Fluorescence (luminiscence) Patří mezi luminiscenční metody – fotoluminiscence. Luminiscence – efekt, kdy excitované molekuly či atomy vyzařují světlo při přechodu z excitovaného do základního stavu. Podle způsobu, jímž byly uvedeny do excitovaného stavu, je pak rozdělujeme do několika skupin: - fotoluminiscence – k excitaci došlo pohlcením kvanta elektromagnetického záření (běžně světla, ale i X-paprsků aj.) - chemiluminiscence – chemickou reakcí vzniká produkt v excitovaném stavu, patří sem i bioluminiscence Fotoluminiscence Fluorescenční spektroskopie Fosforescenční spektroskopie Chemiluminiscenční spektroskopie Fluorescence Spektra = intensita vyzářeného světla F = f(λ) - excitační, F = f(λ[exc]) – podobné absorpčnímu - emisní, F = f(λ[emit]) – rozložení fotonů v emitovaném paprsku Q = E[emit] / E[abs] = n . hν[2] / m . hν[1] 0 ≤ Q ≤ 1 Počítač fotonů – složité Q = Q[S] . S/S[S] . A[S]/A 1.5 Fluorimetrie Při fluorimetrických stanoveních se využívá jevu, kdy v některých látkách po ozáření dostatečně energetickým zdrojem světla (excitační záření) vzniká fotoluminiscence. Látky přitom vyzařují (emitují) světlo, jehož intenzita je přímo úměrná koncentraci fluoreskující sloučeniny. Při excitaci se molekuly dostanou na vyšší energetickou hladinu a při návratu do základního stavu se část energie vyzáří také ve formě tepla. Proto má emitované záření fluoreskujících sloučenin vždy vyšší vlnovou délku (tj. méně energie) než excitační záření, vyvolávající fotoluminiscenci. Fluoreskující sloučeniny jsou často citlivé na malé zněny pH, polarity, na přítomnost oxidačních činidel nebo zhášedel fluorescence. Základní konstrukce fluorimetrů sestává ze zdroje zářivé energie, dvou optických separačních prvků a detektoru. Zdrojem záření jsou nejčastěji halogenové žárovky a xenonové výbojky. Světlo ze zdroje prochází buď interferenčním filtrem nebo mřížkovým monochromátorem. Dále prochází kyvetou s roztokem měřeného vzorku a emitovaná fluorescence se měří pod úhlem 90°(při měření v mikrotitračních destičkách je jiné uspořádání), kdy po průchodu filtrem nebo po difrakci reflexní mřížkou dopadá emitované světlo vybrané vlnové délky na fotonásobič. 1.5.1 Fluorescenční polarizace Jde o speciální provedení fluorimetrického měření, při němž se k excitaci používá polarizované světlo. Metoda je užitečná zejména při stanovení malých antigenů (např. léků), kdy se využívá rozdílné rychlosti rotace malé molekuly antigenu a velké molekuly imunokomplexu, vzniklé po navázání protilátky. V imunokomplexu je zabrzděna původně volná rotace antigenu. Jestliže je imunokomplex značený fluoreskující látkou, je emitované světlo ve stejné rovině po mnohem delší dobu, než u volného antigenu, neboť u těžkého imunokomplexu se rotace výrazně zpomalila. Toho se využívá v technice fluorescenční polarizace. Optické uspořádání je přitom kombinací fluorimetrie a polarimetrie. Halogenová žárovka vyzařuje světelné spektrum s náhodnou prostorovou orientací světla. Filtr propouští modré světlo, které prochází přes polarizační zařízení z tekutého krystalu. Tím se získává rovinně polarizované světlo, které dopadá na kyvetu s měřeným roztokem. Světlo excituje fluorescenční činidlo, vázané na imunokomplex a to pak emituje zelené světlo, které prochází filtrem a dopadá na fotonásobič. 1.6 Chemiluminiscence Chemiluminiscence se liší od ostatních luminiscenčních jevů tím, že excitace fotonů je vyvolána chemickou reakcí, která proběhne buď po nástřiku syntetizovaného činidla, nebo se použije biologická substance (enzym luciferáza ze světlušek - chemiluminiscenční varianta se označuje jako bioluminiscence), nebo se k aktivaci činidel využívá oxidace na anodě a technika se nazývá elektrochemiluminiscence. Pro chemiluminiscenční reakci musí být splněny tři základní požadavky: 1. Při reakci musí vznikat dostatek energie, aby došlo k excitaci elektronů. Proto musí být reakce exotermní a obvykle je to oxidace. 2. Musí existovat způsob jak tuto energii usměrnit do excitace elektronů. Jestliže se chemická energie ztrácí ve formě tepla jako obvykle, pak se chemiluminiscence neobjevuje. 3. Excitovaný produkt musí být schopný ztrácet svoji energii buď ve formě fotonu, nebo ji převádět na fluoreskující sloučeniny. Přímá emise fotonu z excitovaného produktu obvykle poskytuje krátké záblesky světla, zatímco transfér energie na fluoreskující sloučeniny se většinou projevuje jako dlouhodobá (v minutách) světelná emise. Kvantový výtěžek (poměr celkového počtu emitovaných fotonů a celkového počtu zreagovaných molekul) se pohybuje u chemiluminiscence v rozmezí 0.1 až 10%. Citlivost chemiluminiscenčních metod je přesto obvykle významně vyšší než u izotopových metod. Přístrojové vybavení pro tuto techniku je pestré: od jednoduchých luminometrů až po vysoce automatizované chemiluminiscenční analyzátory, ve kterých se provádí imunochemické reakce s chemiluminiscenční detekcí. Standardní luminometry se do určité míry podobají fluorimetrům. Před měřicí kyvetou ovšem nemají žádný zdroj světla ani filtr. Uspořádání za kyvetou odpovídá fluorimetrům (filtr, fotonásobič). Téměř všechny luminometry mají také nastřikovací zařízení, protože u zábleskové chemiluminiscence je nutné provést měření ihned po nástřiku reagencií. Některé luminometry měří luminiscenci v mikrotitračních destičkách.