Precursor Methods Goals - decrease diffusion paths, shorten reaction times and temperatures Intimate mixing of components in solution, precipitation, filtration, washing, drying, calcination é* High degree of homogenization é* Large contact area é* Reduction of diffusion distances é* Faster reaction rates é* Lower reaction temperatures é* Metastable phases, smaller grain size, larger surface area i Coprecipitation Method Coprecipitation applicable to nitrates, acetates, oxalates, hydroxides, alkoxides, beta-diketonates Requires: similar salt solubilities similar precipitation rates no supersaturation Washing: water, organic solvents Drying: evaporation azeotropic distillation freeze-drying Disadvantage: difficult to prepare high purity, accurate stoichiometric phases if solubilities do not match 2 Coprecipitation Method Spinels oxalates: Zn(C02)2/Fe2[(C02)2]3/H20 1 : 1 mixing, H20 evaporation, salts coprecipitation Solid-solution mixing on atomic scale, filter, calcine in air Zn(C02)2 + Fe2[(C02)2]3 -> ZnFe204 + 4CO + 4C02 A1203 Bayer Process bauxite NaOH'p» Al(OH)4- Ü% Al(OH)3 1^ra-Al203 I Fe(OH)3, Ti02, Si02 BaTi03 BaCl2 + TiOCl2 + 2 H2C204 + 4 H20 + Ln dopants -------------► BaTiO(C204)2.4H20 + 4 HCl filtration, washing, drying, calcination @ 730 °C 3 Coprecipitation Method Spinel A1(N03)3 + Mg(N03)2 + H20 freeze-drying gives amorphous mixture, calcination @ 800 °C !!! low T Mg(N03)2 + 2 A1(N03)3 -----►MgAl204 + 6 NOx + (10-3x)O2 random Ruby Ion exchange A1(N03)3 + Cr(N03)3 -----► Al(OH)3 + Cr(OH)3 sol freeze drying gives solid (Al/Cr)(OH)3 @ LN2 temperature, 5 Pa anealing @ 950 °C for 2.5 h gives solid solution Al2.xCrx03 Zirconia ZrSi04(zircon) + NaOH ____► Na2Zr03 + Na2Si03 ____► ZrOCl2 °^^ Zr(OH)4 / Y(OH)3 ^^>nano-Y/Zr02 Coprecipitation Method High-Tc Superconductors 1373 K La3+ + Ba2+ + Cu2+ + H2C204 —► ppt --------► LaL85Bao.15Cu04 Magnetic garnets, tunable magnetic materials Y(N03)3 + Gd(N03)3 + FeCl3 + NaOH -► YxGd3xFe5012 Firing @ 900 °C, 18-24 hrs, pellets, regrinding, repelletizing, repeated firings, removes REFe03 perovskite impurity Isomorphous replacement of Y3+ for Gd3+ on dodecahedral sites, solid solution, similar rare earth ionic radii complete family accessible, 0 < x < 3,2Fe3+ Oh sites, 3Fe3+ Td sites, 3RE3+ dodecahedral sites Pechini and Citrate Gel Method Aqueous solution of metal ions i—cooh HO—----COOH C O O TT Chelate formation with citric acid Polyesterification with polyfunctional alcohol on heating Further heating leads to resin, transparent glassy gel calcination provides oxide powder Control of stoichiometry by initial reagent ratio Complex compositions, mixture of metal ions Good homogeneity, mixing at the molecular level Low firing temperatures Pechini and Citrate Gel Method BaTi03 by conventional powder method at 1200 °C Ba2+ + Ti^Pr^ + citric acid at 650 °C Sc203 + 6 HCOOH -----------► 2Sc(HCOO)3 + 3 H20 MnC03 + 2 HCOOH -----------► Mn(HCOO)2 + C02 + H20 added to citric acid, water removal, calcination @ 690 °C gives ScMn03 without citric acid only mixture of Sc203 and Mn203 is formed Double Salt Precursors Double salts of known and controlled stoichiometry such as: Ni3Fe6(CH3COO)1703(OH). 12Py Burn off organics 200-300 °C, then 1000 °C in air for 2-3 days Product highly crystalline phase pure NiFe204 spinel Good way to make chromite spinels, important tunable magnetic materials Juggling the electronic-magnetic properties of the Oh and Td ions in the spinel lattice Chromite spinel Precursor Ignition T, °C MgCr204 (NH4)2Mg(Cr04)2.6H20 1100-1200 NiCr204 (NH4)2Ni(Cr04)2.6H20 1100 MnCr204 MnCr207.4C5H5N 1100 CoCr204 CoCr207.4C5H5N 1200 CuCr204 (NH4)2Cu(Cr04)2.2NH3 700-800 ZnCr204 (NH4)2Zn(Cr04)2. 2NH3 1400 FeCr204 (NH4)2Fe(Cr04)2 1150 Single Source Precursor Compounds containing desired elements in a proper stoichiometric ratio Easy chemical pathway for ligand removal „.^O-Sí-íTn M J,..___ H2° + (M-0-Si03)x 7v 9 Vegard's Law Vegard law behavior: Any property P of a solid-solution member is the atom fraction weighted average of the end-members The composition of the A1-XBX alloy can be calculated from Vegard's law The lattice parameter of a solid solution alloy will be given by a linear dependence of lattice parameter on composition: a(AlxBx) = x a(B) + (1-x) a(A) 10 Vegarcľs Law cíCdSe^SJ = x c(CdS) + (1-x) c(CdSe) 7.0G e,9c — í: í A] ■5.GC 6,70 t—r—i—t—i—i—i—i—r ■ i i____i____i____i—i—i—i—l O [Q ZO 3D 40 SO SO 70 &0 SI 100 HOLE PERCENT Cd S* IN CdS^O-a» 11 Vegarcľs Law P (YxCe!xRhIn5) = x P (YxCe!xRhIn5) + (1-x) P (YxCe!xRhIn5) Any property P of a solid-solution member is the atom fraction weighted average of the end-members Tetragonal lattice constant a as a function of Y concentration x for the Ce1_xYxRhIn5 system 0 0.2 0.4 0,6 0.8 1 Y concentration (mol) 4,65 4.Ü4 -i------1------1------r-----r-----r------r-----1------1------1------1------r-----i-----r-----r-----■-----------1------■-----■ Lattice Paranwter a vs. Y concentration in Ce Y Rhln 1-Ä X 5 Vrůstáš Law b 4,62 4.60 A ^.ň I..lIll.I... Vegarcľs Law A linear relationship exists between the concentration of the substitute element and the size of the lattice parameters The direction of the linear relationship, increasing or decreasing, depends upon the system being analyzed As the concentration of Y is increased, lattice constant a decreases, implying the cell is contracting along the a axis 13 Vegarcľs Law Vegard law behavior: P (YxGd3xFe5012) = x/3 P (Y3Fe5012) + (3-x)/3 P (Gd3Fe5012) Any property P of a solid-solution member is the atom fraction weighted average of the end-members 14 Vegarcľs Law Tunable magnetic properties by tuning the x value in the binary garnet YGd3xFe5012 3 Td Fe3+ sites, 5 UPEs 2 Oh Fe3+ sites, 5UPEs Ferrimagnetically coupled material, oppositely aligned electron spins on the Td and Oh Fe3+ magnetic sublattices Counting spins Y3Fe5012 ferrimagnetic at low T: 3x5-2x5 = 5UPEs Counting spins Gd3Fe5012 ferrimagnetic at low T:3x7-3x5 + 2x5 = 16 UPEs YxGd3 xFe5012 creates a tunable magnetic garnet that is strongly temperature and composition dependent, applications in permanent magnets, magnetic recording media, magnetic bubble memories and so forth, similar concepts apply to magnetic spinels 15 La.Xe.CrO, 3-234-> 233-~ä O 232-> Í 3.2-a. a CS) 2 3.1-c c« 00 30 (a) * Unit-cell vol [A") i Q.1 i 02 i ■ 0.3 i 04 i 05 i ■ os i ■ i ■ i ■ i 0.7 0.8 0.9 1.0 02 + 4 e~ cathode Ti02 pellet cathodic reduction Ti4+ + 4 e- -» Ti 20 Ionic Liquids Organic cations (containing N, P) Inorganic anions: CI, A1C14, A12C17, A13C110~, PF6, SnCl3, BC13, BF4", NO3, OSO2CF3 (triflate), CH3C6H4S03, N(S02CF3)2, P043 21 Ionic Liquids Oldest known (1914): EtNH3+N03 mp 12 °C ■^Liquids at room temperature or low mp ■^Thermal operating range from -40 °C to 400 °C ■^Higly polar, noncoordinating, completely ionized ■^Nonvolatile - no detectable vapor pressure ^Nonflamable, nonexplosive, nonoxidizing, high thermal stability ■^Electrochemical window > 4V (not oxidized or reduced) ■^Immiscible with organic solvents ■^Hydrophobic IL immiscible with water 22 Ionic [NR**W+ [SRjHo.^] [PR,^]' Li+ 1 J S i r \ Ô 1 R s * R, R2 R, R2 H R5 RJ 7 8 9 /■ R, A R4 ^ ^ R^ R2 1* 11 liquids 23 Synthesis of Ionic Liquids NR3+RCI -» [NR4]+C1- Aluminates [NR4]+ Cl" + AICI3 -» fNR4]+ f AICIJ" Metal halide elimination [NR4]+ Cl" + MA -» MCI + [NR4]+A- Reaction with an acid [NR4]+ Cl" + HA -» HCl + [NR4]+A- Ion exchange [NR4]+ Cl" + Ion exchanger A -» [NR4]+A" 24 Halogenoaluminate(III) Ionic Liquids The most widely studied class of IL High sensitivity to moisture - handling under vacuum or inert atmosphere in glass/teflon RC1 + AICI3 £? R+ [A1C1J- 2 [A1C1J- *5 [A12C17]- + CI- autosolvolysis Keq = 1016 to 1017 at 40 °C 2[A12C17]-^ [A13C110]-+[A1C14]- Acidic: excess of A1C13 as [A12C17]- x(AlCl3) > 0.5 Basic: excess of CI" x(AlCl3) < 0.5 Neutral: [A1C1J- x(AlCl3) = 0.5 25 Equilibria in Halogenoaluminate(III) IL Equilibria in IL XI = ci- X4 = [AICI4]-X7 = [A12C17]-X10 = [A13C110]-X13 = [A14C113]-X6 = A12C16 * 1.0 *m (Xn) o.a 0-6 04 0.2 0.0 QC 0.2 0,4 0.G 0.Ô 1.0 jrfAICW ------► 26 Halogenoaluminate(III) Ionic Liquids 2 [A1C14]- í; [A12C17]- + CI- autosolvolysis K^ = 1016 to 1017 at 40 °C Acidic IL with an excess of A1C13 HCl + [A12C17]- * H+ + 2 [A1C1J- Proton extremely poorly solvated = high reactivity Superacid [EMIM]C1/A1C13/HC1 H0 = -19 (HS03F: H0 = -15) Latent acidity MCI + [A12C17]- £? M+ + 2 [A1C14]- buffered IL B + JVT+ [AICIJ- í? MC1+ B-AICI3 27 Superacidity Liquid HF-£bF5 FSO3H ^>s (magit acid) za 14 addíc ionic Jiquki HF-TaFj 100% HjSG4 HT 10 L* ti H Solid 28 Superacidic [EMIM] C1/A1C13/HC1 Bip-tnyl I hjphtiA+ne 3H-f lüOrfnt: II III ^.Ď "£' CO O Clryse« 3-MBLhylnnMľilwe Ueirtťer* P#Tilarrf-1h.yiMirLifrit ňr V VI Yll -v? -1J -Q-4 fců.l I = not protonated II = slightly protonated III and IV = 10-20 % V = 75-90% VI-VIII = nearly completely IX and X = completely k*i.»nwhyltHni«rw 4-1.4 An Iři n et r* n ooo *. iO-Dlmŕih>línlhŕiÉ*n* X -6* log Kb in HF 29 Ionic Liquids Completely inorganic ionic liquids Compound mp(K) Compound mp(K) Na13[La(TiW11039)2] 253.0 Na13[Tm(TiWn039)2] 260.2 Na13[Ce(TiW11039)2] 263.0 Na13[Yb(TiWn039)2] 267.2 Na13[Pr(TiWn039)2] 253.0 Na5[CrTiWn039] 261.5 Na13[Sm(TiWn039)2] 256.0 Na5[MnTiWn039] 253.0 Na13[Gd(TiWn039)2] 265.1 Na5[FeTiWn039] 257.6 Na13[Dy(TiWn039)2] 265.2 Na6[ZnTiWn039] 257.4 Na13[Er(TiWn039)2] 261.0 30 Melting Point of Ionic Liquids Melting point is influenced by: Cation - low symmetry, weak imtermolecular interactions, good distribution of charge Anion - increasing size leads to lower mp Composition - Phase diagram 31 Melting Point of Ionic Liquids ^nSn *- Mť" ^ "R R X mp/^ Me CI 125 f;l CI 87 n-Bu CI 65 e;l NO-, 38 Et A1CU 7 Et BFi * Et CF,303 -9 Et (CFjSO^N -3 Et CFjC02 -14 n-B u CFjSOj 16 32 Density of Ionic Liquids The density of IL decreases as the bulkiness of the organic cation increases: + "Í3 ; ji*H.1 U ■ !S ■ 1 ■ - [..-W..J U j 11* Mil. *aí l.l [LLI.Ix R-Ma R*Mj RrMe Fh*U R-Bu R-F* H^ F,J»n- R^Bll *T->fcJ 33 Viscosity of Ionic Liquids The viscosity of IL depends on: van der Waals interactions H-bonding Anion [A] n I* ľ] [A) C K,S Oj 90 n-CiF.íSOr 373 CYCOO 73 fí-C,b\COO 1&2 (C^SOJnN 52 34 Solubility in/of Ionic Liquids Variation of the alkyl group Increasing nonpolar character of the cation increases solubility of nonpolar solutes. Water solubility depends on the anion water-soluble [BMIM] Br, CF3COO, CF3S03 Water-immiscilble [BMIM] PF6 (CF3S02)2N IL miscible with organic solvent IF their dielectric constant is above a certain limit given by the cation/anion combination Polarity by E(T)(30) scale [EtNH3] [N03] 0.95 between CF3CH2OH and water [BMIM] PF6 as methanol 35 Solubility in/of Ionic Liquids L-Iickcik / IL (wi -CF^COO 3SO3' 36 Applications of Ionic Liquids Electrodeposition of metals and alloys (also nanoscopic) Al, CoAlx, CuAlx, FeAlx, AlTix Semiconductors Si, Ge, GaAs, InSb, CdTe Electrodeposition of a Bi-Sr-Ca-Cu alloy (precursor to SC oxides) Melt of MeEtlmCl at 120 °C BiCl3, SrCl2, CaCl2, CuCl2 dissolve well Constituent BiCl3 SrCl2 CaCl2 CuCl2 Concentration 0.068 0.50 0.18 0.050 (mol kg1 MeEtlmCl) Substrate Al -1.72 V vs the Ag/Ag+ reference electrode 37 Applications of Ionic Liquids Biphasic solvent systems Preparation of aerogels 2HCOOH + Si(OMe)4 ----»ag-SiC^ + 2 MeOH + 2 HCOOMe Natural gas sweetening (H2S, C02 removal) Electrolytes in batteries or solar cells Dissolving spent nuclear fuel (U4+ oxidized to U6+) Extraction Enyzme activity 38 Applications of Ionic Liquids Olefin polymerization Ethene + TiCl4 + AlEtCl2 in acidic IL Ethene + Cp2TiCl2 + Al2Me3Cl3 in acidic IL Cp2TiCl2 + [cation]+[Al2Cl7]- £> [Cp2TiCl] + + [cation]++ 2 [A1C1J- Olefin hydrogenation Cyclohexene + H2 + [RhCl(PPh3)3] (Wilkinson's catalyst)