <- as.numeric(mm$freckles)
> effx(cc, type = "binary", exposure = fscore, control = list(age.cat, sex), data = mm)

---------------------------------------------------------------------------
response : cc
type : "binary"
exposure : fscore
control vars : age.cat sex

fscore is numeric
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of an increase of 1 unit in fscore on cc
controlled for age.cat sex

number of observations 1396

Effect 2.5% 97.5%
1.72 1.47 2.00

Test for no effects of exposure on 1 df: p= 6.2e-12

You can check for linearity of the log odds of being a case with fscore by comparing the model
containing freckles as a factor with the model containg freckles as numeric.
> m1 <- glm(cc ~ freckles + age.cat + sex, family = "binomial", data = mm)
> m2 <- glm(cc ~ fscore + age.cat + sex, family = "binomial", data = mm)
> anova(m2, m1, test = "Chisq")

Analysis of Deviance Table

Model 1: cc ~ fscore + age.cat + sex
Model 2: cc ~ freckles + age.cat + sex
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 1388 1738.62
2 1387 1737.10 1 1.52 0.22

There is no evidence against linearity (p = 0.22).
It is sometimes helpful to look at the linearity in more detail with
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> m1 <- glm(cc ~ C(freckles, contr.cum) + age.cat + sex, family = "binomial", data = mm)
> ci.lin(m1, Exp = TRUE)[c(2, 3), c(5, 6, 7)]

exp(Est.) 2.5% 97.5%
C(freckles, contr.cum)2 1.509928 1.169630 1.949234
C(freckles, contr.cum)3 2.034725 1.487967 2.782389

> m2 <- glm(cc ~ fscore + age.cat + sex, family = "binomial", data = mm)
> ci.lin(m2, Exp = TRUE)[2, c(5, 6, 7)]

exp(Est.) 2.5% 97.5%
1.715535 1.468647 2.003927

The use of C(freckles,contr.cum) makes odds ratios versus the previous level not the
baseline. If the logodds are linear then these odds ratios should be the same (and the same as the
odds ratio for fscore in m2.

2.4.12 Graphical displays

The odds ratios (with CIs) can be graphically displayed using function plotEst() in Epi. It uses
the value of ci.lin() evaluated on the fitted model object. As the intercept and the effects of
age and sex are of no interest, we shall drop the corresponding rows (the 7 first ones) from the
matrix produced by ci.lin(), and the plot is based just on the 1st, 5th and the 6th column of
this matrix:

> plotEst(exp(ci.lin(m.nvboth)[-(1:7), -(2:4)]), xlog = T, vref = 1)

The xlog argument makes the OR axis logarithmic.

2.4.13 Further questions

Investigate some of these questions:

1. Is there still an effect of freckles even for those with dark skins?

2. Is there any effect of eye colour? Is there still an effect after taking account of skin colour?

3. If the main focus of interest is the effect of freckles which variables would you control for?
Fit the appropriate model and summarize your conclusions. Plot the coefficients with their
confidence intervals.
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2.5 Interval-censored data: Conversion to diabetes

2.5.1 R-program for the analysis

This
R 2.4.1
---------------------------------------------
Program: int-cens.R
Folder: C:\Bendix\Undervis\SPE\pracs\r
Started: søndag 13. maj 2007, 16:32:11
---------------------------------------------
> plt <- function( file, ... ) pdf( paste( file, "pdf", sep="." ), ... )
>
> library( Epi )
> library( help=Epi )
> source("c:/stat/r/bxc/library.sources/Epi/data/DMconv.R")
> source("c:/stat/r/bxc/library.sources/Epi/R/print.Icens.R")
> source("c:/stat/r/bxc/library.sources/Epi/R/summary.Icens.R")
>
> #-------------------------------------------------------------------------------
> # 1:
> # Load data and inspect them
>
> #data( DMconv )
> str( DMconv )
'data.frame': 1519 obs. of 6 variables:
$ id : int 1 2 3 4 5 6 7 8 9 10 ...
$ doe :Class 'Date' num [1:1519] 12215 11866 11568 11841 11288 ...
$ dlw :Class 'Date' num [1:1519] 13525 13278 13058 13150 13011 ...
$ dfi :Class 'Date' num [1:1519] NA NA NA NA NA NA NA NA NA NA ...
$ gtol: Factor w/ 2 levels "IFG","IGT": 2 1 1 2 2 1 2 2 2 1 ...
$ grp : Factor w/ 2 levels "Intervention",..: 2 1 1 1 1 2 2 1 2 1 ...
> head( DMconv, 20 )

id doe dlw dfi gtol grp
1 1 2003-06-12 2007-01-12 <NA> IGT Control
2 2 2002-06-28 2006-05-10 <NA> IFG Intervention
3 3 2001-09-03 2005-10-02 <NA> IFG Intervention
4 4 2002-06-03 2006-01-02 <NA> IGT Intervention
5 5 2000-11-27 2005-08-16 <NA> IGT Intervention
6 6 2001-08-31 2005-07-08 <NA> IFG Control
7 7 2001-09-19 2004-11-17 <NA> IGT Control
8 8 2001-07-03 2005-09-22 <NA> IGT Intervention
9 9 2001-08-08 2006-03-19 <NA> IGT Control
10 10 2002-01-12 2005-04-19 <NA> IFG Intervention
11 11 2001-08-15 2002-02-09 2002-08-20 IGT Control
12 12 2001-09-24 2002-01-14 2003-04-20 IFG Intervention
13 13 2001-04-30 2001-09-19 2003-11-10 IGT Control
14 14 2000-12-19 2004-12-20 <NA> IGT Intervention
15 15 2001-07-01 2001-12-18 2003-10-26 IFG Control
16 16 2001-09-23 2005-12-14 <NA> IFG Intervention
17 17 2003-01-19 2003-03-18 2006-08-17 IGT Intervention
18 18 2001-10-13 2002-01-11 2004-02-09 IGT Intervention
19 19 2002-11-28 2006-06-01 <NA> IFG Intervention
20 20 2002-08-11 2005-07-19 <NA> IGT Intervention
>
> #-------------------------------------------------------------------------------
> # 2:
> # Make a histogram over the examination times in years since entry
>
> par( mfrow=c(2,1) )
> with( DMconv, hist( cal.yr(dfi)-cal.yr(doe) ) )
> with( DMconv, hist( cal.yr(dlw)-cal.yr(doe) ) )
>
> # With a few more bells and whistles
> plt( "int-cens-1" )
> par( mfrow=c(2,1) )
> with( DMconv, hist( cal.yr(dfi)-cal.yr(doe),
+ xlim=c(0,5), col=gray(0.6), breaks=50, main="", xlab="Conversion" ) )
> with( DMconv, hist( cal.yr(dlw)-cal.yr(doe),
+ xlim=c(0,5), col=gray(0.6), breaks=50, main="", xlab="Well" ) )
> dev.off()
windows

2
>
> #-------------------------------------------------------------------------------
> # 3:
> # Make a simple model without covariates,
> # estimating the conversion rates in intervals
>
> mA <-
+ Icens( first.well= cal.yr(doe)-cal.yr(doe), # Timescale is time since entry
+ last.well= cal.yr(dlw)-cal.yr(doe),
+ first.ill = cal.yr(dfi)-cal.yr(doe),
+ data = DMconv,
+ breaks = c(seq(0,6,2),10) # constant rate in intervals (0:6)
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+ )
>
> mB <-
+ Icens( first.well= cal.yr(doe)-cal.yr(doe), # Timescale is time since entry
+ last.well= cal.yr(dlw)-cal.yr(doe),
+ first.ill = cal.yr(dfi)-cal.yr(doe),
+ data = DMconv,
+ breaks = c(seq(0,6,1.5),10) # constant rate in intervals (0:6)
+ )
>
> mC <-
+ Icens( first.well= cal.yr(doe)-cal.yr(doe), # Timescale is time since entry
+ last.well= cal.yr(dlw)-cal.yr(doe),
+ first.ill = cal.yr(dfi)-cal.yr(doe),
+ data = DMconv,
+ breaks = c(seq(0,6,1),10) # constant rate in half as wide intervals
+ )
Warning message:
algorithm did not converge in: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart,
>
> #-------------------------------------------------------------------------------
> # 4:
> # Extract the estimates and plot them in the same frame.
>
> mAest <- summary(mA)
> mBest <- summary(mB)
> mCest <- summary(mC)
>
> plt( "int-cens-2" )
> plot(seq(0,6,2),mAest[,1],type="s",ylim=c(0,1.5),lwd=3)
> matlines(seq(0,6,2) ,mAest[,c(1,5,6)],type="s",lwd=c(3,1,1),col="black",lty=1)
> matlines(seq(0,6,1.5),mBest[,c(1,5,6)],type="s",lwd=c(3,1,1),lty="22",col="blue")
> matlines(seq(0,6,1) ,mCest[,c(1,5,6)],type="s",lwd=c(3,1,1),lty="22",col="red")
> dev.off()
windows

2
>
> #-------------------------------------------------------------------------------
> # 5:
> # Choosing a baseline specification we fit a MRR model
>
> mrr <-
+ Icens( first.well= cal.yr(doe)-cal.yr(doe), # Timescale is time since entry
+ last.well= cal.yr(dlw)-cal.yr(doe),
+ first.ill = cal.yr(dfi)-cal.yr(doe),
+ data = DMconv,
+ model = "MRR", # Multiplicative Rate Ratio ~ "Cox model"
+ formula = ~ gtol + grp,
+ breaks = c(0,1,2,6)
+ )
> mrr

Estimate StdErr z P RR 2.5% 97.5%
`(0,1)` 0.1272 0.0089 14.3132 0.000 NA 0.1098 0.1447
`(1,2)` 0.0957 0.0088 10.8835 0.000 NA 0.0785 0.1129
`(2,6)` 0.0784 0.0080 9.8285 0.000 NA 0.0628 0.0940
gtolIGT 0.3232 0.0698 4.6324 0.000 1.3815 1.2050 1.5839
grpControl 0.0841 0.0842 0.9985 0.318 1.0877 0.9222 1.2829
>
> #-------------------------------------------------------------------------------
> # 6:
> # Extract the parameters form the MRR model and plot the estimated rates
>
> plt( "int-cens-3" )
> RRest <- summary( mrr )
> tm <- c(0,1,2,6)
> plot( tm, RRest[c(1:3,3),1], ylim=c(0,0.3), type="s", lwd=2 )
> lines( tm, RRest[c(1:3,3),1]*RRest[4,5], col="red" , type="s", lwd=2 )
> lines( tm, RRest[c(1:3,3),1]*RRest[5,5], col="green", type="s", lwd=2 )
> lines( tm, RRest[c(1:3,3),1]*RRest[4,5]*RRest[5,5], col="blue" , type="s", lwd=2 )
> dev.off()
windows

2
>
> #-------------------------------------------------------------------------------
> # 7:
> # Fit the excess risk model, extract the parameters plot the estimated rates
>
> maer <-
+ Icens( first.well= cal.yr(doe)-cal.yr(doe), # Timescale is time since entry
+ last.well= cal.yr(dlw)-cal.yr(doe),
+ first.ill = cal.yr(dfi)-cal.yr(doe),
+ data = DMconv,
+ model = "AER", # Additive excess risk model
+ formula = ~ gtol + grp,
+ breaks = c(0,1,2,6)
+ )
> maer
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Estimate StdErr z P 2.5% 97.5%
`(0,1)` 0.1324 0.0135 9.7786 0.0000 0.1058 0.1589
`(1,2)` 0.0969 0.0132 7.3222 0.0000 0.0710 0.1228
`(2,6)` 0.0745 0.0121 6.1854 0.0000 0.0509 0.0982
gtolIGT 0.0379 0.0118 3.2084 0.0013 0.0147 0.0610
grpControl 0.0103 0.0120 0.8544 0.3929 -0.0133 0.0339
>
> plt( "int-cens-4" )
> ERest <- summary( maer )
> tm <- c(0,1,2,6)
> plot( tm, ERest[c(1:3,3),1], ylim=c(0,0.3), type="s", lwd=2 )
> lines( tm, ERest[c(1:3,3),1]+ERest[4,1], col="red" , type="s", lwd=2 )
> lines( tm, ERest[c(1:3,3),1]+ERest[5,1], col="green", type="s", lwd=2 )
> lines( tm, ERest[c(1:3,3),1]+ERest[4,1]+ERest[5,1], col="blue" , type="s", lwd=2 )
> dev.off()
windows

2
>
> #-------------------------------------------------------------------------------
> # 8:
> # Fit the excess risk model using bottstrap sampling
>
> system.time(
+ mer <-
+ Icens( first.well= cal.yr(doe)-cal.yr(doe), # Timescale is time since entry
+ last.well= cal.yr(dlw)-cal.yr(doe),
+ first.ill = cal.yr(dfi)-cal.yr(doe),
+ data = DMconv,
+ model = "MRR",
+ formula = ~ gtol,
+ breaks = c(0,1,2,6),
+ boot = 10
+ ) )
[1] 54.55 0.04 57.98 NA NA
> mer

Estimate StdErr z P RR 2.5% 97.5% Boot-med lo hi
`(0,1)` 0.1316 0.0092 14.3105 0 NA 0.1136 0.1497 0.1397 0.1118 0.1634
`(1,2)` 0.0992 0.0091 10.8929 0 NA 0.0814 0.1171 0.1018 0.0725 0.1144
`(2,6)` 0.0811 0.0082 9.8253 0 NA 0.0649 0.0972 0.0846 0.0688 0.1060
model.matrix.formula..data.....1. 0.3266 0.0581 5.6245 0 1.3862 1.2371 1.5532 0.2654 0.1886 0.4438
>
---------------------------------------------
Program: int-cens.R
Folder: C:\Bendix\Undervis\SPE\pracs\r
Ended: søndag 13. maj 2007, 16:33:26

Elapsed: 00:01:15
---------------------------------------------
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2.6 Time-splitting and SMR: The Thorotrast study

2.6.1 R-program for the analysis

This
R 2.5.0
---------------------------------------------
Program: thoro.R
Folder: C:\Bendix\Undervis\SPE\pracs\r
Started: mandag 28. maj 2007, 13:46:24
---------------------------------------------
> # All graphs are output to a device called by the function "plt"
> # Choose the appropriate definition of plt here by uncommenting:
> #
> plt <- function( file, ... ) pdf( paste(file,"pdf",sep="."), ... )
> # plt <- function( file, ... ) win.metafile( paste(file,"emf",sep="."), ... )
> # plt <- function( file, ... ) postscript( paste(file,"eps",sep="."), ... )
> # plt <- function( file, ... ) X11() # Output to the screen
>
> # Load the relevant libraries
> library( Epi )
> library( splines )
>
> #-------------------------------------------------------------------------------
> # 1:
> # Get the data and look at it
> #
> data( thoro )
> str( thoro )
'data.frame': 2470 obs. of 14 variables:
$ id : num 1 2 3 4 5 6 7 8 9 10 ...
$ sex : num 2 2 1 1 1 2 1 2 1 1 ...
$ birthdat:Class 'Date' num [1:2470] -19501 -15398 -24553 -18862 -24497 ...
$ contrast: num 1 1 1 1 1 1 1 1 1 1 ...
$ injecdat:Class 'Date' num [1:2470] -11399 -9531 -12554 -12274 -11912 ...
$ volume : num 22 80 10 10 10 20 10 40 34 10 ...
$ exitdat :Class 'Date' num [1:2470] 2479 -1450 -3755 2669 -8990 ...
$ exitstat: num 1 1 1 1 1 1 1 3 1 1 ...
$ cause : num 2 8 2 2 14 14 3 NA 2 2 ...
$ liverdat:Class 'Date' num [1:2470] -1450 -1450 NA 2669 NA ...
$ liver : num 1 1 0 1 0 0 0 0 1 0 ...
$ hepcc : num 0 0 0 0 0 0 0 0 0 0 ...
$ chola : num 0 0 0 0 0 0 0 0 0 0 ...
$ hmang : num 1 1 0 1 0 0 0 0 1 0 ...
> head( thoro )
id sex birthdat contrast injecdat volume exitdat exitstat cause liverdat liver hepcc chola hmang

1 1 2 1916-08-11 1 1938-10-17 22 1976-10-15 1 2 1966-01-12 1 0 0 1
2 2 2 1927-11-05 1 1943-11-28 80 1966-01-12 1 8 1966-01-12 1 0 0 1
3 3 1 1902-10-12 1 1935-08-19 10 1959-09-21 1 2 <NA> 0 0 0 0
4 4 1 1918-05-12 1 1936-05-25 10 1977-04-23 1 2 1977-04-23 1 0 0 1
5 5 1 1902-12-07 1 1937-05-22 10 1945-05-22 1 14 <NA> 0 0 0 0
6 6 2 1903-09-19 1 1937-04-26 20 1944-09-27 1 14 <NA> 0 0 0 0
>
> # Explore the functionality of cal.yr:
> bd <- thoro$birthdat[1:5]
> bd
[1] "1916-08-11" "1927-11-05" "1902-10-12" "1918-05-12" "1902-12-07"
> as.numeric(bd)
[1] -19501 -15398 -24553 -18862 -24497
> cal.yr(bd)
[1] 1916.609 1927.843 1902.778 1918.359 1902.931
attr(,"class")
[1] "cal.yr" "numeric"
> (cal.yr(bd)-1970)*365.25
[1] -19501 -15398 -24553 -18862 -24497
attr(,"class")
[1] "cal.yr" "numeric"
>
> #-------------------------------------------------------------------------------
> # x:
> # Draw a Lexis diagram for 10% of the data
> #
> Lexis.diagram( age=c(0,100), date=c(1935,1995) )
> Lexis.lines( birth.date=birthdat, entry.date=injecdat, exit.date=exitdat,
+ col.life=c("red","blue")[contrast], lwd.life=1,
+ fail=!is.na(cause), col.fail=c("red","blue")[contrast],
+ pch.fail=c(1,16),
+ data=thoro[runif(nrow(thoro))<0.1,] )
> dev.off()
null device

1
>
> #-------------------------------------------------------------------------------
> # 2:
> # Define a Lexis object with the follow-up in the cohort using timescales
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> # calendar time (per), age (age) and time from contrast injection (tfi):
> # Define three time-scales for the follow-up
> # Starting points for all timescales and end point for one of them.
> #
> thL <- Lexis(entry = list("per"=cal.yr(injecdat),
+ "age"=cal.yr(injecdat) - cal.yr(birthdat),
+ "tfi"=0),
+ exit = list("per"=cal.yr(exitdat)),
+ entry.status = 0,
+ exit.status = (exitstat==1),
+ id = id,
+ data = thoro)
> str( thL )
Classes 'Lexis' and 'data.frame': 2470 obs. of 21 variables:
$ per :Classes 'cal.yr', 'numeric' num [1:2470] 1939 1944 1936 1936 1937 ...
$ age :Classes 'cal.yr', 'numeric' num [1:2470] 22.2 16.1 32.9 18.0 34.5 ...
$ tfi : num 0 0 0 0 0 0 0 0 0 0 ...
$ lex.deltat :Classes 'cal.yr', 'numeric' num [1:2470] 38.0 22.1 24.1 40.9 8.0 ...
$ lex.status1: num 0 0 0 0 0 0 0 0 0 0 ...
$ lex.status2: logi TRUE TRUE TRUE TRUE TRUE TRUE ...
$ lex.id : num 1 2 3 4 5 6 7 8 9 10 ...
$ id : num 1 2 3 4 5 6 7 8 9 10 ...
$ sex : num 2 2 1 1 1 2 1 2 1 1 ...
$ birthdat :Class 'Date' num [1:2470] -19501 -15398 -24553 -18862 -24497 ...
$ contrast : num 1 1 1 1 1 1 1 1 1 1 ...
$ injecdat :Class 'Date' num [1:2470] -11399 -9531 -12554 -12274 -11912 ...
$ volume : num 22 80 10 10 10 20 10 40 34 10 ...
$ exitdat :Class 'Date' num [1:2470] 2479 -1450 -3755 2669 -8990 ...
$ exitstat : num 1 1 1 1 1 1 1 3 1 1 ...
$ cause : num 2 8 2 2 14 14 3 NA 2 2 ...
$ liverdat :Class 'Date' num [1:2470] -1450 -1450 NA 2669 NA ...
$ liver : num 1 1 0 1 0 0 0 0 1 0 ...
$ hepcc : num 0 0 0 0 0 0 0 0 0 0 ...
$ chola : num 0 0 0 0 0 0 0 0 0 0 ...
$ hmang : num 1 1 0 1 0 0 0 0 1 0 ...
- attr(*, "time.scales")= chr "per" "age" "tfi"
- attr(*, "breaks")=List of 3
..$ per: NULL
..$ age: NULL
..$ tfi: NULL

> head( thL )
per age tfi lex.deltat lex.status1 lex.status2 lex.id id sex birthdat contrast injecdat

1 1938.791 22.18207 0 37.995893 0 TRUE 1 1 2 1916-08-11 1 1938-10-17
2 1943.906 16.06297 0 22.124572 0 TRUE 2 2 2 1927-11-05 1 1943-11-28
3 1935.629 32.85147 0 24.090349 0 TRUE 3 3 1 1902-10-12 1 1935-08-19
4 1936.396 18.03696 0 40.911704 0 TRUE 4 4 1 1918-05-12 1 1936-05-25
5 1937.387 34.45585 0 8.000000 0 TRUE 5 5 1 1902-12-07 1 1937-05-22
6 1937.316 33.60164 0 7.422313 0 TRUE 6 6 2 1903-09-19 1 1937-04-26
volume exitdat exitstat cause liverdat liver hepcc chola hmang

1 22 1976-10-15 1 2 1966-01-12 1 0 0 1
2 80 1966-01-12 1 8 1966-01-12 1 0 0 1
3 10 1959-09-21 1 2 <NA> 0 0 0 0
4 10 1977-04-23 1 2 1977-04-23 1 0 0 1
5 10 1945-05-22 1 14 <NA> 0 0 0 0
6 20 1944-09-27 1 14 <NA> 0 0 0 0
>
> #-------------------------------------------------------------------------------
> # 3:
> # Plot a Lexis diagram using the default method for Lexis objects.
> # Life lines are dark grey by default to avoid producing a solid block
> # of black.
> #
> plt( "thoro-0" )
> plot(thL)
>
> # Add some colored points for the different exits.
> points(subset(thL,exitstat==1), col="blue")
> points(subset(thL,exitstat==2), col="green")
> points(subset(thL,exitstat==3), col="red")
> dev.off()
null device

1
>
> # Lexis diagram with more detail
> plt( "thoro-1" )
> thL.sub <- subset(thL, runif(nrow(thL)) < 0.1)
> plot(thL.sub, col=c("red","blue")[thL.sub$contrast],
+ xaxs="i", xlim=c(1920,2020),
+ yaxs="i", ylim=c(0,100), las=1,
+ xlab="Date of follow-up", ylab="Age",
+ grid=0:20*5, lty.grid="14" )
> points(thL.sub, col=c("red","blue")[thL.sub$contrast],
+ pch=c(16,NA,NA)[thL.sub$exitstat])
> dev.off()
null device

1
>
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> ## If you only want the failures and not the lines in color by group
> plt( "thoro-2" )
> plot(thL.sub,
+ xaxs="i", xlim=c(1920,2020),
+ yaxs="i", ylim=c(0,100),
+ las=1, grid=seq(0,100,5), lty.grid=1, col=gray(0.4) )
> points( thL.sub, col=c("red","blue")[thL.sub$contrast],
+ pch=c(16,NA,1)[thL.sub$exitstat], lwd=2 )
> # or:
> with( thL.sub,
+ points( thL.sub, col=c("red","blue")[contrast],
+ pch=c(NA,16)[(exitstat==1)+1] )
+ )
> # or:
> points(subset(thL.sub, exitstat==1 & contrast==1), col="red", pch=16)
> points(subset(thL.sub, exitstat==1 & contrast==2), col="blue", pch=16)
> dev.off()
null device

1
>
> #-------------------------------------------------------------------------------
> # 4:
> # Definition and tabulation of deaths and person-years from original dataset
> #
> thoro$entrydat <- thoro$injecdat + 366
> thoro$Y <- pmax( 0, cal.yr(thoro$exitdat)-cal.yr(thoro$entrydat) )
> thoro$D <- as.numeric( thoro$exitstat==1 & thoro$Y > 0 )
> # Remove persons without follow-up after one year.
> thoro <- thoro[thoro$Y>0,]
> str( thoro )
'data.frame': 2042 obs. of 17 variables:
$ id : num 1 2 3 4 5 6 7 9 10 11 ...
$ sex : num 2 2 1 1 1 2 1 1 1 1 ...
$ birthdat:Class 'Date' num [1:2042] -19501 -15398 -24553 -18862 -24497 ...
$ contrast: num 1 1 1 1 1 1 1 1 1 1 ...
$ injecdat:Class 'Date' num [1:2042] -11399 -9531 -12554 -12274 -11912 ...
$ volume : num 22 80 10 10 10 20 10 34 10 10 ...
$ exitdat :Class 'Date' num [1:2042] 2479 -1450 -3755 2669 -8990 ...
$ exitstat: num 1 1 1 1 1 1 1 1 1 1 ...
$ cause : num 2 8 2 2 14 14 3 2 2 2 ...
$ liverdat:Class 'Date' num [1:2042] -1450 -1450 NA 2669 NA ...
$ liver : num 1 1 0 1 0 0 0 1 0 0 ...
$ hepcc : num 0 0 0 0 0 0 0 0 0 0 ...
$ chola : num 0 0 0 0 0 0 0 0 0 0 ...
$ hmang : num 1 1 0 1 0 0 0 1 0 0 ...
$ entrydat:Class 'Date' num [1:2042] -11033 -9165 -12188 -11908 -11546 ...
$ Y : num 37.0 21.1 23.1 39.9 7.0 ...
$ D : num 1 1 1 1 1 1 1 1 1 1 ...
> st <-
+ stat.table( contrast,
+ list( D=sum( D ), Y=sum( Y ), Rate=ratio( D, Y/1000 ) ),
+ margin=TRUE, data=thoro )
> st
------------------------------------
contrast D Y Rate
------------------------------------
1 748.00 19242.20 38.87
2 796.00 30515.03 26.09

Total 1544.00 49757.22 31.03
------------------------------------
>
> #-------------------------------------------------------------------------------
> # 5:
> # This could also be completed using a Lexis version
> # --- remember the reference date is now one year after injection
> #
> thL <- Lexis(entry = list("per"=cal.yr(entrydat),
+ "age"=cal.yr(entrydat) - cal.yr(birthdat),
+ "tfi"=1),
+ exit = list("per"=cal.yr(exitdat)),
+ entry.status = 0,
+ exit.status = (exitstat==1),
+ id = id,
+ data = thoro)
> stat.table( contrast,
+ list( D = sum( lex.status2 ),
+ Y = sum( lex.deltat ),
+ Rate = ratio( lex.status2, lex.deltat/1000 ) ),
+ margin=TRUE, data=thL )
------------------------------------
contrast D Y Rate
------------------------------------
1 748.00 19242.20 38.87
2 796.00 30515.03 26.09

Total 1544.00 49757.22 31.03
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------------------------------------
>
> #-------------------------------------------------------------------------------
> # 6:
> # Overall rates and Rate-Ratio with c.i.
> # First use tabulated data from stat.table
> #
> RR <- st[3,1]/st[3,2]
> erf <- exp( 1.96*sqrt(1/st[1,1]+1/st[1,2]) )
> c(RR,RR/erf,RR*erf)
[1] 1.490211 1.348655 1.646624
>
> # Readble form:
> round(c(RR,RR/erf,RR*erf),3)
[1] 1.490 1.349 1.647
>
> # A simple GLM to do the same task
> m0 <- glm( D ~ factor( contrast ) + offset( log(Y/1000) ),
+ family=poisson, data=thoro )
> # summary( m0 )
> round( ci.lin( m0, Exp=TRUE ), 3 )

Estimate StdErr z P exp(Est.) 2.5% 97.5%
(Intercept) 3.660 0.037 100.108 0 38.873 36.185 41.761
factor(contrast)2 -0.399 0.051 -7.834 0 0.671 0.607 0.741
> round( 1/ci.lin( m0, Exp=TRUE )[2,5:7,drop=FALSE], 3 )

exp(Est.) 2.5% 97.5%
factor(contrast)2 1.49 1.647 1.349
> # Use a contrast matrix to compute the desired parameter functions
> # Each row in CM is multiplied onto the parameters of m0
> CM <- rbind( c(1,0),c(1,1),c(0,-1),c(0,1) )
> rownames( CM ) <- c("Thoro","Control","RR","1/RR")
> CM

[,1] [,2]
Thoro 1 0
Control 1 1
RR 0 -1
1/RR 0 1
> round(ci.lin( m0, ctr.mat=CM, Exp=TRUE )[,5:7],3)

exp(Est.) 2.5% 97.5%
Thoro 38.873 36.185 41.761
Control 26.086 24.335 27.962
RR 1.490 1.349 1.647
1/RR 0.671 0.607 0.741
>
> #-------------------------------------------------------------------------------
> # 7:
> # Remove follow-up after liver cancer
> #
> with(thoro, table( contrast, liver ) )

liver
contrast 0 1

1 677 130
2 1235 0

> thoro$exitdat <- pmin( thoro$exitdat, thoro$liverdat, na.rm=TRUE )
> thoro$exitstat[thoro$exitdat==thoro$liverdat] <- 0
>
> #-------------------------------------------------------------------------------
> # 8:
> # Renew the definition of thL using the smaller version of thoro
> #
> thL <- Lexis(entry = list("per"=cal.yr(injecdat),
+ "age"=cal.yr(injecdat) - cal.yr(birthdat),
+ "tfi"=0),
+ exit = list("per"=cal.yr(exitdat)),
+ entry.status = 0,
+ exit.status = (exitstat==1),
+ id = id,
+ data = thoro)
>
> # Split in 5-year intervals along age and period axes
> thx <- splitLexis(thL, breaks=list( tfi=c(0:4,seq(5,55,5)),
+ age=seq(0,100,5),
+ per=seq(1900,2000,5) ) )
> str( thx )
Classes 'Lexis' and 'data.frame': 39879 obs. of 24 variables:
$ lex.id : num 1 1 1 1 1 1 1 1 1 1 ...
$ per : num 1939 1940 1940 1941 1942 ...
$ age : num 22.2 23.2 23.4 24.2 25.0 ...
$ tfi : num 0.00 1.00 1.21 2.00 2.82 ...
$ lex.deltat : num 1.000 0.209 0.791 0.818 0.182 ...
$ lex.status1: num 0 0 0 0 0 0 0 0 0 0 ...
$ lex.status2: num 0 0 0 0 0 0 0 0 0 0 ...
$ id : num 1 1 1 1 1 1 1 1 1 1 ...
$ sex : num 2 2 2 2 2 2 2 2 2 2 ...
$ birthdat :Class 'Date' num [1:39879] -19501 -19501 -19501 -19501 -19501 ...
$ contrast : num 1 1 1 1 1 1 1 1 1 1 ...
$ injecdat :Class 'Date' num [1:39879] -11399 -11399 -11399 -11399 -11399 ...
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$ volume : num 22 22 22 22 22 22 22 22 22 22 ...
$ exitdat :Class 'Date' num [1:39879] -1450 -1450 -1450 -1450 -1450 -1450 -1450 -1450 -1450 -1450 ...
$ exitstat : num 0 0 0 0 0 0 0 0 0 0 ...
$ cause : num 2 2 2 2 2 2 2 2 2 2 ...
$ liverdat :Class 'Date' num [1:39879] -1450 -1450 -1450 -1450 -1450 -1450 -1450 -1450 -1450 -1450 ...
$ liver : num 1 1 1 1 1 1 1 1 1 1 ...
$ hepcc : num 0 0 0 0 0 0 0 0 0 0 ...
$ chola : num 0 0 0 0 0 0 0 0 0 0 ...
$ hmang : num 1 1 1 1 1 1 1 1 1 1 ...
$ entrydat :Class 'Date' num [1:39879] -11033 -11033 -11033 -11033 -11033 ...
$ Y : num 37 37 37 37 37 ...
$ D : num 1 1 1 1 1 1 1 1 1 1 ...
- attr(*, "breaks")=List of 3
..$ per: num 1900 1905 1910 1915 1920 ...
..$ age: num 0 5 10 15 20 25 30 35 40 45 ...
..$ tfi: num 0 1 2 3 4 5 10 15 20 25 ...
- attr(*, "time.scales")= chr "per" "age" "tfi"
> subset( thx, id==1 )[,1:10]

lex.id per age tfi lex.deltat lex.status1 lex.status2 id sex birthdat
1 1 1938.791 22.18207 0.000000 1.0000000 0 0 1 2 1916-08-11
2 1 1939.791 23.18207 1.000000 0.2087611 0 0 1 2 1916-08-11
3 1 1940.000 23.39083 1.208761 0.7912389 0 0 1 2 1916-08-11
4 1 1940.791 24.18207 2.000000 0.8179329 0 0 1 2 1916-08-11
5 1 1941.609 25.00000 2.817933 0.1820671 0 0 1 2 1916-08-11
6 1 1941.791 25.18207 3.000000 1.0000000 0 0 1 2 1916-08-11
7 1 1942.791 26.18207 4.000000 1.0000000 0 0 1 2 1916-08-11
8 1 1943.791 27.18207 5.000000 1.2087611 0 0 1 2 1916-08-11
9 1 1945.000 28.39083 6.208761 1.6091718 0 0 1 2 1916-08-11
10 1 1946.609 30.00000 7.817933 2.1820671 0 0 1 2 1916-08-11
11 1 1948.791 32.18207 10.000000 1.2087611 0 0 1 2 1916-08-11
12 1 1950.000 33.39083 11.208761 1.6091718 0 0 1 2 1916-08-11
13 1 1951.609 35.00000 12.817933 2.1820671 0 0 1 2 1916-08-11
14 1 1953.791 37.18207 15.000000 1.2087611 0 0 1 2 1916-08-11
15 1 1955.000 38.39083 16.208761 1.6091718 0 0 1 2 1916-08-11
16 1 1956.609 40.00000 17.817933 2.1820671 0 0 1 2 1916-08-11
17 1 1958.791 42.18207 20.000000 1.2087611 0 0 1 2 1916-08-11
18 1 1960.000 43.39083 21.208761 1.6091718 0 0 1 2 1916-08-11
19 1 1961.609 45.00000 22.817933 2.1820671 0 0 1 2 1916-08-11
20 1 1963.791 47.18207 25.000000 1.2087611 0 0 1 2 1916-08-11
21 1 1965.000 48.39083 26.208761 1.0301164 0 0 1 2 1916-08-11
>
> # Compare the two datasets:
> with( thL, table( lex.status2>0, contrast ) )

contrast
1 2

FALSE 188 439
TRUE 619 796

> with( thx, table( lex.status2>0, contrast ) )
contrast

1 2
FALSE 14857 23607
TRUE 619 796

>
> ## Show breaks in split Lexis object
> plt( "thoro-3" )
> plot(thx, "tfi")
> dev.off()
null device

1
>
> # Tabulation of follow-up time and events:
> stat.table( list( contrast=thx$contrast ),
+ list( D = sum( status(thx) > 0 ),
+ Y = sum( deltat(thx) ),
+ Rate = ratio( status(thx) > 0, deltat(thx)/1000 ) ),
+ margin = TRUE,
+ data = thx )
------------------------------------
contrast D Y Rate
------------------------------------
1 619.00 20031.33 30.90
2 796.00 31752.56 25.07

Total 1415.00 51783.89 27.33
------------------------------------
>
> # Direct tabulation from original dataset
> stat.table( contrast,
+ list( D=sum( D ), Y=sum( Y ), Rate=ratio( D, Y/1000 ) ),
+ margin=TRUE, data=thoro )
------------------------------------
contrast D Y Rate
------------------------------------
1 748.00 19242.20 38.87
2 796.00 30515.03 26.09

Total 1544.00 49757.22 31.03
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------------------------------------
>
> #-------------------------------------------------------------------------------
> # 9:
> #
> # Compute the interval midpoints and use these for tabulation
> thx$m.tfi <- timeBand(thx, "tfi", "middle")
> stx <-
+ stat.table( list( m.tfi, contrast ),
+ list( D=sum( status(thx) > 0 ),
+ Y=sum( deltat(thx) ),
+ Rate=ratio( status(thx) > 0, deltat(thx)/1000 ) ),
+ margin=TRUE, data=thx )
> stx
-----------------------------------

----------contrast----------
m.tfi 1 2 Total
-----------------------------------
0.5 0.00 0.00 0.00

807.00 1235.00 2042.00
0.00 0.00 0.00

1.5 35.00 52.00 87.00
785.50 1205.46 1990.96
44.56 43.14 43.70

2.5 19.00 35.00 54.00
761.34 1160.03 1921.37
24.96 30.17 28.10

3.5 14.00 28.00 42.00
744.52 1125.11 1869.62
18.80 24.89 22.46

4.5 17.00 26.00 43.00
728.84 1101.78 1830.62
23.32 23.60 23.49

7.5 69.00 92.00 161.00
3423.77 5216.21 8639.99
20.15 17.64 18.63

12.5 70.00 94.00 164.00
3040.81 4705.23 7746.03
23.02 19.98 21.17

17.5 68.00 89.00 157.00
2707.53 4260.68 6968.20
25.12 20.89 22.53

22.5 73.00 101.00 174.00
2305.88 3777.01 6082.89
31.66 26.74 28.60

27.5 79.00 94.00 173.00
1837.09 3271.58 5108.67
43.00 28.73 33.86

32.5 66.00 91.00 157.00
1345.66 2688.94 4034.60
49.05 33.84 38.91

37.5 51.00 74.00 125.00
855.55 1562.24 2417.80
59.61 47.37 51.70

42.5 39.00 20.00 59.00
499.82 442.26 942.09
78.03 45.22 62.63

47.5 17.00 0.00 17.00
168.56 1.04 169.59
100.86 0.00 100.24

52.5 2.00 NA 2.00
19.44 NA 19.44
102.86 NA 102.86

Total 619.00 796.00 1415.00
20031.33 31752.56 51783.89

30.90 25.07 27.33
-----------------------------------
> # More compact print, annotation slightly better, but crap formatting of numbers
> round( ftable( stx, row.vars=2 ), 1 )

contents D Y Rate
contrast 1 2 Total 1 2 Total 1 2 Total



98 Time-splitting and SMR ( Thorotrast ) Statistical Practise in Epidemiology

m.tfi
0.5 0.0 0.0 0.0 807.0 1235.0 2042.0 0.0 0.0 0.0
1.5 35.0 52.0 87.0 785.5 1205.5 1991.0 44.6 43.1 43.7
2.5 19.0 35.0 54.0 761.3 1160.0 1921.4 25.0 30.2 28.1
3.5 14.0 28.0 42.0 744.5 1125.1 1869.6 18.8 24.9 22.5
4.5 17.0 26.0 43.0 728.8 1101.8 1830.6 23.3 23.6 23.5
7.5 69.0 92.0 161.0 3423.8 5216.2 8640.0 20.2 17.6 18.6
12.5 70.0 94.0 164.0 3040.8 4705.2 7746.0 23.0 20.0 21.2
17.5 68.0 89.0 157.0 2707.5 4260.7 6968.2 25.1 20.9 22.5
22.5 73.0 101.0 174.0 2305.9 3777.0 6082.9 31.7 26.7 28.6
27.5 79.0 94.0 173.0 1837.1 3271.6 5108.7 43.0 28.7 33.9
32.5 66.0 91.0 157.0 1345.7 2688.9 4034.6 49.0 33.8 38.9
37.5 51.0 74.0 125.0 855.6 1562.2 2417.8 59.6 47.4 51.7
42.5 39.0 20.0 59.0 499.8 442.3 942.1 78.0 45.2 62.6
47.5 17.0 0.0 17.0 168.6 1.0 169.6 100.9 0.0 100.2
52.5 2.0 NA 2.0 19.4 NA 19.4 102.9 NA 102.9
Total 619.0 796.0 1415.0 20031.3 31752.6 51783.9 30.9 25.1 27.3
>
> #-------------------------------------------------------------------------------
> # 10:
> # Show the two sets of rates in graph
> #
> # What does the stat.table object look like?
> dimnames( stx )
$contents

D Y Rate
"D" "Y" "Rate"

$m.tfi
[1] "0.5" "1.5" "2.5" "3.5" "4.5" "7.5" "12.5" "17.5" "22.5" "27.5" "32.5" "37.5" "42.5"
[14] "47.5" "52.5" "Total"

$contrast
[1] "1" "2" "Total"

> # The relevant 2-column matrix:
> stx[3,1:13,-3]

contrast
m.tfi 1 2
0.5 0.00000 0.00000
1.5 44.55739 43.13716
2.5 24.95584 30.17168
3.5 18.80407 24.88656
4.5 23.32465 23.59824
7.5 20.15322 17.63731
12.5 23.02019 19.97779
17.5 25.11518 20.88871
22.5 31.65819 26.74071
27.5 43.00282 28.73227
32.5 49.04647 33.84231
37.5 59.61047 47.36785
42.5 78.02734 45.22212

> # Use matplot to make nice a graph with correct x-axis
> plt( "thoro-4" )
> matplot( as.numeric(dimnames(stx)[[2]][1:13]),
+ stx[3,1:13,-3], log="y",
+ type="o", lwd=4, lty=1, pch=16,
+ xlab="Time since angiography", ylab="Rate per 1000 P.Y." )
Warning messages:
1: 2 y values <= 0 omitted from logarithmic plot in: xy.coords(x, y, xlabel, ylabel, log = log)
2: 1 y value <= 0 omitted from logarithmic plot in: xy.coords(x, y, xlabel, ylabel, log)
> dev.off()
null device

1
>
> #-------------------------------------------------------------------------------
> # 11:
> # Split data finely and compute mitpoints and exit status
> #
> thxx <- splitLexis(thL, breaks=list("tfi"=c(0,seq(1,100,0.5))))
> dim( thxx )
[1] 102538 24
> # plot(thxx, "tfi")
> table(thxx$tfi )

0 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11
2042 2042 1988 1952 1920 1894 1866 1851 1831 1807 1792 1772 1758 1751 1734 1714 1698 1680 1659 1639 1618 1594
11.5 12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20 20.5 21 21.5 22
1578 1563 1554 1535 1513 1497 1482 1470 1458 1444 1428 1413 1396 1379 1362 1340 1326 1309 1290 1271 1258 1237
22.5 23 23.5 24 24.5 25 25.5 26 26.5 27 27.5 28 28.5 29 29.5 30 30.5 31 31.5 32 32.5 33
1213 1197 1177 1163 1144 1123 1106 1080 1062 1041 1020 1004 985 960 936 920 897 886 869 852 829 793
33.5 34 34.5 35 35.5 36 36.5 37 37.5 38 38.5 39 39.5 40 40.5 41 41.5 42 42.5 43 43.5 44
745 724 686 651 612 587 552 514 483 446 418 387 350 320 290 264 242 213 185 153 134 113
44.5 45 45.5 46 46.5 47 47.5 48 48.5 49 49.5 50 50.5 51 51.5 52 52.5 53 53.5
93 76 57 46 39 36 33 26 23 19 15 12 8 6 5 4 4 3 2

>
> ## Note the functions used to extract the relevant quantities
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> ## Get time band
> thxx$m.tfi <- timeBand(thxx, "tfi", "middle")
> ## Set failure variable
> thxx$fail <- (status(thxx) > 0)
>
> #-------------------------------------------------------------------------------
> # 12:
> # Modelling by a smooth function - natural splines
> #
> library( splines )
> # knots, boundary knots and timepoints for prediction
> kn <- c(4,8,seq(10,40,10))
> bk <- c(1,50)
>
> ## The model with natural splines and interaction
> ## Note that since there is no intercept and no main effect of
> ## contrast in the model, the intercept must be included in the
> ## design matrix for the natural splines in ns():
> m1 <- glm( fail ~ -1 + factor(contrast):ns( m.tfi, knots=kn, Bo=bk, i=T ) +
+ offset( log( lex.deltat/1000 ) ),
+ family=poisson, data=thxx)
> summary( m1 )

Call:
glm(formula = fail ~ -1 + factor(contrast):ns(m.tfi, knots = kn,

Bo = bk, i = T) + offset(log(lex.deltat/1000)), family = poisson,
data = thxx)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.3523 -0.1710 -0.1557 -0.1453 4.6605

Coefficients:
Estimate Std. Error z value Pr(>|z|)

factor(contrast)1:ns(m.tfi, knots = kn, Bo = bk, i = T)1 2.9121 0.2606 11.172 < 2e-16
factor(contrast)2:ns(m.tfi, knots = kn, Bo = bk, i = T)1 3.0598 0.2086 14.669 < 2e-16
factor(contrast)1:ns(m.tfi, knots = kn, Bo = bk, i = T)2 2.9051 0.2290 12.687 < 2e-16
factor(contrast)2:ns(m.tfi, knots = kn, Bo = bk, i = T)2 2.6665 0.1992 13.386 < 2e-16
factor(contrast)1:ns(m.tfi, knots = kn, Bo = bk, i = T)3 3.1593 0.2327 13.578 < 2e-16
factor(contrast)2:ns(m.tfi, knots = kn, Bo = bk, i = T)3 3.0397 0.2044 14.869 < 2e-16
factor(contrast)1:ns(m.tfi, knots = kn, Bo = bk, i = T)4 3.2602 0.2393 13.622 < 2e-16
factor(contrast)2:ns(m.tfi, knots = kn, Bo = bk, i = T)4 3.2074 0.2228 14.393 < 2e-16
factor(contrast)1:ns(m.tfi, knots = kn, Bo = bk, i = T)5 3.8755 0.2103 18.428 < 2e-16
factor(contrast)2:ns(m.tfi, knots = kn, Bo = bk, i = T)5 3.2949 0.2237 14.728 < 2e-16
factor(contrast)1:ns(m.tfi, knots = kn, Bo = bk, i = T)6 3.0062 0.2391 12.574 < 2e-16
factor(contrast)2:ns(m.tfi, knots = kn, Bo = bk, i = T)6 2.9544 0.3462 8.533 < 2e-16
factor(contrast)1:ns(m.tfi, knots = kn, Bo = bk, i = T)7 8.1812 0.2336 35.022 < 2e-16
factor(contrast)2:ns(m.tfi, knots = kn, Bo = bk, i = T)7 7.2908 0.7093 10.279 < 2e-16
factor(contrast)1:ns(m.tfi, knots = kn, Bo = bk, i = T)8 2.2373 0.3197 6.998 2.6e-12
factor(contrast)2:ns(m.tfi, knots = kn, Bo = bk, i = T)8 0.7053 1.1803 0.598 0.55

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 21684 on 102538 degrees of freedom
Residual deviance: 14852 on 102522 degrees of freedom
AIC: 17714

Number of Fisher Scoring iterations: 7

>
> #-------------------------------------------------------------------------------
> # 13:
> #
> # A set of time-points and a contrast matrix for the rates at these times
> tpt <- seq(1,50,0.2)
> # Note that the knots AND boundary knots must be the same as in the model
> CM <- ns( tpt, knots=kn, Bo=bk, intercept=TRUE )
>
> # Briefly explore how ci.lin works:
> # ci.lin( m1 )[,1,drop=F]
> # ci.lin( m1, subset="1:ns" )[,1,drop=F]
> # ci.lin( m1, subset="2:ns" )[,1,drop=F]
> # ci.lin( m1, subset=c("1:ns","2:ns") )[,1,drop=F]
>
> # Extract the rates for each group and plot them
> plt( "thoro-5" )
> par( mar=c(3,3,1,3), mgp=c(3,1,0)/1.6, las=1 )
> mort1 <- ci.lin( m1, ctr.mat=CM, subset="1:ns", E=T )[,5:7]
> mort2 <- ci.lin( m1, ctr.mat=CM, subset="2:ns", E=T )[,5:7]
> matplot( tpt, cbind( mort1, mort2 ), type="l", ylim=c(0.2,200),
+ log="y", lty=1, lwd=rep(c(4,1,1),2), col=rep(c("red","blue"),each=3),
+ xlab="Time since angiograpy (years)",
+ ylab="Mortality rate per 1000 PY" )
>
> #-------------------------------------------------------------------------------
> # 14:
> # ci.lin can also be used to extract the rate ratio:
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> #
> rr <- ci.lin( m1, ctr.mat=cbind(CM,-CM), subset=c("1:ns","2:ns"), E=T )[,5:7]
> rr.pl <- 10 # reference level for the RR=1 on the graph
> # - and then add the RR curve to the plot
> matlines( tpt, rr*rr.pl, type="l", lwd=c(4,1,1), col="black", lty=1 )
> abline( h=rr.pl )
> axis( side=4,
+ at=rr.pl*(x <- c(c(1,2,5)/10,c(1,2,5),c(1,2,5)*10)),
+ labels=x )
> mtext( "Rate ratio", side=4, line=3/1.6, las=0 )
> dev.off()
null device

1
>
> #-------------------------------------------------------------------------------
> # 15:
> # Get the population mortality data.
> #
> data( gmortDK )
> str( gmortDK )
'data.frame': 418 obs. of 21 variables:
$ agr : num 0 5 10 15 20 25 30 35 40 45 ...
$ per : num 38 38 38 38 38 38 38 38 38 38 ...
$ sex : num 1 1 1 1 1 1 1 1 1 1 ...
$ risk: num 996019 802334 753017 773393 813882 ...
$ dt : num 14079 726 600 1167 2031 ...
$ rt : num 14.135 0.905 0.797 1.509 2.495 ...
$ r1 : num 1.315 0.222 0.151 0.304 0.587 ...
$ r2 : num 0.127 0.045 0.054 0.07 0.102 0.123 0.205 0.309 0.535 0.99 ...
$ r3 : num 0.052 0.015 0.019 0.021 0.021 0.038 0.037 0.064 0.086 0.159 ...
$ r4 : num 0.099 0.006 0.011 0.012 0.022 0.019 0.022 0.044 0.04 0.084 ...
$ r5 : num 0.033 0.004 0.007 0.008 0.009 0.015 0.01 0.014 0.012 0.031 ...
$ r6 : num 0.453 0.066 0.045 0.076 0.103 0.081 0.125 0.131 0.147 0.225 ...
$ r7 : num 0.005 0.001 0.004 0.004 0.009 0.009 0.025 0.027 0.049 0.09 ...
$ r8 : num 0.067 0.047 0.072 0.078 0.098 ...
$ r9 : num 2.819 0.045 0.028 0.047 0.084 ...
$ r10 : num 0.009 0.002 0.004 0.001 0.005 0.013 0.016 0.022 0.056 0.095 ...
$ r11 : num 1.325 0.076 0.057 0.098 0.118 ...
$ r12 : num 0.045 0.03 0.027 0.027 0.05 0.051 0.054 0.09 0.124 0.193 ...
$ r13 : num 0.341 0.009 0.007 0.021 0.021 0.016 0.031 0.03 0.117 0.183 ...
$ r14 : num 6.777 0.010 0.025 0.036 0.026 ...
$ r15 : num 0.667 0.327 0.287 0.707 1.241 ...
> head( gmortDK )
agr per sex risk dt rt r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12

1 0 38 1 996019 14079 14.135 1.315 0.127 0.052 0.099 0.033 0.453 0.005 0.067 2.819 0.009 1.325 0.045
2 5 38 1 802334 726 0.905 0.222 0.045 0.015 0.006 0.004 0.066 0.001 0.047 0.045 0.002 0.076 0.030
3 10 38 1 753017 600 0.797 0.151 0.054 0.019 0.011 0.007 0.045 0.004 0.072 0.028 0.004 0.057 0.027
4 15 38 1 773393 1167 1.509 0.304 0.070 0.021 0.012 0.008 0.076 0.004 0.078 0.047 0.001 0.098 0.027
5 20 38 1 813882 2031 2.495 0.587 0.102 0.021 0.022 0.009 0.103 0.009 0.098 0.084 0.005 0.118 0.050
6 25 38 1 789990 1862 2.357 0.586 0.123 0.038 0.019 0.015 0.081 0.009 0.078 0.073 0.013 0.120 0.051

r13 r14 r15
1 0.341 6.777 0.667
2 0.009 0.010 0.327
3 0.007 0.025 0.287
4 0.021 0.036 0.707
5 0.021 0.026 1.241
6 0.016 0.028 1.106
>
> #-------------------------------------------------------------------------------
> # 16:
> # Now split the data as before but also by age and period in order to
> # be able to match with the population data.
> #
> thxx <- splitLexis(thL, breaks=list( age=seq(0,90,5),
+ per=seq(1938,2038,5),
+ tfi=seq(0,55,0.5) ) )
> dim( thxx )
[1] 125134 24
> # Show the follow-up and how it is cut by age and period
> plot(thxx)
> # Show the follow-up and how it is cut by time from injection (3rd) and age (2nd)
> plot(thxx,3:2)
>
> #-------------------------------------------------------------------------------
> # 17:
> # Create variables in thxx that can be merged with population data
> #
> thxx$agr <- timeBand(thxx, "age", "left")
> thxx$pgr <- timeBand(thxx, "per", "left")
> thxx$m.tfi <- timeBand(thxx, "tfi", "mid")
>
> # Some additional manipulation required to get the merge on period right...
> gmortDK$pgr <- gmortDK$per + 1900
>
> ## Merge them to the split thorotrast data
> th1ap <- merge(thxx, gmortDK[,c("agr","pgr","sex","rt")],
+ by=c("agr","pgr","sex"))
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> dim( th1ap )
[1] 125072 28
>
> #-------------------------------------------------------------------------------
> # 18:
> # Now we can compute the deaths, person-years and expected values
> #
> th1ap <- transform( th1ap,
+ D = (lex.status2 > 0),
+ Y = lex.deltat,
+ E = lex.deltat * rt / 1000 )
> str( th1ap )
'data.frame': 125072 obs. of 29 variables:
$ sex : num 1 1 1 1 1 1 1 1 1 1 ...
$ agr : num 0 0 0 0 0 0 0 0 0 0 ...
$ pgr : num 1943 1948 1948 1948 1948 ...
$ lex.id : num 3313 3478 3189 3478 3189 ...
$ per : num 1948 1952 1951 1952 1950 ...
$ age : num 3.91 4.08 4.42 3.58 3.92 ...
$ tfi : num 0.0 1.5 1.5 1.0 1.0 ...
$ lex.deltat : num 0.119 0.500 0.500 0.500 0.500 ...
$ lex.status1: num 0 0 0 0 0 0 0 0 0 0 ...
$ lex.status2: num 0 0 0 0 0 0 0 0 0 0 ...
$ id : num 3313 3478 3189 3478 3189 ...
$ birthdat :Class 'Date' num [1:125072] -9508 -8051 -8555 -8051 -8555 ...
$ contrast : num 2 2 2 2 2 2 2 2 2 2 ...
$ injecdat :Class 'Date' num [1:125072] -8079 -7108 -7489 -7108 -7489 ...
$ volume : num 0 0 0 0 0 0 0 0 0 0 ...
$ exitdat :Class 'Date' num [1:125072] 4077 8085 8085 8085 8085 ...
$ exitstat : num 1 2 2 2 2 1 2 2 1 2 ...
$ cause : num 9 NA NA NA NA 9 NA NA 9 NA ...
$ liverdat :Class 'Date' num [1:125072] NA NA NA NA NA NA NA NA NA NA ...
$ liver : num 0 0 0 0 0 0 0 0 0 0 ...
$ hepcc : num 0 0 0 0 0 0 0 0 0 0 ...
$ chola : num 0 0 0 0 0 0 0 0 0 0 ...
$ hmang : num 0 0 0 0 0 0 0 0 0 0 ...
$ entrydat :Class 'Date' num [1:125072] -7713 -6742 -7123 -6742 -7123 ...
$ Y : num 0.119 0.500 0.500 0.500 0.500 ...
$ D : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
$ m.tfi : num 0.25 1.75 1.75 1.25 1.25 1.25 2.25 2.25 0.25 0.75 ...
$ rt : num 14.13 7.88 7.88 7.88 7.88 ...
$ E : num 0.00168 0.00394 0.00394 0.00394 0.00394 ...
>
> #-------------------------------------------------------------------------------
> # 19:
> # Show the SMR overall and by time since injection
> #
> stat.table( contrast,
+ list( D=sum(D), E=sum(E), SMR=ratio(D,E) ),
+ margins=TRUE, data=th1ap )
-----------------------------------
contrast D E SMR
-----------------------------------
1 619.00 221.39 2.80
2 796.00 472.95 1.68

Total 1415.00 694.34 2.04
-----------------------------------
> stat.table( list( time=floor(tfi/5)*5, contrast ),
+ list( D=sum(D), E=sum(E), SMR=ratio(D,E) ),
+ margins=TRUE, data=th1ap )
--------------------------------

--------contrast---------
time 1 2 Total
--------------------------------
0 85.00 141.00 226.00

18.67 34.46 53.13
4.55 4.09 4.25

5 69.00 92.00 161.00
20.23 40.38 60.61
3.41 2.28 2.66

10 70.00 94.00 164.00
22.80 48.83 71.63
3.07 1.93 2.29

15 68.00 89.00 157.00
28.35 58.26 86.61
2.40 1.53 1.81

20 73.00 101.00 174.00
31.10 64.08 95.18
2.35 1.58 1.83

25 79.00 94.00 173.00
28.83 72.16 100.99
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2.74 1.30 1.71

30 66.00 91.00 157.00
25.89 78.33 104.22
2.55 1.16 1.51

35 51.00 74.00 125.00
22.27 55.93 78.19
2.29 1.32 1.60

40 39.00 20.00 59.00
16.60 20.48 37.08
2.35 0.98 1.59

45 17.00 0.00 17.00
5.89 0.06 5.95
2.89 0.00 2.86

50 2.00 NA 2.00
0.76 NA 0.76
2.63 NA 2.63

Total 619.00 796.00 1415.00
221.39 472.95 694.34
2.80 1.68 2.04

--------------------------------
>
> #-------------------------------------------------------------------------------
> # 20:
> # Now the entire analysis can be repeated using E instead of Y
> #
> # The model with natural splines and interaction
> m1e <- glm( D ~ -1 +
+ factor(contrast):ns(m.tfi, knots=kn, Bo=bk, intercept=TRUE ) +
+ offset( log( E ) ),
+ family=poisson, data=th1ap )
>
> plt( "thoro-6" )
> par( mar=c(3,3,1,3), mgp=c(3,1,0)/1.6, las=1 )
>
> # Extract the rates for each group (same contarst matrix as before)
> mort1 <- ci.lin( m1e, ctr.mat=CM, subset="1:ns", E=T )[,5:7]
> mort2 <- ci.lin( m1e, ctr.mat=CM, subset="2:ns", E=T )[,5:7]
> matplot( tpt, cbind( mort1, mort2 ), type="l", ylim=c(0.2,20),
+ log="y", lty=1, lwd=rep(c(4,1,1),2), col=rep(c("red","blue"),each=3),
+ xlab="Time since angiograpy (years)",
+ ylab="SMR" )
> abline( h=1 )
>
> # ci.lin can also be used to extract the ratio of the SMRs:
> rr <- ci.lin( m1e, ctr.mat=cbind(CM,-CM), subset=c("1:ns","2:ns"), E=T )[,5:7]
> matlines( tpt, rr, type="l", lwd=c(4,1,1), col="black", lty=1 )
> vals <- c(1,2,5)
> axis( side=4,
+ at=(x <- as.vector( outer( vals, -1:1, function(x,y) x*10^y ) ) ),
+ labels=x )
> mtext( "SMR ratio", side=4, line=3/1.6, las=0 )
> dev.off()
windows

2
>
> #-------------------------------------------------------------------------------
> # 21:
> # The difference between groups using SMRs is larger than using overall
> # mortality. SMR analysis (partially) takes into account age and calendar
> # time which may be confounding the relationship.
>
---------------------------------------------
Program: thoro.R
Folder: C:\Bendix\Undervis\SPE\pracs\r
Ended: mandag 28. maj 2007, 13:48:42

Elapsed: 00:02:17
---------------------------------------------
> proc.time()

user system elapsed
104.70 14.15 141.95
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2.7 Matched case-control study: Salmonella Typhimurium

First we load the dataset and then get an overview:

data( S.typh )
str( S.typh )

1. We use the clogit function to examine the effect of pork:

clogit( case ~ pork + strata( set ), data = S.typh )

which yields

Call: clogit(case ~ pork + strata(set), data = S.typh)

coef exp(coef) se(coef) z p
pork 0.266 1.30 0.454 0.585 0.56

Likelihood ratio test=0.35 on 1 df, p=0.554 n=129
(7 observations deleted due to missingness)

The odds ratio for eating pork on the risk of S.typh infection is 1.30 with 95% confidence
interval (0.54,3.18).

2. We can look through the other exposure variables and find out if any of them have a strong
association with the outcome by using the following series of statements:

This is done by a sequence of statements:

clogit( case ~ beef + strata( set ), data = S.typh )
clogit( case ~ veal + strata( set ), data = S.typh )
clogit( case ~ poultry + strata( set ), data = S.typh )
clogit( case ~ liverp + strata( set ), data = S.typh )
clogit( case ~ veg + strata( set ), data = S.typh )
clogit( case ~ fruit + strata( set ), data = S.typh )
clogit( case ~ egg + strata( set ), data = S.typh )
clogit( case ~ plant7 + strata( set ), data = S.typh )

We find that plant7 is a risk factor, OR = 4.47 with 95% confidence interval (1.62, 12.39),
while fruit is protective with OR = 0.16 and 95% C.I. (0.04, 0.60).

3. (a) We fit the model with both plant7 and fruit as main effects using the following
syntax:

m1 <- clogit( case ~ factor(plant7) + factor(fruit) + strata(set), data=S.typh )

which generates the output

Call:
clogit(case ~ factor(plant7) + factor(fruit) + strata(set), data = S.typh)

coef exp(coef) se(coef) z p
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factor(plant7)1 1.50 4.465 0.586 2.55 0.011
factor(fruit)1 -1.42 0.242 0.753 -1.89 0.059

Likelihood ratio test=14.2 on 2 df, p=0.000847 n=121
(15 observations deleted due to missingness)

The magnitude of the protective effect of fruit has been attenuated (from 0.16 with
95% confidence interval (0.04,0.60) to 0.24 with greater imprecision implied by the 95%
confidence interval, which is (0.06,1.06)) and the association with the outcome is less
strong having adjusted for plant7. The estimated odds ratio for plant7 is unchanged
when fruit is included in the model (the odds ratio is 4.47) but the 95% confidence
interval is wider, having changed from (1.62,12.39) in the single variable model to
(1.42,14.13) in the two variable model. There is clearly some evidence of association
between the risk of S.typh and each of these two exposures adjusted for the other.

(b) The model where we consider the possible modifying effect of fruit among those
subjects who have eaten meat from plant7 is not strictly an interaction model. It is a
model that states that there is no effect of fruit among people that have not eaten
meat from plant7, but that the effect of plant7 is different among fruit eaters and
non-fruit eaters.
In order to fit this model we need to generate the indicators of plant7=1 and fruit=1
and plant7=1 and fruit=0, which we do using the I() facility:

m2 <- clogit( case ~ I(plant7*(1-fruit)) + I(plant7*(fruit)) +
strata( set ), data=S.typh )

The resulting output is:

Call: clogit(case ~ I(plant7 * (1 - fruit)) + I(plant7 * (fruit)) +
strata(set), data = S.typh)

coef exp(coef) se(coef) z p
I(plant7 * (1 - fruit)) 3.05 21.21 1.170 2.61 0.009
I(plant7 * (fruit)) 1.30 3.68 0.593 2.20 0.028

Likelihood ratio test=13.3 on 2 df, p=0.00130 n=121 (15
observations deleted due to missingness)

which can be conveniently summarised using the ci.lin function:

round( ci.lin( m2, Exp=TRUE,
ctr.mat=rbind("No fruit"=c(1,0),"Fruit"=c(0,1),"Ratio"=c(1,-1)) ),2)

Estimate StdErr z P exp(Est.) 2.5% 97.5%
No fruit 3.05 1.17 2.61 0.01 21.21 2.14 209.97
Fruit 1.30 0.59 2.20 0.03 3.68 1.15 11.77
Ratio 1.75 1.13 1.54 0.12 5.76 0.62 53.16

We see that the effect of eating meat from plant7 is much larger among those who did
not eat fruit (so fruit is indeed protective among those who ate meat from plant7),
although the evidence for this differential effect is weak since the p-value for the Ratio
is 0.12.
We also consider the effect of fruit stratified by plant7:



Tartu 2007: Solutions Matched Case-control study 107

m4 <- clogit( case ~ I(fruit * (1-plant7)) + I(fruit * (plant7)) +
strata( set ), data=S.typh )

which produces the following output:

Call: clogit(case ~ I(fruit * (1 - plant7)) + I(fruit * (plant7)) +
strata(set), data = S.typh)

coef exp(coef) se(coef) z p
I(fruit * (1 - plant7)) -2.23 0.107 0.793 -2.82 0.0049
I(fruit * (plant7)) -0.83 0.436 0.761 -1.09 0.2800

Likelihood ratio test=12.5 on 2 df, p=0.00195 n=121
(15 observations deleted due to missingness)

Once again the ci.lin command is helpful:

round( ci.lin( m4, Exp=TRUE,
+ ctr.mat=rbind("No plant7"=c(1,0),"Plant7"=c(0,1),"Ratio"=c(1,-1)) ),2)

Estimate StdErr z P exp(Est.) 2.5% 97.5%
No plant7 -2.23 0.79 -2.82 0.00 0.11 0.02 0.51
Plant7 -0.83 0.76 -1.09 0.28 0.44 0.10 1.94
Ratio -1.40 0.61 -2.32 0.02 0.25 0.07 0.81

There is a protective effect of fruit among both plant7 strata, that is, among those
who did and did not eat meat from plant7. The protective effect of fruit is much
greater in those who did not eat meat from plant7 (an odds ratio of 0.11 compared to
an odds ratio of 0.44 among those who did eat meat from plant7), and there is strong
evidence against the null hypothesis of no differential effect since the p-value for the
Ratio is 0.02.

4. We fit the “default” model with an interaction between plant7 and fruit using the
following syntax:

m6 <- clogit( case ~ factor(plant7):factor(fruit) + strata( set ),
data=S.typh )

The output from this model fit is:

Call:
clogit(case ~ factor(plant7):factor(fruit) + strata(set), data = S.typh)

coef exp(coef) se(coef) z p
factor(plant7)0:factor(fruit)0 -0.306 0.737 1.133 -0.27 0.790
factor(plant7)1:factor(fruit)0 1.706 5.506 1.138 1.50 0.130
factor(plant7)0:factor(fruit)1 -1.424 0.241 0.615 -2.31 0.021
factor(plant7)1:factor(fruit)1 NA NA 0.000 NA NA

Likelihood ratio test=14.3 on 3 df, p=0.00255 n=121 (15
observations deleted due to missingness)
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When we fit the interaction model parametrisation in the default way we get the last of the
parameters aliased, where plant7 = 1 and fruit = 1 corresponds to the reference category.
This model thus has the “wrong” category as reference. We would of course prefer the low
risk category as reference; i.e. the fruit eaters that are not exposed to plant7. The reference
in the default model is the “1” category for both factors, hence we want to use 1− plant7 as
the exposure factor to improve the parametrisation and select the correct reference category.

The reparametrised interaction model can be fitted using the syntax:

m7 <- clogit( case ~ factor(1-plant7):factor(fruit) + strata( set ),
data = S.typh )

The resulting output is:

Call:
clogit(case ~ factor(1 - plant7):factor(fruit) + strata(set),

data = S.typh)

coef exp(coef) se(coef) z p
factor(1 - plant7)0:factor(fruit)0 3.13 22.86 1.183 2.65 0.0081
factor(1 - plant7)1:factor(fruit)0 1.12 3.06 1.116 1.00 0.3200
factor(1 - plant7)0:factor(fruit)1 1.42 4.15 0.615 2.31 0.0210
factor(1 - plant7)1:factor(fruit)1 NA NA 0.000 NA NA

Likelihood ratio test=14.3 on 3 df, p=0.00255 n=121
(15 observations deleted due to missingness)

We see that all of the estimated odds ratios are greater than 1, so we have been successful in
assigning the lowest risk category as the reference. The values in the coef column can be
used to populate the cells in the tables for display, along with 95% confidence intervals
generated manually or using the ci.lin command.

We can use the “analysis of deviance” via the anova command to compare the interaction
model (m6) with the main effects model (m1):

anova( m1, m6, test="Chisq" )

Analysis of Deviance Table

Model 1: Surv(rep(1, 136), case) ~ factor(plant7) + factor(fruit) + strata(set)
Model 2: Surv(rep(1, 136), case) ~ factor(plant7):factor(fruit) + strata(set)
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 119 60.897
2 118 60.765 1 0.132 0.717

The p-value of 0.717 provides no evidence against the null hypothesis that there is no
interaction between fruit and plant7. The analysis of deviance can also be used to
compare model m4 (separate effects of fruit in those who did and did not eat meat from
plant7) to the interaction model m6. This generates a p-value of 0.18, suggesting again that
the interaction model (a three variable model) does not provide a better fit the model m4,
which is a two variable model allowing for separate effect of fruit in the strata defined by
plant7 but no effect of plant7 alone. For a final model we would have to choose between
one of the competing two variables models m1 or m4.
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2.7.1 R-program for the analysis

R 2.4.1
---------------------------------------------
Program: salmonella.R
Folder: C:\Bendix\Undervis\SPE\lg\pracs
Started: søndag 13. maj 2007, 18:51:15
---------------------------------------------
> library( Epi )
> library( survival )
Loading required package: splines
> data( S.typh )
> str( S.typh )
'data.frame': 136 obs. of 15 variables:
$ id : num 1 2 3 4 5 6 7 8 9 10 ...
$ set : num 1 1 1 2 2 2 3 3 3 4 ...
$ case : num 1 0 0 1 0 0 1 0 0 1 ...
$ age : num 52 52 52 41 41 41 9 9 9 16 ...
$ sex : num 1 1 1 1 1 1 1 1 1 1 ...
$ abroad : num 0 0 0 0 0 0 0 0 0 0 ...
$ beef : num 1 1 1 1 1 1 0 1 NA 1 ...
$ pork : num 1 0 1 NA 1 1 0 1 0 0 ...
$ veal : num 1 0 0 NA 0 0 0 0 0 0 ...
$ poultry: num 1 0 1 NA 0 0 0 1 0 0 ...
$ liverp : num 1 1 1 1 1 1 1 1 1 1 ...
$ veg : num 0 1 1 1 1 1 0 1 NA 1 ...
$ fruit : num 1 1 1 NA 0 1 1 1 1 0 ...
$ egg : num 1 0 1 NA 1 1 NA 0 1 NA ...
$ plant7 : num 1 0 0 NA 1 1 0 1 0 1 ...
> summary( S.typh )

id set case age sex abroad
Min. : 1.00 Min. : 1.0 Min. :0.0000 Min. : 1.00 Min. :1.000 Min. :0.00000
1st Qu.: 44.75 1st Qu.:14.0 1st Qu.:0.0000 1st Qu.:15.00 1st Qu.:1.000 1st Qu.:0.00000
Median : 95.50 Median :28.5 Median :0.0000 Median :18.00 Median :1.000 Median :0.00000
Mean : 95.83 Mean :28.5 Mean :0.3456 Mean :24.99 Mean :1.456 Mean :0.02206
3rd Qu.:142.25 3rd Qu.:42.0 3rd Qu.:1.0000 3rd Qu.:40.00 3rd Qu.:2.000 3rd Qu.:0.00000
Max. :205.00 Max. :59.0 Max. :1.0000 Max. :64.00 Max. :2.000 Max. :1.00000

NA's :19.00
beef pork veal poultry liverp veg

Min. :0.0000 Min. :0.0000 Min. :0.00000 Min. :0.0000 Min. :0.0000 Min. :0.0000
1st Qu.:0.0000 1st Qu.:1.0000 1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:1.0000 1st Qu.:1.0000
Median :1.0000 Median :1.0000 Median :0.00000 Median :0.0000 Median :1.0000 Median :1.0000
Mean :0.6769 Mean :0.7597 Mean :0.05344 Mean :0.3178 Mean :0.9701 Mean :0.9242
3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:0.00000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
Max. :1.0000 Max. :1.0000 Max. :1.00000 Max. :1.0000 Max. :1.0000 Max. :1.0000
NA's :6.0000 NA's :7.0000 NA's :5.00000 NA's :7.0000 NA's :2.0000 NA's :4.0000

fruit egg plant7
Min. :0.000 Min. :0.0000 Min. : 0.0000
1st Qu.:1.000 1st Qu.:1.0000 1st Qu.: 0.0000
Median :1.000 Median :1.0000 Median : 1.0000
Mean :0.856 Mean :0.7717 Mean : 0.5041
3rd Qu.:1.000 3rd Qu.:1.0000 3rd Qu.: 1.0000
Max. :1.000 Max. :1.0000 Max. : 1.0000
NA's :4.000 NA's :9.0000 NA's :13.0000
>
> ### Questions 1 and 2: Screen the variables for effect ###
>
> clogit( case ~ beef + strata( set ), data=S.typh )
Call:
clogit(case ~ beef + strata(set), data = S.typh)

coef exp(coef) se(coef) z p
beef -0.119 0.888 0.422 -0.281 0.78

Likelihood ratio test=0.08 on 1 df, p=0.778 n=130 (6 observations deleted due to missingness)
> clogit( case ~ pork + strata( set ), data=S.typh )
Call:
clogit(case ~ pork + strata(set), data = S.typh)

coef exp(coef) se(coef) z p
pork 0.266 1.30 0.454 0.585 0.56

Likelihood ratio test=0.35 on 1 df, p=0.554 n=129 (7 observations deleted due to missingness)
> clogit( case ~ veal + strata( set ), data=S.typh )
Call:
clogit(case ~ veal + strata(set), data = S.typh)

coef exp(coef) se(coef) z p
veal 19.8 4.08e+08 7927 0.0025 1

Likelihood ratio test=7.4 on 1 df, p=0.00651 n=131 (5 observations deleted due to missingness)
Warning message:
Loglik converged before variable 1 ; beta may be infinite. in: fitter(X, Y, strats, offset, init, control, weights = weights,
> clogit( case ~ poultry + strata( set ), data=S.typh )
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Call:
clogit(case ~ poultry + strata(set), data = S.typh)

coef exp(coef) se(coef) z p
poultry 0.128 1.14 0.39 0.327 0.74

Likelihood ratio test=0.11 on 1 df, p=0.744 n=129 (7 observations deleted due to missingness)
> clogit( case ~ liverp + strata( set ), data=S.typh )
Call:
clogit(case ~ liverp + strata(set), data = S.typh)

coef exp(coef) se(coef) z p
liverp -1.79 0.167 1.15 -1.55 0.12

Likelihood ratio test=2.9 on 1 df, p=0.0884 n=134 (2 observations deleted due to missingness)
> clogit( case ~ veg + strata( set ), data=S.typh )
Call:
clogit(case ~ veg + strata(set), data = S.typh)

coef exp(coef) se(coef) z p
veg -0.63 0.533 0.687 -0.917 0.36

Likelihood ratio test=0.84 on 1 df, p=0.358 n=132 (4 observations deleted due to missingness)
> clogit( case ~ fruit + strata( set ), data=S.typh )
Call:
clogit(case ~ fruit + strata(set), data = S.typh)

coef exp(coef) se(coef) z p
fruit -1.81 0.163 0.659 -2.75 0.006

Likelihood ratio test=9.47 on 1 df, p=0.00209 n=132 (4 observations deleted due to missingness)
> clogit( case ~ egg + strata( set ), data=S.typh )
Call:
clogit(case ~ egg + strata(set), data = S.typh)

coef exp(coef) se(coef) z p
egg 3.12e-17 1 0.53 5.89e-17 1

Likelihood ratio test=0 on 1 df, p=1 n=127 (9 observations deleted due to missingness)
> clogit( case ~ plant7 + strata( set ), data=S.typh )
Call:
clogit(case ~ plant7 + strata(set), data = S.typh)

coef exp(coef) se(coef) z p
plant7 1.50 4.47 0.519 2.88 0.0039

Likelihood ratio test=10.1 on 1 df, p=0.00149 n=123 (13 observations deleted due to missingness)
>
> ### Question 3 ###
>
> # We found in question 2 that "plant7" is a risk factor
> # while "fruit" is protective. This raises two questions
> #(a) What is the effect of each variable adjusted for the other
> # in a main effects model?
> #(b) What is the effect of plant7 stratified by fruit and vice versa,
> # that is, the effect of fruit stratified by plant 7
> #
>
> # First we tackle part (a) by fitting the model
> # with both "plant7" and "fruit" as main effects
>
> ( m1 <- clogit( case ~ factor(plant7) + factor(fruit) + strata( set ),
+ data=S.typh ) )
Call:
clogit(case ~ factor(plant7) + factor(fruit) + strata(set), data = S.typh)

coef exp(coef) se(coef) z p
factor(plant7)1 1.50 4.465 0.586 2.55 0.011
factor(fruit)1 -1.42 0.242 0.753 -1.89 0.059

Likelihood ratio test=14.2 on 2 df, p=0.000847 n=121 (15 observations deleted due to missingness)
>
> # The magnitude of the protective effect of "fruit" has been attenuated
> # and the association with the outcome is less strong having adjusted for
> # "plant7". The estimated odds ratio for "plant7" is unchanged when "fruit" is
> # included in the model. There is clearly some evidence of assocation between
> # the risk of S.typh and each of these two exposures adjusted for the other.
>
> # Now for part (b). We fit a stratified model examining the effect of "plant7"
> # within each of the two strata defined by "fruit"
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>
> ( m2 <- clogit( case ~ I(plant7*(1-fruit)) + I(plant7*(fruit)) + strata( set ),
+ data=S.typh ) )
Call:
clogit(case ~ I(plant7 * (1 - fruit)) + I(plant7 * (fruit)) +

strata(set), data = S.typh)

coef exp(coef) se(coef) z p
I(plant7 * (1 - fruit)) 3.05 21.21 1.170 2.61 0.009
I(plant7 * (fruit)) 1.30 3.68 0.593 2.20 0.028

Likelihood ratio test=13.3 on 2 df, p=0.00130 n=121 (15 observations deleted due to missingness)
>
> # Use the "ci.lin" function to extract the effects of "plant7" among those
> # do and do not eat "fruit", and their ratio. Note that the z-statistic and
> # P-value for the "Ratio" provided a test of the null hypothesis that
> # the effect of "plant7" does not differ between those who do and do not eat
> # "fruit". This comparison could also be achieved by comparing model m2 with
> # a model that has "plant7" as the only exposure variable, which we fit as
> # model m3 below
>
> round( ci.lin( m2, Exp=TRUE,
+ ctr.mat=rbind("No fruit"=c(1,0),"Fruit"=c(0,1),"Ratio"=c(1,-1)) ),2)

Estimate StdErr z P exp(Est.) 2.5% 97.5%
No fruit 3.05 1.17 2.61 0.01 21.21 2.14 209.97
Fruit 1.30 0.59 2.20 0.03 3.68 1.15 11.77
Ratio 1.75 1.13 1.54 0.12 5.76 0.62 53.16
>
> # Fit the model with "plant7" as the only exposure variable among those
> # individuals who do not have a missing value for "fruit". Note that
> # we need to use only those observations with non-missing values of "fruit"
> # and "plant7" in order to compare the two models using ANOVA, since
> # this requires that the two models are based on the same number of obs.
>
> ( m3 <- clogit( case ~ plant7 + strata( set ),
+ data=S.typh, subset = !is.na(fruit) ) )
Call:
clogit(case ~ plant7 + strata(set), data = S.typh, subset = !is.na(fruit))

coef exp(coef) se(coef) z p
plant7 1.62 5.04 0.57 2.84 0.0046

Likelihood ratio test=10.2 on 1 df, p=0.00139 n=121 (11 observations deleted due to missingness)
>
> # Compare models m2 and m3 using the "analysis of deviance"
>
> anova ( m2, m3, test="Chisq" )
Analysis of Deviance Table

Model 1: Surv(rep(1, 136), case) ~ I(plant7 * (1 - fruit)) + I(plant7 *
(fruit)) + strata(set)

Model 2: Surv(rep(1, 136), case) ~ plant7 + strata(set)
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 119 61.760
2 120 64.833 -1 -3.073 0.080
>
> # Now we consider the effect of "fruit" stratified by "plant7"
>
> ( m4 <- clogit( case ~ I(fruit*(1-plant7)) + I(fruit*(plant7)) + strata( set ),
+ data=S.typh ) )
Call:
clogit(case ~ I(fruit * (1 - plant7)) + I(fruit * (plant7)) +

strata(set), data = S.typh)

coef exp(coef) se(coef) z p
I(fruit * (1 - plant7)) -2.23 0.107 0.793 -2.82 0.0049
I(fruit * (plant7)) -0.83 0.436 0.761 -1.09 0.2800

Likelihood ratio test=12.5 on 2 df, p=0.00195 n=121 (15 observations deleted due to missingness)
>
> round( ci.lin( m4, Exp=TRUE,
+ ctr.mat=rbind("No plant7"=c(1,0),"Plant7"=c(0,1),"Ratio"=c(1,-1)) ),2)

Estimate StdErr z P exp(Est.) 2.5% 97.5%
No plant7 -2.23 0.79 -2.82 0.00 0.11 0.02 0.51
Plant7 -0.83 0.76 -1.09 0.28 0.44 0.10 1.94
Ratio -1.40 0.61 -2.32 0.02 0.25 0.07 0.81
>
> # Fit the model with "fruit" as the only exposure variable among those
> # individuals who do not have a missing value for "aplnt7"
>
> ( m5 <- clogit( case ~ fruit + strata( set ),
+ data=S.typh, subset = !is.na(plant7) ) )
Call:
clogit(case ~ fruit + strata(set), data = S.typh, subset = !is.na(plant7))
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coef exp(coef) se(coef) z p
fruit -1.56 0.209 0.681 -2.3 0.022

Likelihood ratio test=6.11 on 1 df, p=0.0134 n=121 (2 observations deleted due to missingness)
>
> # Compare models m2 and m3 using the "analysis of deviance"
>
> anova ( m4, m5, test="Chisq" )
Analysis of Deviance Table

Model 1: Surv(rep(1, 136), case) ~ I(fruit * (1 - plant7)) + I(fruit *
(plant7)) + strata(set)

Model 2: Surv(rep(1, 136), case) ~ fruit + strata(set)
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 119 62.566
2 120 68.936 -1 -6.370 0.012
>
> ### Question 4 ###
>
> # Now we consider fitting the model with an interaction
> # between "plant7" and "fruit"
>
> ( m6 <- clogit( case ~ factor(plant7):factor(fruit) + strata( set ),
+ data=S.typh ) )
Call:
clogit(case ~ factor(plant7):factor(fruit) + strata(set), data = S.typh)

coef exp(coef) se(coef) z p
factor(plant7)0:factor(fruit)0 -0.306 0.737 1.133 -0.27 0.790
factor(plant7)1:factor(fruit)0 1.706 5.506 1.138 1.50 0.130
factor(plant7)0:factor(fruit)1 -1.424 0.241 0.615 -2.31 0.021
factor(plant7)1:factor(fruit)1 NA NA 0.000 NA NA

Likelihood ratio test=14.3 on 3 df, p=0.00255 n=121 (15 observations deleted due to missingness)
Warning message:
X matrix deemed to be singular; variable 4 in: coxph(formula = Surv(rep(1, 136), case) ~ factor(plant7):factor(fruit) +
>
> # Compare this model to the main effects model
>
> anova( m1, m6, test="Chisq" )
Analysis of Deviance Table

Model 1: Surv(rep(1, 136), case) ~ factor(plant7) + factor(fruit) + strata(set)
Model 2: Surv(rep(1, 136), case) ~ factor(plant7):factor(fruit) + strata(set)
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 119 60.897
2 118 60.765 1 0.132 0.717
>
> # The analysis of deviance suggests that there is little evidence against
> # the null hypothesis of no interaction between "fruit" and "plant7"
>
> # The model with an interaction between "plant7" and "fruit"
> # did not use the category with the lowest risk ("plant7" = 0 and "fruit" = 1) as
> # the reference category, making the parameter estimates more difficult to
> # interpret. Here we fit an interaction between "1-plant7" and "fruit"
> # to alias the lowest risk category.
>
> ( m7 <- clogit( case ~ factor(1-plant7):factor(fruit) + strata( set ),
+ data=S.typh ) )
Call:
clogit(case ~ factor(1 - plant7):factor(fruit) + strata(set),

data = S.typh)

coef exp(coef) se(coef) z p
factor(1 - plant7)0:factor(fruit)0 3.13 22.86 1.183 2.65 0.0081
factor(1 - plant7)1:factor(fruit)0 1.12 3.06 1.116 1.00 0.3200
factor(1 - plant7)0:factor(fruit)1 1.42 4.15 0.615 2.31 0.0210
factor(1 - plant7)1:factor(fruit)1 NA NA 0.000 NA NA

Likelihood ratio test=14.3 on 3 df, p=0.00255 n=121 (15 observations deleted due to missingness)
Warning message:
X matrix deemed to be singular; variable 4 in: coxph(formula = Surv(rep(1, 136), case) ~ factor(1 - plant7):factor(fruit) +
>
> # What do we interpret the parametrisation for this model?
> # ( m8 <- clogit( case ~ plant7*fruit + strata( set ),
> # data=S.typh ) )
>
> # The results are summarized using "ci.lin"
>
> # round( exp( ci.lin( m5, subset=1:3 )[,c(1,5,6)] ), 2 )
>
---------------------------------------------
Program: salmonella.R
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Ended: søndag 13. maj 2007, 18:51:16

Elapsed: 00:00:01
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