Introduction to EdGCM

EdGCM User Interface

- Toolbar
- Setup Simulation window
- Analyze Output window
- Panoply mapping tool

EdGCM Toolbar

Start/Resume Run

List of all runs

Create new run setup

Duplicate existing setup for modification

Setup an EdGCM Run

- Highlight any run from list
- Open its Setup Simulation window
 - (top menu bar \rightarrow "Window" \rightarrow "Setup Simulations")
- In toolbar, click "New" button
- New Setup window opens
- Enter IDs, start & end dates

🚊 S	etup Simulation	, Run ID: MLoaCO2_2000_20	51		
) Ει	dGCM ^{Ed}	lucational Gl	obal Climate N	1odel
	General info	·			
	Run ID:	MLoaCO2_2000_2051	Start: 12/01/1999	End: 12/31/2051	
	Project ID:	MLoaCO2_2000_2051	Date: 03/01/2005	Owner: Jowers	
	Run label:	CO2 trend			
	Comments:			Keywords:	
	2000-2051			surface temperatu	ire 🔺
	1950 greenh	ouse gasses			
	Modern boundary conditions			atmospheric temp	erature
	Predicted SST			empty	
	CO2 forcing trend (1.37 ppm increase per year)			empty	
	CO2 trend derived from data collected at Mauna Loa, from 1959-2000			a amatu	
	this run assumes that the trend continues through 2051			- empty	_

Input File Setup

- Choose input folder time period (in setup window)
- For near past, present, & near future runs, use "Modern"
- Choose reference year to match start date
- Leave initial & boundary conditions at default

Triput files							
Input folder: Modern 💌 🧊	Reference year: 1949 Random no. seed: 78						
_ Initial Conditions	Boundary conditions						
Initialization: GCM restart file	Topography: Z8X101						
GCM restart file: NOV1911.rsfModern_Qflux	Vegetation: V8X10						
Ground data file:	Drag coefficient: CD8X10						
Observations file:	Radiation (RTAU): RTAU.G25L15						
Start date and initial conditions must align	Radiation (RPLK): RPLK25						

Ocean Mode Options

- "Predict SST" lets model predict SSTs throughout the run
- "Specify SST" uses observed SSTs, should not be used for future or paleoclimate runs
- Leave other ocean options at default

T	Ocean model		
	Ocean mode:	Predict SST(Qflux)	Collect ocean/atmosphere fluxes
	Ocean surface file:	08X10.250MLD	Collect fluxes every: 24 hours
	Max mixed layer:	Z10MAX.8X10.250M	Collect Huxes from: 1908 year
	Ocean transports:	otspec_Control2_02sC9_1 💌	
	Solar correction:	0.95394112795255	

Setup Forcings

- Use "observed" values enter year & click "Set"
- Or enter values of your choice
- Solar luminosity values available 1500 1998
- GHG values available 1850 2050
 - 1850-1957: ice core bubbles
 - 1958-2000: observed
 - 2001-2050: projections

Forcings			
Solar			
Luminosity: 1366.022 W/m^2	Use observed values for year: 1950 Set		
Greenhouse gases			
CO2: 310.7 ppm N2O: 0.289 ppm	CH4: 1.147 ppm CFC11: 0.0007 ppt CFC12: 0.0093 ppt		
	Use observed values from year: 1950 Set		

• Entered values remain constant throughout run, unless . . .

Forcings Trend Setup

- Enable trend(s) to change values over time
- For solar luminosity & each GHG
- Choose trend type (i.e. linear, exponential)
- Enter change per year
- Enter start & end years of trend
- Note: start & end years of trend(s) not confined to start & end dates of run
- Click "View" icon to see values trend produces

▼ _[CO2 trend					
🔽 Enable trend					
Linear (ppm)	1.37	change per year	From: 1951	To: 2051	
None	•	change per year	From: 0	то: 0	View

Run the Model

- After setup, highlight run ID in run list
- Click start button

Pause Star

- Calculates one cycle, then stops
- Click start button again to finish run
- Can pause run any time & resume later
- When complete, close & restart EdGCM (necessary to analyze output)

Analyze Output: Tables

- Highlight run in list
- Open its Analyze Output window
 - (top menu bar \rightarrow "Window" \rightarrow "Analyze Output")
- Select "Tables" tab
- Select start & end years for averaging
- Click "Average" button
- Check boxes of time period averages to view (months, seasons, annual)
- Click "Get Tables" button
- Highlight table name & click "View"

Analyze Output: Plots

- Analyze Output window \rightarrow "Plots" tab
- Select start and end years
- Click "Time Series" button
- Select variables to plot
- Click "Get Plots"
- Highlight plot name you wish to view
- Click "View"

Analyze Output: Maps

- Analyze Output window \rightarrow "Maps" tab
- Select start & end years for averaging
- Click "Average"
- Select time period(s) to map (i.e. annual)
- Select variables to map
- Click "Get Maps"
- Highlight time period in "Viewable Maps" list
- Click "View"

Panoply Mapping Tool

- After clicking "View", Panoply opens
- Highlight map name
- Click "Create Plot"
- Many map options to choose from
- Drop down box to change time period mapped (i.e. ANN, DJF, JAN)

Note: map will be lost if you close map window without saving

Analyze Output: Vertical

- In Analyze Output window, "Vertical" tab
- Procedure is similar to "Maps" tab
- Vertical profile also uses Panoply
- Zonal averages depicted in profile

Known Problems

- First calendar year of any run cannot be analyzed
- SST cannot be mapped
- Map images do not save well
- In some cases, data for a certain range of years cannot be averaged for analysis
- Vertical profile variable check boxes are off by one

Sample Run

- Start: 12/01/2005 End: 12/31/2007
- Input folder: Modern
- Reference Year: 2005
- Predict SST
- Choose to generate monthly average data tables
- Solar: 1998 value
- GHGs: 2005 values
- Choose to enable CO2 trend
- Linear (ppm) trend
- 2.75 ppm CO2 change per year (~2x current rate)
- Trend From: 2006 To: 2007